

OpenCL

Lecture 4

Things to think about when optimising OpenCL

Based on material by Benedict Gaster and Lee Howes (AMD), Tim Mattson (Intel) and several others.

Agenda

- Heterogeneous computing and the origins of OpenCL
- OpenCL overview
- Exploring the spec through a series of examples
 - Vector addition:
 - the basic platform layer
 - Matrix multiplication:
 - writing simple kernels
 - Optimizing matrix multiplication:
 - work-groups and the memory model
- General optimisation tips
 - A survey of OpenCL 1.1

OpenCL summary

OpenCL Memory Model

- Private Memory
 - Per work-item
- Local Memory
 - Shared within a work-group
- Global / Constant Memories
 - Visible to all work-groups
- Host Memory
 - On the CPU

Memory management is explicit:
 You must move data from host -> global -> local and back

Optimisation issues (I)

Efficient access to memory

- Memory coalescing
 - Ideally get work-item *i* to access *data[i]* and work-item *j* to access *data[j]* in parallel
- Memory alignment
 - GPU memory interfaces are most efficient when accessing aligned multiples of 32, 64 or 128 bytes in DRAM. Try to use all of the data in each access
- Be careful not to use too much private or local memory
 - Check with Nvidia's tools to see how much private memory (registers) being used

Exploit the memory hierarchy

- Host → Global / Constant → Local → Private
- Biggest/Slowest (Smallest/Fastest)

Use asynchronous memory transfers

- Do useful work on the host/GPU overlapped with data movement
- Especially useful during relatively slow PCI Express data transfers

Static Memory Access Pattern Analysis on a Massively Parallel GPU by Jang, et. al discusses how to effectively map work-items (threads) to the data access patterns of an algorithm

Optimisation issues (II)

Number of work-items and work-group sizes

- Ideally want 8-12 work-items per PE in a Compute Unit on Fermi
 - They are run multi-threaded on the PE to hide latency (so more is better)
- However there are diminishing returns, and there is an upper limit
 - Each work-item consumes finite PE resources (private memory, local memory, maximum number of threads)
 - Private, local, global and constant memory usages are reported by the OpenCL compiler if you use the "-cl-nv-verbose" clBuildProgram option

Work-item divergence

- What happens when work-items branch?
- Remember this is a SIMD (data parallel) model
- Both paths (if-else) may need to be executed, so avoid where possible

All of these optimisations aim to maximise <u>utilisation</u>

- Nvidia's tools report occupancy – aiming for >= 50% (>80% rare)

Optimisation issues (III)

Don't optimise too much!

- Architecture-specific optimisations may spoil the portability of your code
- Instead ride the brute-force advantage of the many-core GPUs and the ease of heterogeneous computing using OpenCL
- E.g. I don't like optimising for warp size (NV) or wavefront size (AMD)

Use built-in functions and fast-math optimisations

- Sin/cos/sqrt/dot et al all very fast in hardware
- The quick reference guide has a good list of what's available use them!
- Add e.g. "-cl-fast-relaxed-math -DMAC" build options to your clBuildProgram () call

Use single precision in preference to double if you can

- Will go faster, use less memory and less energy too
- Don't forget to identify single precision constants as such: e.g. 1.0f

Optimisation issues (III)

- Don't forget you can go multi-GPU and heterogeneous
 - The joys of OpenCL...
- Lots of great stuff in the appendices of the Nvidia OCL guide:
 - http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/OpenCL_Programming_Guide.pdf

Use the tools, e.g. occupancy calculator

1. Enter hardware model and kernel requirements

1.) Select Compute Capability (click):	2.0
2.) Enter your resource usage:	
Threads Per Block	256
Registers Per Thread	8
Shared Memory Per Block (bytes)	1024

3. Graphs are shown to visualize

2. Resource usage and limiting factors are displayed

Allocation Per Thread Block		
	Warps	8
	Registers	4608
	Shared Memory	1024
	These data are used in computing the occupancy data in blue	
	Maximum Thread Blocks Per Multiprocessor	Blocks
	Limited by Max Warps / Blocks per Multiprocessor	6
	Limited by Registers per Multiprocessor	7
	Limited by Shared Memory per Multiprocessor	48
	The state of Direct Court Device NATION CONTRACTOR OF THE STATE OF THE	DED

Use the tools: e.g. Nvidia visual profiler

Agenda

- Heterogeneous computing and the origins of OpenCL
- OpenCL overview
- Exploring the spec through a series of examples
 - Vector addition:
 - the basic platform layer
 - Matrix multiplication:
 - writing simple kernels
 - Optimizing matrix multiplication:
 - work-groups and the memory model
 - General optimisation tips
- → A survey of OpenCL 1.1

OpenCL

New features in OpenCL 1.1

OpenCL 1.1 – Language

- Implicit Conversions
 - OpenCL 1.0 requires widening for arithmetic operators

```
float4 a, b;
float c;
b = a + c; // c is widened to a float4 vector
// first and then the add is performed
```

- OpenCL 1.1 extends this feature for all operators
 - relational, equality, bitwise, logical, ternary

OpenCL 1.1 – Language

- 3-component vector data types
 - Still aligned to multiples of four in storage

- cl_khr_byte_addressable as core feature
- Atomic extensions become core features
 - cl_khr_global_int32_{base | extended}_atomics
 - cl_khr_local_int32_{base | extended}_atomics

OpenCL 1.1 – Language

- New built-in functions:
 - •get_global_offset
 - clamp for integer data types
 - async_work_group_strided_copy
 - strided async copy of data from global <---> local memory
 - shuffle construct a permutation of elements from 1 or 2 input vectors and a mask

OpenCL 1.1 – API

- Thread-safety
 - All API calls, except clSetKernelArg, are thread safe
- Sub-buffer objects
 - Create an object that represents a specific region in a buffer object
 - Easy and efficient mechanism to distribute regions of a buffer object across multiple devices
 - OpenCL synchronization mechanism ensures modifications to sub-buffer object reflected in appropriate region of parent buffer object

OpenCL 1.1 – API

- User Events
 - clEnqueue*** commands can wait on events
 - In OpenCL 1.0, events can only refer to OpenCL commands
 - Need ability to enqueue commands that wait on an external, user defined, event
- Event CallBacks
 - clSetEventCallbackFn to register a user callback function
 - · called when command identified by event has completed
 - Allows applications to enqueue new OpenCL commands based on event state changes in a non-blocking manner
- Lots more API stuff too

OpenCL 1.1 – OpenCL/OpenGL Sharing

- Improve performance of OpenCL/ OpenGL interoperability
 - Portable OpenCL/ OpenGL sharing requires
 - a glFinish before clEnqueueAcquireGLObjects
 - a clFinish after clEnqueueReleaseGLObjects
 - glFinish / clFinish are heavyweight APIs

OpenCL 1.1 – OpenCL/OpenGL Sharing

- Improve performance of OpenCL/ OpenGL interoperability
 - Create a OpenCL event from an OpenGL sync object
 - Create a OpenGL sync object from a OpenCL event
 - Allows for a finer grained waiting mechanism
 - Use event_wait_list argument for events that refer to OpenGL commands to complete
 - •Use OpenGL sync APIs to wait for specific OpenCL™ commands to complete

Conclusion

- OpenCL defines a platform-API/framework for heterogeneous computing ... not just GPGPU or CPU-offload programming
- OpenCL has the potential to deliver portably performant code;
 but it must be used correctly to achieve this:
 - Implicit SIMD data parallel code has the best chance of mapping onto a diverse range of hardware as OpenCL implementations mature
- The future is clear:
 - Heterogeneous parallelism mixing task parallel and data parallel code in a single program ... balancing the load among <u>ALL</u> of the platform's available resources, both CPUs and GPUs

Become part of the UK GPU community!

- Go to the "UK GPU developer conference"
 - This year at Imperial
- Apply to use the HECToR GPU cluster

- Be part of gpucomputing.net
 - There's a "UK" community already set up
- Join the MRSN email list (Many-core and Reconfigurable Supercomputing)
 - MRSN-request@JISCMAIL.AC.UK
- Get using it and have FUN!!