OpenCL

Lecture 4

Things to think about when optimising
OpenCL

Based on material by Benedict Gaster and Lee Howes (AMD), University of
Tim Mattson (Intel) and several others. BRISTOL

- Page 1

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview

* Exploring the spec through a series of examples

- Vector addition:
- the basic platform layer

- Matrix multiplication:
- writing simple kernels

- Optimizing matrix multiplication:
- work-groups and the memory model

==p - General optimisation tips

* A survey of OpenCL 1.1

- Page 2

OpenCL summary

Compile code

Context
Programs Kernels Memory Objects Command Queues
_ kernel void - | dp_mul Buffers _I] Images
dp_mul(global const float *a, p_mu
global const float *b, CPU program binary arg[0] value In Out of
global float *c) —— Order Order
dp_mul
intid = get_global_id(0); GPU pragram binary il i Queue Queue
c[id] = a[id] * b[id]; —— |
} rofelvalve Compute Device

\

-Page 3

OpenCL Memory Model

* Private Memory

. Private Private Private I\El)rir\%at?

- Per work-item Memory Memory Memory emory
4 Local Memory Work-ltem Work-Iltem Work-ltem Work-Item

- Shared within a work-group — =
) . Work-group Work-group

- Visible to all work-groups P S S

H t M Global Memory & Constant Memory
]
0S emory Compute Device
- On the CPU

Host Memory

- Memory management is explicit:
You must move data from host -> global -> local and back

- Page 4

Optimisation issues (l)

- Efficient access to memory

- Memory coalescing
- Ideally get work-item i to access datafi] and work-item j to access datafj] in parallel

- Memory alignment
- GPU memory interfaces are most efficient when accessing aligned multiples of 32,
64 or 128 bytes in DRAM. Try to use all of the data in each access

- Be careful not to use too much private or local memory
- Check with Nvidia’s tools to see how much private memory (registers) being used

- Exploit the memory hierarchy
- Host - Global / Constant - Local - Private
- Biggest/Slowest (Smallest/Fastest)

- Use asynchronous memory transfers
- Do useful work on the host/GPU overlapped with data movement
- Especially useful during relatively slow PCI Express data transfers

Static Memory Access Pattern Analysis on a Massively Parallel GPU by Jang, et. al discusses how to

effectively map work-items (threads) to the data access patterns of an algorithm Page5

Optimisation issues (ll)

* Number of work-items and work-group sizes

- ldeally want 8-12 work-items per PE in a Compute Unit on Fermi
- They are run multi-threaded on the PE to hide latency (so more is better)
- However there are diminishing returns, and there is an upper limit
- Each work-item consumes finite PE resources (private memory, local
memory, maximum number of threads)
- Private, local, global and constant memory usages are reported by the
OpenCL compiler if you use the “-cl-nv-verbose” clBuildProgram option

* Work-item divergence
- What happens when work-items branch?
- Remember this is a SIMD (data parallel) model
- Both paths (if-else) may need to be executed, so avoid where possible

* All of these optimisations aim to maximise utilisation
- Nvidia’s tools report occupancy — aiming for >= 50% (>80% rare)

- Page 6

Optimisation issues (lll)

* Don’t optimise too much!
- Architecture-specific optimisations may spoil the portability of your code
- Instead ride the brute-force advantage of the many-core GPUs and the ease

of heterogeneous computing using OpenCL
- E.g. I don't like optimising for warp size (NV) or wavefront size (AMD)

* Use built-in functions and fast-math optimisations
- Sin/cos/sqgrt/dot et al all very fast in hardware
- The quick reference guide has a good list of what’s available — use them!
- Add e.g. “-cl-fast-relaxed-math -DMAC” build options to your clBuildProgram

() call

* Use single precision in preference to double if you can

- Will go faster, use less memory and less energy too
- Don’t forget to identify single precision constants as such: e.g. 1.0f

-Page 7

Optimisation issues (lll)

*Don’t forget you can go multi-GPU and heterogeneous
- The joys of OpenCL...

- Lots of great stuff in the appendices of the Nvidia OCL
guide:
- http://developer.download.nvidia.com/compute/cuda/3_2 prod/toolkit/
docs/OpenCL_Programming_Guide.pdf

- Page 8

Use the tools, e.g. occupancy calculator

1. Enter hardware model and kernel requirements

|1.) Select Compute Capability (click): | 2.0 I
2.) Enter your resource usage:
Threads Per Block 256
Registers Per Thread 8
Shared Memory Per Block (bytes) 1024

2. Resource usage and limiting factors are displayed
Allocation Per Thread Block

. . Warps 8
3. Graphs are shown to visualize Registers 4608
Shared Memory 1024

Varying Register Count These data are used in computing the occupancy data in blue

48 Maximum Thread Blocks Per Multiprocessor Blocks
Limited by Max Warps / Blocks per Multiprocessor
40 Limited by Registers per Multiprocessor 7
Limited by Shared Memory per Multiprocessor 48
a§'32 Register - o meoEe oo -0
28 unt 17
8324
g8
Bl
=%
8
4] L—--—“

Registers Per Thread

- Page 9

Use the tools: e.g. Nvidia visual profiler

- g T 5
W Me Protte temen Optors Window Help

DeB B Fu@a B

ooy Pl O | G Tee Sy Mot | G T reght et O T o e
o et wou S0

Cwel

Width Plot
o et on 204
Sein
o et o 4000 =
Codenl €3 banc el w e
- el wge Ol
L]
M " w M. ™ Se L ot "o L ” Lleg Rt HRow uren Lmaner -
P T
linpack - CudaProfiler - O
Ble Profie QOpticas Window Help
®) 2 N
v i -
| -
@ merc |
oy 386595 [-
3 QudaBuidSpatatash —_—
m CudaCalcuateSpatishashiize 19.40% 2264% 2587%
- FadaSum 9276

- mu
£ RadaAdIOMsetsindShuMesd
@ CudaCountCels aN937
=1 CudafrefinSumCels
B CudaAddCelOfsats
- CudaBuidCelusts

- CudafurseCellm

) CudaCalcuatef orcesAndintegrate 77319

‘
‘

‘

‘

‘

‘

|

| . AadaelinSem
‘

‘

‘

3

1546 38
‘

‘

19.40% 2264% 2587%

|

- Page 10

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview

* Exploring the spec through a series of examples
- Vector addition:
- the basic platform layer
- Matrix multiplication:
- writing simple kernels
- Optimizing matrix multiplication:
- work-groups and the memory model
- General optimisation tips

== » A survey of OpenCL 1.1

- Page 11

New features in OpenCL 1.1

Elic University of
BRISTOL

- Page 12

OpenCL 1.1 — Language

* Implicit Conversions
*OpenCL 1.0 requires widening for arithmetic
operators

float4 a, b;
float c;
b=a+c;//ciswidened to a float4 vector
// first and then the add is performed

*OpenCL 1.1 extends this feature for all operators
*relational, equality, bitwise, logical, ternary

- Page 13

OpenCL 1.1 — Language

* 3-component vector data types
*Still aligned to multiples of four in storage

* cl_khr_byte _addressable as core feature
 Atomic extensions become core features

* cl_khr_global _int32_{base | extended} atomics
* cl_khr_local_int32 {base | extended} atomics

- Page 14

OpenCL 1.1 — Language

*New built-in functions:
*get _global offset
*clamp for integer data types
casync_work_group_strided_copy

*strided async copy of data from global <---> |local
memory

*shuffle — construct a permutation of elements from
1 or 2 input vectors and a mask

- Page 15

OpenCL 1.1 — API

* Thread-safety
* All API calls, except clSetKernelArg, are thread safe
* Sub-buffer objects

* Create an object that represents a specific region in
a buffer object

* Easy and efficient mechanism to distribute regions
of a buffer object across multiple devices

* OpenCL synchronization mechanism ensures
modifications to sub-buffer object reflected in
appropriate region of parent buffer object

- Page 16

OpenCL 1.1 — API

* User Events

* clEnqueue*** commands can wait on events
* In OpenCL 1.0, events can only refer to OpenCL commands

* Need ability to enqueue commands that wait on an
external, user defined, event

* Event CallBacks
e clSetEventCallbackFn to register a user callback function
e called when command identified by event has completed

* Allows applications to enqueue new OpenCL commands
based on event state changes in a non-blocking manner

e Lots more API stuff too

- Page 17

OpenCL 1.1 — OpenCL/OpenGL Sharing

- Improve performance of OpenCL/ OpenGL
interoperability

*Portable OpenCL/ OpenGL sharing requires
*a glFinish before clEnqueueAcquireGLObjects
*a clFinish after clEnqueueReleaseGLObjects
*glFinish / clFinish are heavyweight APIs

- Page 18

OpenCL 1.1 — OpenCL/OpenGL Sharing

*Improve performance of OpenCL/ OpenGL
interoperability

*Create a OpenCL event from an OpenGL sync object
*Create a OpenGL sync object from a OpenCL event
* Allows for a finer grained waiting mechanism

*Use event_wait_list argument for events that refer
to OpenGL commands to complete

*Use OpenGL sync APIs to wait for specific OpenCL™
commands to complete

- Page 19

Conclusion

* OpenCL defines a platform-APl/framework for heterogeneous
computing ... not just GPGPU or CPU-offload programming

* OpenCL has the potential to deliver portably performant code;
but it must be used correctly to achieve this:
- Implicit SIMD data parallel code has the best chance of mapping
onto a diverse range of hardware as OpenCL implementations
mature

* The future is clear:
- Heterogeneous parallelism mixing task parallel and data parallel
code in a single program ... balancing the load among ALL of the
platform’s available resources, both CPUs and GPUs

- Page 20

Become part of the UK GPU community!

* Go to the “UK GPU developer conference”
- This year at Imperial

* Apply to use the HECToR GPU cluster

* Be part of gpucomputing.net
- There’s a "UK"” community already set up

- Join the MRSN email list (Many-core and Reconfigurable

Supercomputing)

* Get using it and have FUN!!

- Page 21

