Next: About this document ...
Up: Genetics-based Machine Learning
Previous: Glossary
Contents
- 1
-
Proceedings of the 2000 Congress on Evolutionary Computation (CEC00).
IEEE Press, 2000.
- 2
-
H.A. Abbass.
Speeding up backpropagation using multiobjective evolutionary
algorithms.
Neural Computation, 15(11):2705-2726, 2003.
- 3
-
D.H. Ackley and M.L. Littman.
Interactions between learning and evolution.
In C. Langton, C. Taylor, S. Rasmussen, and J. Farmer, editors, Artificial Life II: Santa Fe Institute Studies in the Sciences of
Complexity, volume 10, pages 487-509. Addison Wesley, 1992.
- 4
-
J. Aguilar-Ruiz, J. Riquelme, and M. Toro.
Evolutionary learning of hierarchical decision rules.
IEEE Transactions on Systems, Man and Cybernetics, Part B,
33(2):324-331, 2003.
- 5
-
Manu Ahluwalia and Larry Bull.
A Genetic Programming-based Classifier System.
In Banzhaf et al. [17], pages 11-18.
- 6
-
H.C. Andersen and A.C. Tsoi.
A constructive algorithm for the training of a multi-layer perceptron
based on the genetic algorithm.
Complex Systems, 7(4):249-268, 1993.
- 7
-
P.J. Angeline, G.M. Sauders, and J.B. Pollack.
An evolutionary algorithm that constructs recurrent neural networks.
IEEE Trans. Neural Networks, 5:54-65, 1994.
- 8
-
Plamen Angelov.
Evolving Rule-based Models. A tool for design of flexible
adaptive systems, volume 92 of Studies in fuzziness and soft
computing.
Springer-Verlag, 2002.
- 9
-
A. Asuncion and D.J. Newman.
UCI machine learning repository
http://www.ics.uci.edu/
mlearn/MLRepository.html, 2009.
- 10
-
J. Bacardit, E.K. Burke, and N. Krasnogor.
Improving the scalability of rule-based evolutionary learning.
Memetic Computing, 1(1):55-67, 2009.
- 11
-
J. Bacardit, M. Stout, J.D. Hirst, and N. Krasnogor.
Data mining in proteomics with learning classifier systems.
In L. Bull, E. Bernadó Mansilla, and J. Holmes, editors, Learning Classifier Systems in Data Mining, pages 17-46. Springer, 2008.
- 12
-
J. Bacardit, M. Stout, J.D. Hirst, A. Valencia, R.E. Smith, and N. Krasnogor.
Automated alphabet reduction for protein datasets.
BMC Bioinformatics, 10(6), 2009.
- 13
-
Jaume Bacardit.
Pittsburgh Genetic-Based Machine Learning in the Data Mining
era: Representations, generalization, and run-time.
PhD thesis, Universitat Ramon Llull, 2004.
- 14
-
Jaume Bacardit, David E. Goldberg, and Martin V. Butz.
Improving the performance of a pittsburgh learning classifier system
using a default rule.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier
Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers,
volume 4399 of LNCS, pages 291-307. Springer, 2007.
- 15
-
Jaume Bacardit and Natalio Krasnogor.
Empirical evaluation of ensemble techniques for a pittsburgh learning
classifier system.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 255-268.
Springer, 2008.
- 16
-
A.J. Bagnall and Z.V. Zatuchna.
On the classification of maze problems.
In L. Bull and T. Kovacs, editors, Applications of Learning
Classifier Systems, pages 307-316. Springer, 2005.
- 17
-
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar,
Mark Jakiela, and Robert E. Smith, editors.
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-99). Morgan Kaufmann, 1999.
- 18
-
Alwyn Barry.
Hierarchy Formulation Within Classifiers System - A Review.
In E. G. Goodman, V. L. Uskov, and W. F. Punch, editors, Proceedings of the First International Conference on Evolutionary Algorithms
and their Application EVCA'96, pages 195-211, Moscow, 1996. The Presidium
of the Russian Academy of Sciences.
- 19
-
Alwyn Barry.
XCS Performance and Population Structure within Multiple-Step
Environments.
PhD thesis, Queens University Belfast, 2000.
- 20
-
Thomas Beielstein and Shandor Markon.
Threshold selection, hypothesis tests and DOE methods.
In 2002 Congress on Evolutionary Computation, pages 777-782,
2002.
- 21
-
R.K. Belew, J. McInerney, and N.N. Schraudolph.
Evolving networks: using the genetic algorithm with connectionistic
learning.
In C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, editors,
Proceedings of the 2nd Conference on Artificial Life, pages 51-548.
Addison-Wesley, 1992.
- 22
-
Ester Bernadó, Xavier Llorà, and Josep M. Garrell.
XCS and GALE: A Comparative Study of Two Learning Classifier Systems
on Data Mining.
In Lanzi et al. [183], pages 115-132.
- 23
-
Ester Bernadó-Mansilla and Josep M. Garrell-Guiu.
Accuracy-Based Learning Classifier Systems: Models, Analysis and
Applications to Classification Tasks.
Evolutionary Computation, 11(3):209-238, 2003.
- 24
-
Ester Bernadó-Mansilla and T.K. Ho.
Domain of competence of XCS classifier system in complexity
measurement space.
IEEE Trans. Evolutionary Computation, 9(1):82-104, 2005.
- 25
-
Andrea Bonarini.
An Introduction to Learning Fuzzy Classifier Systems.
In Lanzi et al. [181], pages 83-104.
- 26
-
Pierre Bonelli and Alexandre Parodi.
An Efficient Classifier System and its Experimental Comparison with
two Representative learning methods on three medical domains.
In Booker and Belew [31], pages 288-295.
- 27
-
Lashon B. Booker.
Triggered rule discovery in classifier systems.
In Schaffer [246], pages 265-274.
- 28
-
Lashon B. Booker.
Representing Attribute-Based Concepts in a Classifier System.
In Gregory J. E. Rawlins, editor, Proceedings of the First
Workshop on Foundations of Genetic Algorithms (FOGA91), pages 115-127.
Morgan Kaufmann: San Mateo, 1991.
- 29
-
Lashon B. Booker.
Adaptive value function approximations in classifier systems.
In GECCO '05: Proceedings of the 2005 workshops on Genetic and
evolutionary computation, pages 90-91. ACM, 2005.
- 30
-
Lashon B. Booker.
Approximating value functions in classifier systems.
In L. Bull and T. Kovacs, editors, Foundations of Learning
Classifier Systems, volume 183/2005 of Studies in Fuzziness and Soft
Computing, pages 45-61. Springer, 2005.
- 31
-
Lashon B. Booker and Richard K. Belew, editors.
Proceedings of the 4th International Conference on Genetic
Algorithms (ICGA91). Morgan Kaufmann, July 1991.
- 32
-
M.C.J. Bot and W.B. Langdon.
Application of genetic programming to induction of linear
classification trees.
In Genetic Programming: Proceedings of the 3rd European
Conference (EuroGP 2000), volume 1802 of LNCS, pages 247-258.
Springer, 2000.
- 33
-
L. Breiman.
Bagging predictors.
Machine Learning, 24(2):123-140, 1996.
- 34
-
L. Breiman.
Arcing classifiers.
Annals of Statistics, 26(3):801-845, 1998.
- 35
-
Gavin Brown.
Ensemble learning.
In Claude Sammut and Geoffrey Webb, editors, Encyclopedia of
Machine Learning. Springer-Verlag, 2010.
- 36
-
Gavin Brown, Tim Kovacs, and James Marshall.
UCSpv: Principled Voting in UCS Rule Populations.
In Hod Lipson et al., editor, GECCO'07: the Genetic and
Evolutionary Computation Conference, pages 1774-1781. ACM, 2007.
- 37
-
Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao.
Diversity creation methods: A survey and categorisation.
Journal of Information Fusion (Special issue on Diversity in
Multiple Classifier Systems), 6(1):5-20, 2005.
- 38
-
L. Bull.
On dynamical genetic programming: Simple boolean networks in learning
classifier systems.
International Journal of Parallel, Emergent and Distributed
Systems, 24(5):421-442, 2009.
- 39
-
L. Bull, M. Studley, T. Bagnall, and I. Whittley.
On the use of rule-sharing in learning classifier system ensembles.
IEEE Trans. Evolutionary Computation, 11:496-502, 2007.
- 40
-
Larry Bull.
Two Simple Learning Classifier Systems.
In Larry Bull and Tim Kovacs, editors, Foundations of Learning
Classifier Systems, number 183 in Studies in Fuzziness and Soft Computing,
pages 63-90. Springer-Verlag, 2005.
- 41
-
Larry Bull and Toby O'Hara.
Accuracy-based neuro and neuro-fuzzy classifier systems.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis,
R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A.
Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, pages 905-911. Morgan Kaufmann Publishers, 9-13 July 2002.
- 42
-
Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan,
and John R. Woodward.
Exploring hyper-heuristic methodologies with genetic programming.
In C. Mumford and L. Jain, editors, Collaborative Computational
Intelligence. Springer, 2009.
- 43
-
E.K. Burke and G. Kendall.
Introduction.
In E.K. Burke and G. Kendall, editors, Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques,
pages 5-18. Springer, 2005.
- 44
-
E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Russ, and S. Schulenburg.
Hyper-heuristics: An emerging direction in modern search technology.
In F. Glover and G. Kochenberger, editors, Handbook of
Meta-heuristics, pages 457-474. Kluwer, 2003.
- 45
-
Martin Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson.
Toward a theory of generalization and learning in XCS.
IEEE Transactions on Evolutionary Computation, 8(1):8-46,
2004.
- 46
-
Martin V. Butz.
An Algorithmic Description of ACS2.
In Lanzi et al. [183], pages 211-229.
- 47
-
Martin V. Butz.
Anticipatory learning classifier systems.
Kluwer Academic Publishers, 2002.
- 48
-
Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann.
Introducing a Genetic Generalization Pressure to the Anticipatory
Classifier System - Part 1: Theoretical Approach.
In Whitley et al. [295], pages 34-41.
Also Technical Report 2000005 of the Illinois Genetic Algorithms
Laboratory.
- 49
-
Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann.
Introducing a Genetic Generalization Pressure to the Anticipatory
Classifier System - Part 2: Performance Analysis.
In Whitley et al. [295], pages 42-49.
Also Technical Report 2000006 of the Illinois Genetic Algorithms
Laboratory.
- 50
-
Martin V. Butz and Stewart W. Wilson.
An Algorithmic Description of XCS.
In Lanzi et al. [182], pages 253-272.
- 51
-
M.V. Butz.
Kernel-based, ellipsoidal conditions in the real-valued XCS
classifier system.
In H.G. Beyer et al., editor, Proc. genetic and evolutionary
computation conference (GECCO 2005), pages 1835-1842. ACM, 2005.
- 52
-
M.V. Butz.
Rule-Based Evolutionary Online Learning Systems: A Principled
Approach to LCS Analysis and Design.
Studies in Fuzziness and Soft Computing. Springer-Verlag, 2006.
- 53
-
M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Bounding learning time in XCS.
In Genetic and evolutionary computation (GECCO 2004), volume
3103/2004 of LNCS, pages 739-750. Springer, 2004.
- 54
-
M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Computational complexity of the XCS classifier system.
In Larry Bull and Tim Kovacs, editors, Foundations of Learning
Classifier Systems, number 183 in Studies in Fuzziness and Soft Computing,
pages 91-126. Springer-Verlag, 2005.
- 55
-
M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Gradient descent methods in learning classifier systems: improving
XCS performance in multistep problems.
IEEE Trans. Evolutionary Computation, 9(5):452-473, 2005.
- 56
-
M.V. Butz, D.E. Goldberg, P.L. Lanzi, and K. Sastry.
Problem solution sustenance in XCS: Markov chain analysis of niche
support distributions and the impact on computational complexity.
Genetic Programming and Evolvable Machines, 8(1):5-37, 2007.
- 57
-
M.V. Butz, P.L. Lanzi, and S.W. Wilson.
Hyper-ellipsoidal conditions in XCS: rotation, linear approximation,
and solution structure.
In M. Cattolico, editor, Proc. genetic and evolutionary
computation conference (GECCO 2006), pages 1457-1464. ACM, 2006.
- 58
-
M.V. Butz and M. Pelikan.
Studying XCS/BOA learning in boolean functions: structure encoding
and random boolean functions.
In M. Cattolico et al., editor, Genetic and evolutionary
computation conference, GECCO 2006, pages 1449-1456. ACM, 2006.
- 59
-
M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg.
Extracted global structure makes local building block processing
effective in XCS.
In H.G. Beyer and U.M. O'Reilly, editors, Genetic and
evolutionary computation conference, GECCO 2005, pages 655-662. ACM, 2005.
- 60
-
M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg.
Automated global structure extraction for effective local building
block processing in XCS.
Evolutionary Computation, 14(3):345-380, 2006.
- 61
-
M.V. Butz, P. Stalph, and P.L. Lanzi.
Self-adaptive mutation in XCSF.
In GECCO '08: Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pages 1365-1372. ACM, 2008.
- 62
-
E. Cantu-Paz and C. Kamath.
Inducing oblique decision trees with evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 7(1):54-68,
2003.
- 63
-
Erick Cantú-Paz.
Feature subset selection by estimation of distribution algorithms.
In GECCO '02: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 303-310. Morgan Kaufmann, 2002.
- 64
-
Rich Caruana and Alexandru Niculescu-Mizil.
An empirical comparison of supervised learning algorithms.
In ICML '06: Proceedings of the 23rd international conference
on Machine learning, pages 161-168. ACM, 2006.
- 65
-
J. Casillas, B. Carse, and L. Bull.
Fuzzy-XCS: a michigan genetic fuzzy system.
IEEE Trans. Fuzzy Systems, 15:536-550, 2007.
- 66
-
P.A. Castilloa, J.J. Merelo, M.G. Arenas, and G. Romero.
Comparing evolutionary hybrid systems for design and optimization of
multilayer perceptron structure along training parameters.
Information Sciences, 177(14):2884-2905, 2007.
- 67
-
D. Chalmers.
The evolution of learning: An experiment in genetic connectionism.
In E. Touretsky, editor, Proc. 1990 Connectionist Models Summer
School, pages 81-90. Morgan Kaufmann, 1990.
- 68
-
Arjun Chandra and Xin Yao.
Ensemble learning using multi-objective evolutionary algorithms.
Journal of Mathematical Modelling and Algorithms,
5(4):417-445, 2006.
Introduces DIVACE.
- 69
-
Arjun Chandra and Xin Yao.
Evolving hybrid ensembles of learning machines for better
generalisation.
Neurocomputing, 69(7-9):686-700, 2006.
Introduces DIVACE-II.
- 70
-
S. Cho and K. Cha.
Evolution of neural net training set through addition of virtual
samples.
In Proc. 1996 IEEE Int. Conf. Evol. Comp., ICEC'96, pages
685-688. IEEE, 1996.
- 71
-
S.-B. Cho.
Pattern recognition with neural networks combined by genetic
algorithm.
Fuzzy Sets and Systems, 103:339-347, 1999.
See Kuncheva2004a p.167.
- 72
-
Sung-Bae Cho and Chanho Park.
Speciated GA for optimal ensemble classifiers in DNA microarray
classification.
In Congress on Evolutionary Computation (CEC 2004), volume 1,
pages 590-597, 2004.
- 73
-
A.L. Corcoran and S. Sen.
Using real-valued genetic algorithms to evolve rule sets for
classification.
In Proceedings of the IEEE Conference on Evolutionary
Computation, pages 120-124. IEEE Press, 1994.
- 74
-
Oscar Cordón, Francisco Herrera, Frank Hoffmann, and Luis Magdalena.
Genetic Fuzzy Systems.
World Scientific, 2001.
- 75
-
Henry Brown Cribbs III and Robert E. Smith.
Classifier system renaissance: New analogies, new directions.
In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 547-552, Stanford University, CA, USA, 28-31 July
1996. MIT Press.
- 76
-
Hai Huong Dam, Hussein A. Abbass, Chris Lokan, and Xin Yao.
Neural-based learning classifier systems.
IEEE Trans. Knowl. Data Eng., 20(1):26-39, 2008.
- 77
-
H.H. Dam, H.A. Abbass, and C. Lokan.
DXCS: an XCS system for distributed data mining.
In H.G. Beyer and U.M. O'Reilly, editors, Genetic and
evolutionary computation conference, GECCO 2005, pages 1883-1890, 2005.
- 78
-
A. Dasdan and K. Oflazer.
Genetic synthesis of unsupervised learning algorithms.
Technical Report BU-CEIS-9306, Department of Computer Engineering and
Information Science, Bilkent University, Ankara, 1993.
- 79
-
Kenneth A. De Jong, William M. Spears, and Dianna F. Gordon.
Using Genetic Algorithms for Concept Learning.
Machine Learning, 3:161-188, 13.
- 80
-
T.G. Dietterich.
Machine-learning research: four current directions.
AI Magazine, 18(4):97-136, 1998.
- 81
-
F. Divina, M. Keijzer, and E. Marchiori.
Non-universal suffrage selection operators favor population diversity
in genetic algorithms.
In Benelearn 2002: Proceedings of the 12th Belgian-Dutch
Conference on Machine Learning (Technical report UU-CS-2002-046), pages
23-30, 2002.
- 82
-
F. Divina, M. Keijzer, and E. Marchiori.
A method for handling numerical attributes in GA-based inductive
concept learners.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2003), pages 898-908. Springer-Verlag, 2003.
- 83
-
Federico Divina and Elena Marchiori.
Evolutionary concept learning.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis,
R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A.
Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, pages 343-350, New York, 9-13 July 2002. Morgan Kaufmann
Publishers.
- 84
-
P.W. Dixon, D. Corne, and M.J. Oates.
A ruleset reduction algorithm for the XCS learning classifier
system.
In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors, Learning
classifier systems, 5th international workshop (IWLCS 2002), volume 2661
of LNCS, pages 20-29. Springer, 2002.
- 85
-
Jean-Yves Donnart.
Cognitive Architecture and Adaptive Properties of an
Motivationally Autonomous Animat.
PhD thesis, Université Pierre et Marie Curie. Paris, France,
1998.
- 86
-
Jean-Yves Donnart and Jean-Arcady Meyer.
Hierarchical-map Building and Self-positioning with MonaLysa.
Adaptive Behavior, 5(1):29-74, 1996.
- 87
-
Jean-Yves Donnart and Jean-Arcady Meyer.
Learning Reactive and Planning Rules in a Motivationally Autonomous
Animat.
IEEE Transactions on Systems, Man and Cybernetics - Part B:
Cybernetics, 26(3):381-395, 1996.
- 88
-
Marco Dorigo and Marco Colombetti.
Robot Shaping: An Experiment in Behavior Engineering.
MIT Press/Bradford Books, 1998.
- 89
-
J. Drugowitsch and A. Barry.
XCS with eligibility traces.
In H.G. Beyer and U.M. O'Reilly, editors, Genetic and
evolutionary computation conference, GECCO 2005, pages 1851-1858. ACM,
2005.
- 90
-
Jan Drugowitsch.
Design and Analysis of Learning Classifier Systems: A
Probabilistic Approach.
Springer, 2008.
- 91
-
Jan Drugowitsch and Alwyn Barry.
A Formal Framework and Extensions for Function Approximation in
Learning Classifier Systems.
Machine Learning, 70(1):45-88, 2007.
- 92
-
Narayanan E. Edakunni, Tim Kovacs, Gavin Brown, and James A.R. Marshall.
Modeling UCS as a mixture of experts.
In Proceedings of the 2009 Genetic and Evolutionary Computation
Conference (GECCO'09), pages 1187-1194. ACM, 2009.
- 93
-
Dario Floreano, Peter Dürr, and Claudio Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47-62, 2008.
- 94
-
G. Folino, C. Pizzuti, and G. Spezzano.
Ensemble techniques for parallel genetic programming based
classifiers.
In Proc. European Conf. on Genetic Programming (EuroGP'03),
pages 59-69, 2003.
- 95
-
A.A. Freitas.
Data Mining and Knowledge Discovery with Evolutionary
Algorithms.
Spinger-Verlag, Berlin, 2002.
- 96
-
A.A. Freitas.
A survey of evolutionary algorithms for data mining and knowledge
discovery.
In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary
Computation, pages 819-845. Springer-Verlag, 2002.
- 97
-
Y. Freund and R. Schapire.
Experiments with a new boosting algorithm.
In Proc. of the INt. Conf. on Machine Learning (ICML'96),
pages 148-156, 1996.
- 98
-
Y. Freund and R. Schapire.
A short introduction to boosting.
Journal of the Japanese Society for Artificial Intelligence,
14(5):771-780, 1999.
- 99
-
J. Fürnkranz.
Integrative windowing.
Journal of Artificial Intelligence Research, 8:129-164, 1998.
- 100
-
Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini.
Ensemble learning for free with evolutionary algorithms?
In GECCO '07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 1782-1789. ACM, 2007.
- 101
-
C. Gathercole and P. Ross.
Tackling the boolean even n parity problem with genetic programming
and limited-error fitness.
In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and
R.L. Riolo, editors, Genetic Programming 1997: Proc. Second Annual
Conference, pages 119-127. Morgan Kaufmann, 1997.
- 102
-
Pierre Gérard and Olivier Sigaud.
Designing efficient exploration with MACS: Modules and function
approximation.
In E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M.
O'Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland,
N. Jonoska, and J. Miller, editors, Genetic and Evolutionary Computation
- GECCO-2003, volume 2724 of LNCS, pages 1882-1893. Springer-Verlag,
2003.
- 103
-
Pierre Gerard, Wolfgang Stolzmann, and Olivier Sigaud.
YACS, a new learning classifier system using anticipation.
Journal of Soft Computing, 6(3-4):216-228, 2002.
- 104
-
Andreas Geyer-Schulz.
Fuzzy Rule-Based Expert Systems and Genetic Machine Learning.
Physica Verlag, 1997.
- 105
-
Attilio Giordana and Filippo Neri.
Search-Intensive Concept Induction.
Evolutionary Computation, 3:375-416, 1995.
- 106
-
Attilio Giordana and L. Saitta.
Learning disjunctive concepts by means of genetic algorithms.
In Proc. Int. Conf. on Machine Learning, pages 96-104, 1994.
- 107
-
R. Giraldez, J. Aguilar-Ruiz, and J. Riquelme.
Natural coding: A more efficient representation for evolutionary
learning.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2003), pages 979-990. Springer-Verlag, 2003.
- 108
-
C. Giraud-Carrier and J. Keller.
Meta-learning.
In J. Meij, editor, Dealing with the data flood. STT/Beweton,
2002.
- 109
-
David E. Goldberg.
Genetic Algorithms in Search, Optimization, and Machine
Learning.
Addison-Wesley, Reading, Mass., 1989.
- 110
-
David E. Goldberg, Jeffrey Horn, and Kalyanmoy Deb.
What Makes a Problem Hard for a Classifier System?
In Collected Abstracts for the First International Workshop on
Learning Classifier System (IWLCS-92), 1992.
(Also technical report 92007 Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign). Available from ENCORE
(ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier
Systems.
- 111
-
David Perry Greene and Stephen F. Smith.
Competition-based induction of decision models from examples.
Machine Learning, 13:229-257, 1993.
- 112
-
David Perry Greene and Stephen F. Smith.
Using Coverage as a Model Building Constraint in Learning Classifier
Systems.
Evolutionary Computation, 2(1):67-91, 1994.
- 113
-
D.P. Greene and S.F. Smith.
A genetic system for learning models of consumer choice.
In Proceedings of the Second International Conference on Genetic
Algorithms and their Applications, pages 217-223. Morgan Kaufmann, 1987.
- 114
-
A. Greenyer.
The use of a learning classifier system JXCS.
In P. van der Putten and M. van Someren, editors, CoIL
Challenge 2000: The Insurance Company Case. Leiden Institute of Advanced
Computer Science, June 2000.
Technical report 2000-09.
- 115
-
F. Gruau.
Automatic definition of modular neural networks.
Adaptive Behavior, 3(2):151-183, 1995.
- 116
-
D. Hanebeck and K. Schmidt.
Genetic optimization of fuzzy networks.
Fuzzy sets and systems, 79:59-68, 1996.
- 117
-
L.K. Hansen and P. Salamon.
Neural network ensembles.
IEEE Trans. Pattern Analysis and Machine Intelligence, pages
993-1001, 1990.
- 118
-
W.E. Hart, N. Krasnogor, and J.E. Smith (editors).
Special issue on memetic algorithms.
Evolutionary Computation, 12(3), 2004.
- 119
-
William E. Hart, N. Krasnogor, and J.E. Smith, editors.
Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft Computing.
Springer, 2005.
- 120
-
Lin He, Ke jun Wang, Hong zhang Jin, Guo bin Li, and X.Z. Gao.
The combination and prospects of neural networks, fuzzy logic and
genetic algorithms.
In IEEE Midnight-Sun Workshop on Soft Computing Methods in
Industrial Applications, pages 52-57. IEEE, 1999.
- 121
-
Jörg Heitkötter and David Beasley.
The Hitch-Hiker's Guide to Evolutionary Computation (FAQ for
comp.ai.genetic). Accessed 28/2/09.
http://www.aip.de/~ast/EvolCompFAQ/, 2001.
- 122
-
J. Hekanaho.
Symbiosis in multimodal concept learning.
In Proc. 1995 Int. Conf. on Machine Learning (ML'95), pages
278-285, 1995.
- 123
-
Francisco Herrera.
Genetic fuzzy systems: taxonomy, current research trends and
prospects.
Evolutionary Intelligence, 1(1):27-46, 2008.
- 124
-
John H. Holland.
Adaptation.
In R. Rosen and F. M. Snell, editors, Progress in Theoretical
Biology. New York: Plenum, 1976.
- 125
-
John H. Holland.
Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems.
In T. Mitchell, R. Michalski, and J. Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II,
chapter 20, pages 593-623. Morgan Kaufmann, 1986.
- 126
-
John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo, David E.
Goldberg, Stephanie Forrest, Rick L. Riolo, Robert E. Smith, Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson.
What is a Learning Classifier System?
In Lanzi et al. [181], pages 3-32.
- 127
-
John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard.
Induction: Processes of Inference, Learning, and Discovery.
MIT Press, Cambridge, 1986.
- 128
-
John H. Holland and J. S. Reitman.
Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed
Inference Systems. New York: Academic Press, 1978.
Reprinted in: Evolutionary Computation. The Fossil Record. David B.
Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.
- 129
-
A. Homaifar and E. Mccormick.
Simultaneous design of membership functions and rule sets for fuzzy
controllers using genetic algorithms.
IEEE Trans. Fuzzy. Syst., 3(2):129-139, 1995.
- 130
-
D. Howard and L. Bull.
On the effects of node duplication and connection-orientated
constructivism in neural XCSF.
In M. Keijzer et al., editor, GECCO-2008: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1977-1984. ACM,
2008.
- 131
-
D. Howard, L. Bull, and P.L. Lanzi.
Self-Adaptive Constructivism in Neural XCS and XCSF.
In M. Keijzer et al., editor, GECCO-2008: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1389-1396. ACM,
2008.
- 132
-
Y.-J. Hu.
A genetic programming approach to constructive induction.
In Genetic Programming 1998: Proceedings of the 3rd Annual
Conference, pages 146-151. Morgan Kaufmann, 1998.
- 133
-
J. Hurst and L. Bull.
Self-adaptation in classifier system controllers.
Artificial Life and Robotics, 5(2):109-119, 2003.
- 134
-
J. Hurst and L. Bull.
A self-adaptive neural learning classifier system with constructivism
for mobile robot control.
In X. Yao et al., editor, Parallel problem solving from nature
(PPSN VIII), volume 3242 of LNCS, pages 942-951. Springer, 2004.
- 135
-
P. Husbands, I. Harvey, D. Cliff, and G. Miller.
The use of genetic algorithms for the development of sensorimotor
control systems.
In P. Gaussier and J.-D. Nicoud, editors, From perception to
action, pages 110-121. IEEE Press, 1994.
- 136
-
H. Iba.
Bagging, boosting and bloating in genetic programming.
In Proc. of the Genetic and Evolutionary Computation Conference
(GECCO'99), pages 1053-1060, 1999.
- 137
-
H. Ishibuchi and T. Nakashima.
Multi-objective pattern and feature selection by a genetic algorithm.
In Proceedings of the 2000 Genetic and Evolutionary Computation
Conference (GECCO'2000), pages 1069-1076. Morgan Kaufmann, 2000.
- 138
-
M.M. Islam, X. Yao, and K. Murase.
A constructive algorithm for training cooperative neural network
ensembles.
IEEE Transactions on Neural Networks, 14:820-834, 2003.
- 139
-
A. Jain and D. Zongker.
Feature selection: evaluation, application and small sample
performance.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
19(2):153-158, 1997.
- 140
-
C.Z. Janikow.
Indictive learning of decision rules in attribute-based
examples: a knowledge-intensive genetic algorithm approach.
PhD thesis, University of North Carolina, 1991.
- 141
-
C.Z. Janikow.
A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 13:189-228, 1993.
- 142
-
Y. Jin and B. Sendhoff.
Reducing fitness evaluations using clustering techniques and neural
network ensembles.
In Genetic and Evolutionary Computation Conference
(GECCO-2004), volume 3102 of Lecture Notes in Computer Science,
pages 688-699. Springer, 2004.
- 143
-
G. John, R. Kohavi, and K. Phleger.
Irrelevant features and the feature subset problem.
In Proceedings of the 11th International Conference on Machine
Learning, pages 121-129. Morgan Kaufmann, 1994.
- 144
-
Kenneth A. De Jong and William M. Spears.
Learning Concept Classification Rules using Genetic Algorithms.
In Proceedings of the Twelfth International Conference on
Artificial Intelligence IJCAI-91, volume 2, pages 651-656. Morgan Kaufmann,
1991.
- 145
-
J.D. Kelly Jr. and L. Davis.
Hybridizing the genetic algorithm and the k nearest neighbors
classification algorithm.
In Lashon B. Booker and Richard K. Belew, editors, Proceedings
of the 4th International Conference on Genetic Algorithms (ICGA91), pages
377-383. Morgan Kaufmann, July 1991.
- 146
-
C. Karr.
Genetic algorithms for fuzzy controllers.
AI Expert, 6(2):26-33, 1991.
- 147
-
N. Kasabov.
Evolving Connectionist Systems: The Knowledge Engineering
Approach.
Springer, 2007.
- 148
-
M. Keijzer and V. Babovic.
Genetic programming, ensemble methods, and the bias/variance/tradeoff
- introductory investigation.
In Proc. of the European Conf. on Genetic Programming
(EuroGP'00), pages 76-90, 2000.
- 149
-
H. Kitano.
Designing neural networks by genetic algorithms using graph
generation system.
Journal of Complex System, 4:461-476, 1990.
- 150
-
Eyal Kolman and Michael Margaliot.
Knowledge-Based Neurocomputing: A Fuzzy Logic Approach, volume
234 of Studies in Fuzziness and Soft Computing.
Springer, 2009.
- 151
-
Tim Kovacs.
Evolving Optimal Populations with XCS Classifier Systems.
Master's thesis, University of Birmingham, Birmingham, UK, 1996.
- 152
-
Tim Kovacs.
XCS Classifier System Reliably Evolves Accurate, Complete, and
Minimal Representations for Boolean Functions.
In Roy, Chawdhry, and Pant, editors, Soft Computing in
Engineering Design and Manufacturing, pages 59-68. Springer-Verlag,
London, 1997.
ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html.
- 153
-
Tim Kovacs.
Strength or Accuracy? Fitness calculation in learning classifier
systems.
In Lanzi et al. [181], pages 143-160.
- 154
-
Tim Kovacs.
Strength or Accuracy: Credit Assignment in Learning Classifier
Systems.
Springer, 2004.
- 155
-
Tim Kovacs.
A Learning Classifier Systems Bibliography. Department of Computer
Science, University of Bristol, 2009.
http://www.cs.bris.ac.uk/~kovacs/lcs/search.html.
- 156
-
Tim Kovacs and Manfred Kerber.
What makes a problem hard for XCS?
In Lanzi et al. [182], pages 80-99.
- 157
-
Tim Kovacs and Manfred Kerber.
High classification accuracy does not imply effective genetic
search.
In K. Deb et al., editor, Proceedings of the 2004 Genetic and
Evolutionary Computation Conference (GECCO), volume 3102 of LNCS,
pages 785-796. Springer, 2004.
- 158
-
J.R. Koza.
Genetic Programming: on the programming of computers by means of
natural selection.
MIT Press, 1992.
- 159
-
J.R. Koza.
Genetic Programming II.
MIT Press, 1994.
- 160
-
N. Krasnogor.
Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England, 2002.
- 161
-
N. Krasnogor and J.E. Smith.
A tutorial for competent memetic algorithms: model, taxonomy and
design issues.
IEEE Transactions on Evolutionary Computation, 9(5):474-488,
2005.
- 162
-
Natalio Krasnogor.
Self-generating metaheuristics in bioinformatics: the protein
structure comparison case.
Genetic Programming and Evolvable Machines, 5(2):181-201,
2004.
- 163
-
Natalio Krasnogor and S. Gustafson.
A study on the use of self-generation in memetic algorithms.
Natural Computing, 3(1):53-76, 2004.
- 164
-
K. Krawiec.
Genetic programming-based construction of features for machine
learning and knowledge discovery tasks.
Genetic Programming and Evolvable Machines, 3(4):329-343,
2002.
- 165
-
A. Krogh and J. Vedelsby.
Neural network ensembles, cross validation and active learning.
Neural Information Processing Systems, 7:231-238, 1995.
- 166
-
M. Kudo and J. Skalansky.
Comparison of algorithms that select features for pattern
classifiers.
Pattern Recognition, 33:25-41, 2000.
- 167
-
Ludmila I. Kuncheva.
Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.
- 168
-
I. Kushchu.
An evaluation of evolutionary generalization in genetic programming.
Artificial Intelligence Review, 18(1):3-14, 2002.
- 169
-
L. Lam and C.Y. Suen.
Optimal combination of pattern classifiers.
Pattern Recognition Letters, 16:945-954, 1995.
See Kuncheva2004a p.167.
- 170
-
Samuel Landau, Olivier Sigaud, and Marc Schoenauer.
ATNoSFERES revisited.
In Proceedings of the Genetic and Evolutionary Computation
Conference GECCO-2005, pages 1867-1874. ACM, 2005.
- 171
-
William Langdon, Steven Gustafson, and John Koza.
The genetic programming bibliography
http://www.cs.bham.ac.uk/ wbl/biblio/, 2009.
- 172
-
Pier Luca Lanzi.
Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding.
In Banzhaf et al. [17], pages 337-344.
- 173
-
Pier Luca Lanzi.
Extending the Representation of Classifier Conditions Part II: From
Messy Coding to S-Expressions.
In Banzhaf et al. [17], pages 345-352.
- 174
-
Pier Luca Lanzi.
Mining interesting knowledge from data with the XCS classifier
system.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon,
and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 958-965, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.
- 175
-
Pier Luca Lanzi.
Learning classifier systems from a reinforcement learning
perspective.
Journal of Soft Computing, 6(3-4):162-170, 2002.
- 176
-
Pier Luca Lanzi.
Learning classifier systems: then and now.
Evolutionary Intelligence, 1(1):63-82, 2008.
- 177
-
Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Classifier prediction based on tile coding.
In Genetic and Evolutionary Computation - GECCO-2006, pages
1497-1504. ACM, 2006.
- 178
-
Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Prediction Update Algorithms for XCSF: RLS, Kalman Filter and Gain
Adaptation.
In Genetic and Evolutionary Computation - GECCO-2006, pages
1505-1512. ACM, 2006.
- 179
-
Pier Luca Lanzi, Daniele Loiacono, and Matteo Zanini.
Evolving classifiers ensembles with heterogeneous predictors.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 218-234.
Springer, 2008.
- 180
-
Pier Luca Lanzi and Rick L. Riolo.
A Roadmap to the Last Decade of Learning Classifier System Research
(from 1989 to 1999).
In Lanzi et al. [181], pages 33-62.
- 181
-
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Learning Classifier Systems. From Foundations to
Applications, volume 1813 of LNAI.
Springer-Verlag, Berlin, 2000.
- 182
-
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 1996 of LNAI.
Springer-Verlag, Berlin, 2001.
- 183
-
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 2321 of LNAI.
Springer-Verlag, Berlin, 2002.
- 184
-
P.L. Lanzi, M.V. Butz, and D.E. Goldberg.
Empirical analysis of generalization and learning in XCS with
gradient descent.
In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, volume 2, pages 1814-1821. ACM, 2007.
- 185
-
P.L. Lanzi and D. Loiacono.
Standard and averaging reinforcement learning in XCS.
In M. Cattolico, editor, GECCO 2006: Proceedings of the 8th
annual conference on genetic and evolutionary computation, pages
1480-1496. ACM, 2006.
- 186
-
P.L. Lanzi and D. Loiacono.
Classifier systems that compute action mappings.
In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, pages 1822-1829. ACM, 2007.
- 187
-
P.L. Lanzi and S.W. Wilson.
Using convex hulls to represent classifier conditions.
In M. Cattolico, editor, Proc. genetic and evolutionary
computation conference (GECCO 2006), pages 1481-1488. ACM, 2006.
- 188
-
Z. Liangjie and L. Yanda.
A new global optimizing algorithm for fuzzy neural networks.
Int. J. Electronics, 80(3):393-403, 1996.
- 189
-
D.A. Linkens and H.O. Nyongesa.
Learning systems in intelligent control: an appraisal of fuzzy,
neural and genetic algorithm control applications.
IEE Proceedings - Control Theory and Applications,
143(4):367-386, 1996.
- 190
-
Juliet Juan Liu and James Tin-Yau Kwok.
An extended genetic rule induction algorithm.
In Proceedings of the 2000 Congress on Evolutionary Computation
(CEC00) [1], pages 458-463.
- 191
-
Y. Liu and X. Yao.
Ensemble learning via negative correlation.
Neural Networks, 12:1399-1404, 1999.
- 192
-
Y. Liu, X. Yao, and T. Higuchi.
Evolutionary ensembles with negative correlation learning.
IEEE Trans. on Evolutionary Computation, 4(4):380-387, 2000.
- 193
-
Xavier Llorà.
Genetic Based Machine Learning using Fine-grained Parallelism
for Data Mining.
PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull
University, 2002.
- 194
-
Xavier Llorà and Josep M. Garrell.
Knowledge-Independent Data Mining with Fine-Grained Parallel
Evolutionary Algorithms.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon,
and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'2001), pages 461-468. Morgan Kaufmann
Publishers, 2001.
- 195
-
Xavier Llorà, K. Sastry, and D.E. Goldberg.
Binary rule encoding schemes: a study using the compact classifier
system.
In F. Rothlauf, editor, GECCO '05: Proceedings of the 2005
conference on genetic and evolutionary computation, workshop proceedings,
pages 88-89. ACM Press, 2005.
- 196
-
Xavier Llorà, K. Sastry, and D.E. Goldberg.
The compact classifier system: scalability analysis and first
results.
In F. Rothlauf, editor, Proceedings of the IEEE congress on
evolutionary computation, CEC 2005, pages 596-603. IEEE, 2005.
- 197
-
Xavier Llorà and Stewart W. Wilson.
Mixed Decision Trees: Minimizing Knowledge Representation Bias in
LCS.
In Kalyanmoy Deb et al., editor, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004), volume 3103 of Lecture Notes in Computer Science, pages 797-809. Springer, 2004.
- 198
-
D. Loiacono, A. Marelli, and P.L. Lanzi.
Support vector regression for classifier prediction.
In GECCO '07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 1806-1813. ACM, 2007.
- 199
-
R.E. Marmelstein and G.B. Lamont.
Pattern classification using a hybrid genetic algorithm - decision
tree approach.
In Genetic Programming 1998: Proceedings of the 3rd Annual
Conference (GP'98), pages 223-231. Morgan Kaufmann, 1998.
- 200
-
James A. R. Marshall and Tim Kovacs.
A representational ecology for learning classifier systems.
In Maarten Keijzer et al., editor, Proceedings of the 2006
Genetic and Evolutionary Computation Conference (GECCO 2006), pages
1529-1536. ACM, 2006.
- 201
-
M.J. Martin-Bautista and M.-A. Vila.
A survey of genetic feature selection in mining issues.
In Proceedings of the Congress on Evolutionary Computation
(CEC'99, pages 1314-1321. IEEE, 1999.
- 202
-
Ron Meir and Gunnar Rätsch.
An introduction to boosting and leveraging.
In Advanced lectures on machine learning, pages 118-183.
Springer-Verlag, 2003.
- 203
-
Drew Mellor.
A first order logic classifier system.
In F. Rothlauf, editor, GECCO '05: Proceedings of the 2005
conference on genetic and evolutionary computation, pages 1819-1826. ACM
Press, 2005.
- 204
-
Drew Mellor.
Policy transfer with a relational learning classifier system.
In GECCO Workshops 2005, pages 82-84. ACM Press, 2005.
- 205
-
Drew Mellor.
A learning classifier system approach to relational reinforcement
learning.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 169-188.
Springer, 2008.
- 206
-
R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac.
The AQ15 inductive learning system: an overview and experiments.
Technical Report UIUCDCS-R-86-1260, University of Illinois, 1986.
- 207
-
G.F. Miller, P.M. Todd, and S.U. Hegde.
Designing neural networks using genetic algorithms.
In J.D. Schaffer, editor, Proc. 3rd Int. Conf. Genetic
Algorithms and Their Applications, pages 379-384. Morgan Kaufmann, 1989.
- 208
-
Sushmita Mitra and Yoichi Hayashi.
Neuro–fuzzy rule generation: Survey in soft computing framework.
IEEE Transactions on Neural Networks, 11(3):748-768, 2000.
- 209
-
T. Morimoto, J. Suzuki, and Y. Hashimoto.
Optimization of a fuzzy controller for fruit storage using neural
networks and genetic algorithms.
Engineering Applications of Art. Int., 10(5):453-461, 1997.
- 210
-
S. Nolfi, O. Miglino, and D. Parisi.
Phenotypic plasticity in evolving neural networks.
In P. Gaussier and J.-D. Nicoud, editors, From perception to
action, pages 146-157. IEEE Press, 1994.
- 211
-
T. O'Hara and L. Bull.
A memetic accuracy-based neural learning classifier system.
In Proceedings of the IEEE congress on evolutionary computation
(CEC 2005), pages 2040-2045. IEEE, 2005.
- 212
-
Y.-S. Ong, N. Krasnogor, and H. Ishibuchi (editors).
Special issue on memetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics - Part B,
37(1), 2007.
- 213
-
Yew-Soon Ong, Meng-Hiot Lim, Ferrante Neri, and Hisao Ishibuchi.
Special issue on memetic algorithms.
Soft Computing, 13(8-9), 2009.
- 214
-
Y.S. Ong, M.H. Lim, N. Zhu, and K.W. Wong.
Classification of adaptive memetic algorithms: A comparative study.
IEEE Transactions on Systems Man and Cybernetics - Part B,
36(1):141-152, 2006.
- 215
-
D. Opitz and R. Maclin.
Popular ensemble methods: an empirical study.
J. Artificial Intelligence Research, 11:169-198, 1999.
- 216
-
D.W. Opitz and J.W. Shavlik.
Generating Accurate and Diverse Members of a Neural-network
Ensemble.
Advances in Neural Information Processing Systems, pages
535-541, 1996.
- 217
-
A. Orriols-Puig and E. Bernadó-Mansilla.
Bounding XCS's parameters for unbalanced datasets.
In Maarten Keijzer et al., editor, Proceedings of the 2006
Genetic and Evolutionary Computation Conference (GECCO 2006), pages
1561-1568. ACM, 2006.
- 218
-
A. Orriols-Puig, J. Casillas, and E. Bernadò-Mansilla.
Fuzzy-UCS: preliminary results.
In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, pages 2871-2874. ACM, 2007.
- 219
-
A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla.
Modeling XCS in class imbalances: population size and parameter
settings.
In H. Lipson et al., editor, Genetic and evolutionary
computation conference, GECCO 2007, pages 1838-1845. ACM, 2007.
- 220
-
A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla.
Modeling XCS in class imbalances: population size and parameter
settings.
In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, pages 1838-1845. ACM, 2007.
- 221
-
A. Orriols-Puig, K. Sastry, P.L. Lanzi, D.E. Goldberg, and
E. Bernadò-Mansilla.
Modeling selection pressure in XCS for proportionate and tournament
selection.
In H. Lipson, editor, Genetic and Evolutionary Computation
Conference, GECCO 2007, Proceedings, page 1846–1853. ACM, 2007.
- 222
-
Albert Orriols-Puig and Ester Bernadó-Mansilla.
Revisiting UCS: Description, Fitness Sharing, and Comparison with
XCS.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 96-111.
Springer, 2008.
- 223
-
Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla.
Evolving fuzzy rules with ucs: Preliminary results.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 57-76.
Springer, 2008.
- 224
-
Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla.
Genetic-based machine learning systems are competitive for pattern
recognition.
Evolutionary Intelligence, 1(3):209-232, 2008.
- 225
-
S. Pal and D. Bhandari.
Genetic algorithms with fuzzy fitness function for object extraction
using cellular networks.
Fuzzy Sets and Systems, 65(2-3):129-139, 1994.
- 226
-
Gisele L. Pappa and Alex A. Freitas.
Automating the Design of Data Mining Algorithms. An Evolutionary
Computation Approach.
Natural Computing Series. Springer, 2010.
- 227
-
G. Paris, D. Robilliard, and C. Fonlupt.
Applying boosting techniques to genetic programming.
In Artificial Evolution 2001, volume 2310 of LNCS, pages
267-278. Springer, 2001.
- 228
-
F.B. Pereira and E. Costa.
Understanding the role of learning in the evolution of busy beaver: A
comparison between the Baldwin Effect and Lamarckian strategy.
In Proc. of the Genetic and Evol. Computation Conf.
(GECCO-2001), pages 884-891, 2001.
- 229
-
Christiaan Perneel and Jean-Marc Themlin.
Optimization of fuzzy expert systems using genetic algorithms and
neural networks.
IEEE Trans. on fuzzy systems, 3(3):301-312, 1995.
- 230
-
D.T. Pham and D. Karaboga.
Optimum design of fuzzy logic controllers using genetic algorithms.
J. Systems Eng, 1:114-118, 1991.
- 231
-
R. Poli, W.B. Langdon, and N.F. McPhee.
A field guide to genetic programming, freely available at
http://www.gp-field-guide.org.uk.
lulu.com, 2008.
- 232
-
W.F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody.
Further research on feature selection and classification using
genetic algorithms.
In Stephanie Forrest, editor, Proceedings of the 5th
International Conference on Genetic Algorithms (ICGA93), pages 557-564.
Morgan Kaufmann, 1993.
- 233
-
Amr Radi and Riccardo Poli.
Discovering efficient learning rules for feedforward neural networks
using genetic programming.
In Ajith Abraham, Lakhmi Jain, and Janusz Kacprzyk, editors, Recent Advances in Intelligent Paradigms and Applications, pages 133-159.
Springer Verlag, 2003.
- 234
-
M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain.
Dimensionality reduction using genetic algorithms.
IEEE Transactions on Evolutionary Computation, 4(2):164-171,
2000.
- 235
-
C.R. Reeves and J.E. Rowe.
Genetic Algorithms - Principles and Perspectives. A Guide to GA
Theory.
Kluwer, 2002.
- 236
-
Rick L. Riolo.
Bucket Brigade Performance: I. Long Sequences of Classifiers.
In John J. Grefenstette, editor, Proceedings of the 2nd
International Conference on Genetic Algorithms (ICGA87), pages 184-195,
Cambridge, MA, July 1987. Lawrence Erlbaum Associates.
- 237
-
R.L. Rivest.
Learning decision lists.
Machine Learning, 2(3):229-246, 1987.
- 238
-
S. Romaniuk.
Towards minimal network architectures with evolutionary growth
networks.
In Proc. IEEE Int. Conf. on NNs, IEEE World Congress on
Computational Intelligence, volume 3, pages 1710-1713. IEEE, 1994.
- 239
-
S. E. Rouwhorst and A. P. Engelbrecht.
Searching the forest: Using decision trees as building blocks for
evolutionary search in classification databases.
In Proceedings of the 2000 Congress on Evolutionary Computation
(CEC00) [1], pages 633-638.
- 240
-
Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors.
Handbook of Natural Computing: Theory, Experiments, and
Applications.
Springer Verlag, 2010.
- 241
-
D. Ruta and B. Gabrys.
Application of the evolutionary algorithms for classifier selection
in multiple classifier systems with majority voting.
In J. Kittler and F. Roli, editors, Proc. 2nd International
Workshop on Multiple Classifier Systems, volume 2096 of LNCS, pages
399-408. Springer-Verlag, 2001.
See Kuncheva2004a p.321.
- 242
-
L. Sánchez and I. Couso.
Advocating the use of imprecisely observed data in genetic fuzzy
systems.
IEEE Transactions on Fuzzy Systems, 15(4):551-562, 2007.
- 243
-
T. Sasaki and M. Tokoro.
Adaptation toward changing environments: Why darwinian in nature?
In P. Husbands and I. Harvey, editors, Proceedings of the 4th
European conference on artificial life, pages 145-153. MIT Pess, 1997.
- 244
-
Shaun Saxon and Alwyn Barry.
XCS and the Monk's Problems.
In Lanzi et al. [181], pages 223-242.
- 245
-
Cullen Schaffer.
A conservation law for generalization performance.
In Haym Hirsh and Willian W. Cohen, editors, Machine Learning:
Proceedings of the Eleventh International Conference, pages 259-265, San
Francisco, CA, 1994. Morgan Kaufmann.
- 246
-
J. David Schaffer, editor.
Proceedings of the 3rd International Conference on Genetic
Algorithms (ICGA89), George Mason University, June 1989. Morgan Kaufmann.
- 247
-
Jürgen Schmidhuber.
Evolutionary principles in self-referential learning. (On
learning how to learn: The meta-meta-... hook.).
PhD thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
- 248
-
Dale Schuurmans and Jonathan Schaeffer.
Representational Difficulties with Classifier Systems.
In Schaffer [246], pages 328-333.
- 249
-
A.J.C. Sharkey.
On combining artificial neural nets.
Connection Science, 8(3-4):299-313, 1996.
- 250
-
P.K. Sharpe and R.P. Glover.
Efficient ga based techniques for classification.
Applied Intelligence, 11:277-284, 1999.
- 251
-
K. Sirlantzis, M.C. Fairhurst, and M.S. Hoque.
Genetic algorithms for multi-classifier system configuration: a case
study in character recognition.
In J. Kittler and F. Roli, editors, Proc. 2nd International
Workshop on Multiple Classifier Systems, volume 2096 of LNCS, pages
99-108. Springer-Verlag, 2001.
See Kuncheva2004a p.321.
- 252
-
J.E. Smith.
Coevolving memetic algorithms: A review and progress report.
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 37(1):6-17, 2007.
- 253
-
M.G. Smith and L. Bull.
Genetic programming with a genetic algorithm for feature construction
and selection.
Genetic Programming and Evolvable Machines, 6(3):265-281,
2005.
- 254
-
Robert E. Smith.
A Report on The First International Workshop on Learning Classifier
Systems (IWLCS-92).
NASA Johnson Space Center, Houston, Texas, Oct. 6-9.
ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from
ENCORE, The Electronic Appendix to the Hitch-Hiker's Guide to Evolutionary
Computation (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on
Classifier Systems, 1992.
- 255
-
Robert E. Smith.
Memory Exploitation in Learning Classifier Systems.
Evolutionary Computation, 2(3):199-220, 1994.
- 256
-
Robert E. Smith and H. Brown Cribbs.
Is a Learning Classifier System a Type of Neural Network?
Evolutionary Computation, 2(1):19-36, 1994.
- 257
-
Robert E. Smith and H. Brown Cribbs.
Is a Learning Classifier System a Type of Neural Network?
Evolutionary Computation, 2(1):19-36, 1994.
- 258
-
Robert E. Smith and David E. Goldberg.
Variable default hierarchy separation in a classifier system.
In Gregory J. E. Rawlins, editor, Proceedings of the First
Workshop on Foundations of Genetic Algorithms, pages 148-170, San Mateo,
July 15-18 1991. Morgan Kaufmann.
- 259
-
Robert E. Smith and H. B. Cribbs III.
Combined biological paradigms.
Robotics and Autonomous Systems, 22(1):65-74, 1997.
- 260
-
D. Song, M.I. Heywood, and A.N. Zincir-Heywood.
Training genetic programming on half a million patterns: an example
from anomaly detection.
IEEE Transactions on Evolutionary Computation, 9(3):225-239,
2005.
- 261
-
N. Srinivas and K. Deb.
Multi-objective function optimization using non-dominated sorting
genetic algorithm.
Evolutionary Computation, 2(3):221-248, 1994.
- 262
-
Peter Stagge.
Averaging efficiently in the presence of noise.
In Parallel problem solving from nature, volume 5, pages
188-197, 1998.
- 263
-
Wolfgang Stolzmann.
Learning classifier systems using the cognitive mechanism of
anticipatory behavioral control, detailed version.
In Proceedings of the First European Workshop on Cognitive
Modelling, pages 82-89. Berlin: TU, 1996.
- 264
-
Chris Stone and Larry Bull.
For real! XCS with continuous-valued inputs.
Evolutionary Computation, 11(3):298-336, 2003.
- 265
-
R. Storn and K. Price.
Minimizing the real functions of the icec'96 contest by differential
evolution.
In Proc. of the IEEE Int. Conf. on Evolutionary Computation,
pages 842-844. IEEE, 1996.
- 266
-
M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor.
Prediction of recursive convex hull class assignment for protein
residues.
Bioinformatics, 24(7):916-923, 2008.
- 267
-
R.S. Sutton.
Two problems with backpropagation and other steepest-descent learning
procedures for networks.
In Proc. 8th Annual Conf. Cognitive Science Society, pages
823-831. Erlbaum, 1986.
- 268
-
T. Sziranyi.
Robustness of cellular neural networks in image deblurring and
texture segmentation.
Int. J. Circuit Theory App., 24(3):381-396, 1996.
- 269
-
A. Tamaddoni-Nezhad and S.H. Muggleton.
Searching the subsumption lattice by a genetic algorithm.
In J. Cussens and A. Frisch, editors, Proceedings of the 10th
International Conference on Inductive Logic Programming, pages 243-252.
Springer-Verlag, 2000.
- 270
-
Alireza Tamaddoni-Nezhad and Stephen Muggleton.
A Genetic Algorithms Approach to ILP.
In Inductive Logic Programming, volume 2583/2003 of LNCS,
pages 285-300. Springer, 2003.
- 271
-
K. Tharakannel and D. Goldberg.
XCS with average reward criterion in multi-step environment.
Technical report, Illinois Genetic Algorithms Laboratory, University
of Illinois at Urbana-Champaign, 2002.
- 272
-
S. Thompson.
Pruning boosted classifiers with a real valued genetic algorithm.
In Research and Development in Expert Systems XV - Proceedings
of ES'98, pages 133-146. Springer, 1998.
- 273
-
S. Thompson.
Genetic algorithms as postprocessors for data mining.
In Data Mining with Evolutionary Algorithms: Research
Directions - Papers from the AAAI Workshop. Tech report WS-99-06, pages
18-22. AAAI Press, 1999.
- 274
-
P. Thrift.
Fuzzy logic synthesis with genetic algorithms.
In Lashon B. Booker and Richard K. Belew, editors, Proceedings
of 4th international conference on genetic algorithms (ICGA'91), pages
509-513. Morgan Kaufmann, 1991.
- 275
-
Andy Tomlinson.
Corporate Classifier Systems.
PhD thesis, University of the West of England, 1999.
- 276
-
Andy Tomlinson and Larry Bull.
A Corporate Classifier System.
In A. E. Eiben, T. Bäck, M. Shoenauer, and H.-P. Schwefel,
editors, Proceedings of the Fifth International Conference on Parallel
Problem Solving From Nature - PPSN V, number 1498 in LNCS, pages 550-559.
Springer Verlag, 1998.
- 277
-
Andy Tomlinson and Larry Bull.
An accuracy-based corporate classifier system.
Journal of Soft Computing, 6(3-4):200-215, 2002.
- 278
-
T.H. Tran, C. Sanza, Y. Duthen, and T.D. Nguyen.
XCSF with computed continuous action.
In Genetic and evolutionary computation conference (GECCO
2007), pages 1861-1869. ACM, 2007.
- 279
-
K. Tumer and J. Ghosh.
Analysis of decision boundaries in linearly combined neural
classifiers.
Pattern Recognition, 29(2):341-348, 1996.
- 280
-
Peter Turney.
How to shift bias: Lessons from the baldwin effect.
Evolutionary Computation, 4(3):271-295, 1996.
- 281
-
Giorgio Valentini and Francesco Masulli.
Ensembles of learning machines.
In WIRN VIETRI 2002: Proceedings of the 13th Italian Workshop
on Neural Nets-Revised Papers, pages 3-22. Springer-Verlag, 2002.
- 282
-
Manuel Valenzuela-Rendón.
Two analysis tools to describe the operation of classifier
systems.
PhD thesis, University of Alabama, 1989.
Also TCGA technical report 89005.
- 283
-
Manuel Valenzuela-Rendón.
The Fuzzy Classifier System: a Classifier System for Continuously
Varying Variables.
In Booker and Belew [31], pages 346-353.
- 284
-
Manuel Valenzuela-Rendón.
Reinforcement learning in the fuzzy classifier system.
Expert Systems Applications, 14:237-247, 1998.
- 285
-
R. Vallim, D. Goldberg, X. Llorà, T. Duque, and A. Carvalho.
A new approach for multi-label classification based on default
hierarchies and organizational learning.
In Proceedings of the Genetic and Evolutionary Computation
Conference, Worrkshop Sessions: Learning Classifier Systems, pages
2017-2022, 2003.
- 286
-
Leonardo Vanneschi and Riccardo Poli.
Genetic programming: Introduction, applications, theory and open
issues.
In Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors, Handbook of Natural Computing: Theory, Experiments, and Applications.
Springer Verlag, 2010.
- 287
-
G. Venturini.
SIA: A supervised inductive algorithm with genetic search for
learning attributes based concepts.
In P.B. Brazdil, editor, ECML-93 - Proc. of the European
Conference on Machine Learning, pages 280-296. Springer-Verlag, 1993.
- 288
-
R. Vilalta and Y. Drissi.
A perspective view and survey of meta-learning.
Artificial Intelligence Review, 18(2):77-95, 2002.
- 289
-
A. Wada, K. Takadama, K. Shimohara, and O. Katai.
Learning classifier systems with convergence and generalization.
In L. Bull and T. Kovacs, editors, Foundations of learning
classifier systems, pages 285-304. Springer, 2005.
- 290
-
Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Counter example for Q-bucket-brigade under prediction problem.
In GECCO Workshops 2005, pages 94-99. ACM Press, 2005.
- 291
-
Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Learning classifier system equivalent with reinforcement learning
with function approximation.
In GECCO Workshops 2005, pages 92-93. ACM Press, 2005.
- 292
-
Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Counter Example for Q-Bucket-Brigade Under Prediction Problem.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier
Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers,
volume 4399 of LNCS, pages 128-143. Springer, 2007.
- 293
-
Shimon Whiteson and Peter Stone.
Evolutionary function approximation for reinforcement learning.
J. Mach. Learn. Res., 7:877-917, 2006.
- 294
-
D. Whitley, T. Starkweather, and C. Bogart.
Genetic algorithms and neural networks: Optimizing connections and
connectivity.
Parallel Comput., 14(3):347-361, 1990.
- 295
-
Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector, Ian Parmee,
and Hans-Georg Beyer, editors.
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2000). Morgan Kaufmann, 2000.
- 296
-
Darrell Whitley, V. Scott Gordon, and Keith Mathias.
Lamarckian evolution, the Baldwin effect and function optimization.
In Parallel Problem Solving from Nature (PPSN-III), pages
6-15. Springer-Verlag, 1994.
- 297
-
Jason R. Wilcox.
Organizational Learning within a Learning Classifier System.
Master's thesis, University of Illinois, 1995.
Also Technical Report No. 95003 IlliGAL.
- 298
-
S. W. Wilson.
Mining oblique data with XCS.
In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors, Advances
in learning classifier systems, third international workshop, IWLCS 2000,
volume 1996 of LNCS, pages 158-176. Springer, 2001.
- 299
-
Stewart W. Wilson.
Bid competition and specificity reconsidered.
Complex Systems, 2:705-723, 1989.
- 300
-
Stewart W. Wilson.
ZCS: A zeroth level classifier system.
Evolutionary Computation, 2(1):1-18, 1994.
- 301
-
Stewart W. Wilson.
Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149-175, 1995.
- 302
-
Stewart W. Wilson.
Generalization in the XCS classifier system.
In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba,
and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 665-674. Morgan Kaufmann, 1998.
- 303
-
Stewart W. Wilson.
Get real! XCS with continuous-valued inputs.
In L. Booker, Stephanie Forrest, M. Mitchell, and Rick L. Riolo,
editors, Festschrift in Honor of John H. Holland, pages 111-121.
Center for the Study of Complex Systems, 1999.
- 304
-
Stewart W. Wilson.
Mining Oblique Data with XCS.
In Proceedings of the International Workshop on Learning
Classifier Systems (IWLCS-2000), in the Joint Workshops of SAB 2000 and PPSN
2000, 2000.
Extended abstract.
- 305
-
Stewart W. Wilson.
Function approximation with a classifier system.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon,
and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 974-981, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.
- 306
-
Stewart W. Wilson.
Classifiers that approximate functions.
Natural Computing, 1(2-3):211-234, 2002.
- 307
-
Stewart W. Wilson.
Compact Rulesets from XCSI.
In Lanzi et al. [183], pages 196-208.
- 308
-
Stewart W. Wilson.
Three architectures for continuous action.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi,
Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier
Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers,
volume 4399 of LNCS, pages 239-257. Springer, 2007.
- 309
-
Stewart W. Wilson.
Classifier conditions using gene expression programming.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 206-217.
Springer, 2008.
- 310
-
Stewart W. Wilson and David E. Goldberg.
A Critical Review of Classifier Systems.
In Schaffer [246], pages 244-255.
- 311
-
David H. Wolpert.
The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341-1390, 1996.
- 312
-
M.L. Wong and K.S. Leung.
Data mining using grammar based genetic programming and
applications.
Kluwer, 2000.
- 313
-
K. Woods, W. Kegelmeyer, and K. Bowyer.
Combination of multiple classifiers using local accuracy estimates.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
19:405-410, 1997.
- 314
-
John R. Woodward.
GA or GP? That is not the question.
In Proceedings of the 2003 Congress on Evolutionary Computation
CEC2003, pages 1056-1063. IEEE, 2003.
- 315
-
K. Yamasaki and M. Sekiguchi.
Clear explanation of different adaptive behaviors between Darwinian
population and Larmarckian population in changing environment.
In Proc. Fifth Int. Symp. on Artificial Life and Robotics,
pages 120-123, 2000.
- 316
-
X. Yao.
Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423-1447, 1999.
- 317
-
X. Yao and M.M. Islam.
Evolving artificial neural network ensembles.
IEEE Computational Intelligence Magazine, 3(1):31-42, 2008.
- 318
-
X. Yao and Y. Liu.
A new evolutionary system for evolving artificial neural networks.
IEEE Trans. Neural Networks, 8:694-713, 1997.
- 319
-
X. Yao and Y. Liu.
Making use of population information in evolutionary artificial
neural networks.
IEEE Transactions on Systems, Man and Cybernetics B,
28(3):417-425, 1998.
- 320
-
Zhanna V. Zatuchna.
AgentP: a learning classifier system with associative
perception in maze environments.
PhD thesis, University of East Anglia, 2005.
- 321
-
Z.V. Zatuchna.
AgentP model: Learning Classifer System with Associative
Perception.
In 8th Parallel Problem Solving from Nature International
Conference (PPSN VIII), pages 1172-1182, 2004.
- 322
-
B.-T. Zhang and G. Veenker.
Neural networks that teach themselves through genetic discovery of
novel examples.
In Proc. 1991 IEEE Int. Joint Conf. on Neural Networks
(IJCNN'91), volume 1, pages 690-695. IEEE, 1991.
T Kovacs
2011-03-12