Lecture 2

Exploring the spec through examples

Based on material by Benedict Gaster and Lee Howes (AMD), University of
Tim Mattson (Intel) and several others. BRISTOL

- Page 1

Agenda

* Heterogeneous computing and the origins of OpenCL
*OpenCL overview

* Exploring the spec through a series of examples
===p - Vector addition:

- the basic platform layer

- Matrix multiplication:
- writing simple kernels

- Optimizing matrix multiplication:
- work groups and the memory model

- Radix Sort:
- synchronization

* A survey of OpenCL 1.1

- Page 2

OpenCL summary

Compile code

Context
Programs Kernels Memory Objects Command Queues
_ kernel void - | dp_mul Buffers _I] Images
dp_mul(global const float *a, p_mu
global const float *b, CPU program binary arg[0] value In Out of
global float *c) —— Order Order
dp_mul
intid = get_global_id(0); GPU pragram binary il i Queue Queue
c[id] = a[id] * b[id]; —— |
} rofelvalve Compute Device

\

-Page 3

Reminder of some OpenCL terminology

OpenCL term Explanation

*Host *Host CPU (e.g. x806)
«Compute device *GPUs, CPUs
«Compute unit *Sub unit of GPU / CPU
*Processor Element (PE) <HW thread / core
*Global memory *E.g. GPU memory
*Local memory *Inside a compute unit

*Private memory *Inside a PE

More important OpenCL terminology

Kernel: A kernel is a function declared in a program and executed on
an OpenCL device. A kernel is identified by the ~ kernel qualifier
applied to any function defined in a program.

Work-item: One of a collection of parallel executions of a kernel
Invoked on a device by a command. A work-item is executed by one
or more processing elements as part of a work-group executing on
a compute unit. A work-item is distinguished from other executions
within the collection by its global ID and local ID.

Work-group: A collection of related work-items that execute on a
single compute unit. The work-items in the group execute the same
kernel and share local memory and work-group barriers.

From OpenCL 1.1 spec.

- Page 5

OpenCL Platform Model

l

Mmoo
nn I:|
=

[

O
-

r—1

=
IO n
M

A

S,

I

Processing

Element

=
=
[

]

1l

H

H

Host

Comput'e/ Unit

-

o
S

Compuie Device

* One Host + one or more Compute Devices

- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing

Elements

- Page 6

OpenCL Memory Model

* Private Memory

. Private Private Private I\El)rir\%at?

- Per work-item Memory Memory Memory emory
4 Local Memory Work-ltem Work-Iltem Work-ltem Work-Item

- Shared within a work-group — =
) . Work-group Work-group

- Visible to all work-groups P S S

H t M Global Memory & Constant Memory
]
0S emory Compute Device
- On the CPU

Host Memory

- Memory management is explicit:
You must move data from host -> global -> local and back

-Page 7

Example: vector addition

* The “hello world” program of data parallel programming
is a program to add two vectors

Cli] = A[i] + B[i] fori=1to N

* For the OpenClI solution, there are two parts
- Kernel code
- Host code

- Page 8

Vector Addition — Kernel

__kernel void vec add (global const float *a,
__global const float *b,
__global float *c)

int gid = get global id(0);
c[gid] = a[gid] + b[gid];

- Page 9

clGetCont

devices

bbijs[1],
))

bbjs[2],
em)) ;

memobjs [(
CL_ME

memobijs [
CL_ME

memobjs [4
// creatq

program
&progz

Vector Addition - Host Program

// create the OpenCL context on a GPU device
cl context = clCreateContextFromTvoe (0.

Define platform and queues
// get tne 11St’s0L Gru gevices dassoCldted witll comeext
clGetContextInfo (context, CL CONTEXT DEVICES, O,
NULL, &cb);
devices = malloc (cb) ;

clGetContextInfo (context,
devices, NULL) ;

CL CONTEXT DEVICES, cb,

// create a command-queue

cmd queue = clCreateCommandQueue (context,
0, NULL);

devices[0],

Define Memory objects

// cre-+*- +tt- —meoseoe

e=ogz= Create the program *“

&pr

// build =

...~ .. Build the program
NULL) ; - -

// create the kernel

kernel = clCreateKernel (program, “vec add”, NULL);

// A+ FhA Av~a traTlaaA

=* Create and setup kernel

js[0]

err |= clSetRernelArg(kernel, 1, (void *)&memobjs[l],
sizeof (cl mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobijs[2],

sizeof (cl mem)) ;

14

// set work-item dimensions

global w
Execute the kernel

err = clEnqueueNDRangeKernel (cmd queue, kernel, 1,
NULL, global work size, NULL, 0, NULL, NULL);

d Read results back to the host

e e A AR Ry 4 7 ey e

It's complicated, but most of this is “boilerplate” and not as bad as it looks.

- Page 11

Platform Layer: basic discovery

The ‘platform layer’ allows applications to query a
platform about the features it provides

» clGetDevicelDs()
- Find out what compute devices are in the system
- Device types include CPUs, GPUs and Accelerators (Cell)

 clGetDevicelnfo()

- Queries the capabilities of the discovered compute devices:
- Number of processor elements
- Maximum work-item and work-group size
- Sizes of the different memory spaces
- Maximum memory object size

- Page 12

The OpenCL platform on HECToR

HECToR GPGPU Testbed

The HECToR GPGPU testbed machine has been provided for researchers to test their scientific codes and problems on a modern
GPGPU-accelerated system.

Accessing the GPGPU Machine

Once you have successfully applied for an account on the testbed via SAFE, you can access the frontend node via a SSH
connection to:

Note : Your GPU password is not synchronised with your HECToR password

Hardware Details

Currently the testbed machine has four compute nodes connected by Quad-band Infiniband interconnects. All of the compute
nodes have a single quad-core Intel Xeon 2.4GHz CPU and 32 GB of main memory. Three of the compute nodes (gpul, gpu2,
gpu3) have 4 NVidia Fermi GPGPU cards installed and the remaining compute node (gpu4) has 1 NVidia Fermi and 1 AMD
FireStream GPGPU card installed. The layout is summarised in the table below.

Compute Node CPU Main Memory GPGPU Cards

gpul Quad-core Intel Xeon 2.4GHz 32GB 4x NVidia Fermi C2050 (3GB Memory)

gpu2 Quad-core Intel Xeon 2.4GHz 32GB 4x NVidia Fermi C2050 (3GB Memory)

gpu3 Quad-core Intel Xeon 2.4GHz 32GB 2x NVidia Fermi C2050 (3GB Memory)
2x NVidia Fermi C2070 (6GB Memory)

gpu4 Quad-core Intel Xeon 2.4GHz 32GB 1x NVidia Fermi C2050 (3GB Memory)
1x AMD FireStream 9270

Screenshot from http://www.hector.ac.uk/support/documentation/guides/gpgpu/ - Page 13

The OpenCL platform on HECToR

* To set up your GPU environment:

Log in to the head node, e.g. ssh username@gpu.hector.ac.uk
cp -r ~crsadmin/NVIDIA GPU Computing SDK .
cp -r ~crsadmin/opencl course .
cd opencl course/pracl
make

. Submit jobs to the GPUs via the queue manager using ‘qsub’, e.g.
gsub jobSubl

Keep track of where your jobs are in the queue with “gstat”

N RWN =

- Page 14

oclDeviceQuery example

[u04n033]$ oclDeviceQuery
oclDeviceQuery.exe Starting...

OpenCL SW Info:
CL_PLATFORM NAME: NVIDIA CUDA

CL_PLATFORM VERSION: OpenCL 1.0 CUDA 3.2.1
OpenCL SDK Revision: 7027912

- Page 15

OpenCL Device Info:

2 devices found supporting OpenCL:

CL_DEVICE NAME: Tesla M2050
CL_DEVICE_VENDOR: NVIDIA Corporation
CL_DRIVER_VERSION: 260.24

CL_DEVICE VERSION: OpenCL 1.0 CUDA

CL_DEVICE_ TYPE: CL_DEVICE TYPE GPU
CL_DEVICE_MAX COMPUTE_UNITS: 14 (OpenCL: #Compute Units)
CL_DEVICE MAX WORK_ITEM DIMENSIONS: 3 (OpenCL: 3D index space)
CL_DEVICE MAX WORK_ITEM SIZES: 1024 / 1024 / 64

CL_DEVICE MAX WORK GROUP_SIZE: 1024

CL_DEVICE MAX CLOCK_FREQUENCY: 1147 MHz

CL_DEVICE ADDRESS BITS: 32

CL_DEVICE MAX MEM_ALLOC_SIZE: 767 MByte

CL_DEVICE_ GLOBAL MEM SIZE: 3071 MByte

- Page 16

CL_DEVICE ERROR_CORRECTION_ SUPPORT:

CL _DEVICE LOCAL MEM TYPE:
CL _DEVICE LOCAL MEM SIZE:

CL_DEVICE MAX CONSTANT BUFFER_SIZE:

CL_DEVICE QUEUE_PROPERTIES:

no (we’d turned this off)
local

48 KByte

64 KByte

CL_QUEUE_OUT OF ORDER EXEC MODE_ ENABLE

CL_DEVICE QUEUE_PROPERTIES:
CL_DEVICE_SINGLE FP CONFIG:

CL_OQUEUE_ PROFILING ENABLE
denorms

INF-quietNaNs
round-to-nearest
round-to-zero
round-to-inf

fma

- Page 17

CL_DEVICE_ EXTENSIONS:
cl _khr byte addressable_store

cl khr global int32 base_atomics
cl_khr global_int32_ extended_atomics

cl _khr local_int32_ base_atomics

cl _khr local_int32_extended_atomics

cl khr fpé64

CL_DEVICE COMPUTE CAPABILITY NV:
NUMBER OF MULTIPROCESSORS:

NUMBER OF CUDA CORES:

CL_DEVICE REGISTERS PER BLOCK NV:
CL_DEVICE WARP SIZE NV:
CL_DEVICE GPU OVERLAP NV:
CL_DEVICE_ KERNEL EXEC TIMEOUT NV:
CL_DEVICE_ INTEGRATED MEMORY NV:
CL_DEVICE PREFERRED VECTOR WIDTH <t>

2.0

14 (OpenCL: Compute Units)
448 (OpenCL.: total PEs)
32768

32 (OpenCL: PEs per CU)
CL_TRUE

CL_FALSE

CL_FALSE

CHAR 1, SHORT 1, INT 1,
LONG 1, FLOAT 1, DOUBLE 1

(Nvidia doesn’t need vectors) Page 18

Speeds and Feeds

Quad-core Xeon 2.4GHz Fermi C2050 GPU
*38.4 GFLOPS 64-bit *~500 GFLOPS 64-bit
-~ 30 GBytes/s BW *~150 GBytes/s BW

*Up to 4 GBytes/s full-
duplex over PCIl-Express
to each GPU

Bandwidth between CPU and GPU

[u04n033]S$ oclBandwidthTest

Host to Device Bandwidth, 1 Device(s), Paged memory, direct access
Transfer Size (Bytes) Bandwidth (MB/s)
33,554,432 3,659.0

Device to Host Bandwidth, 1 Device(s), Paged memory, direct access
Transfer Size (Bytes) Bandwidth (MB/s)
33,554,432 3,450.2

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth (MB/s)
33,554,432 91,965.9

- Page 20

Platform Layer: Contexts

- Creating contexts
- Contexts are used by the OpenCL runtime to manage
objects and execute kernels on one or more devices
- Contexts are associated to one or more devices
- Multiple contexts could be associated to the same
device

- clCreateContext() and c/CreateContextFromType()
return a handle to the created contexts

- Page 21

Platform layer: Command-Queues

- Command-queues store a set of
operations to perform

- Command-queues are
associated to a context
* Multiple command-queues can Context
be created to handle ~__ Queue Queue

independent commands that = =
don’t require synchronization

- Execution of the command-
queue is guaranteed to be
completed at sync points

- Page 22

VecAdd: Context, Devices, Queues

// create the OpenCL context on a GPU device
cl context context = clCreateContextFromType (

0, // platform ID

CL DEVICE TYPE GPU, // ask for a GPU

NULL, o o // error callback

NULL, // user data for callback
NULL) ; // error code

// get the list of GPU devices associated with the context
size t cb;

clGetContextInfo (context, CL CONTEXT DEVICES, 0, NULL, &cb);

cl device id *devices = malloc(cb);

clGetContextInfo (context, CL CONTEXT DEVICES, cb, devices, NULL) ;

// create a command-queue

cl cmd queue cmd queue = clCreateCommandQueue (context,
devices[0], // use the first GPU device

0, // default options
NULL) ; // error code

- Page 23

Memory Objects

* Buffers
- Simple contiguous chunks of memory
- Kernels can access buffers however they like (arrays, pointers, structs)
- Kernels can directly read and write buffers

* Images
- Opaque 2D or 3D formatted data structures
- Kernels access images only via read image() andwrite image()

- Each image can be read or written in a kernel, but not both
- Use multiple kernels to each read/write

- Page 24

Creating Memory Objects

. Memore/ objects are created within an associated

contex
- clCreateBuffer(), cICreatelmage2D(), and
c/Createlmage3D()

- Memory objects can be created as read only,
write only, or read-write

* You can control where objects are created In the
platform’s memory space
- Device memory
- Device memory with data copied from a host pointer
- Host memory
- Host memory associated with a pointer |
- Memory at that pointer is guaranteed to be valid at
synchronization points

- Page 25

VecAdd: Create Memory Objects

cl mem memobjs[3];

// allocate input buffer memory objects

memobjs[0] = clCreateBuffer (context,
CL_MEM READ ONLY | // bitwise flags ORd together
CL_MEM COPY HOST PTR,

sizeof (cl float)*n, // size

SrcA, // host pointer
NULL) ; // error code
memobijs[l] = clCreateBuffer (context,

CL MEM READ ONLY | CL MEM COPY HOST PTR,
sizeof (cl float)*n, srcB, NULL);

// allocate output buffer memory object

memobjs[2] = clCreateBuffer (context, CL MEM WRITE ONLY,
sizeof (cl_float) *n, NULL NULL),

- Page 26

Build the Program object

* The program object encapsulates:
- A context
- The program source/binary
- List of target devices and build options

* The build process to create a program object
- clCreateProgramWithSource()
- clCreateProgramWithBinary()

Kernel Code

__kernel void
horizontal reflect(read only image2d t src,

write only image2d t dst) Complle fOT
{
int x = get_global_id(0); // x-coord GPU
int y = get_global_id(1l); // y-coord
int width = get image_width(src);

float4 src_val = read imagef(src, sampler,

(int2) (width-1-x, y)); Compile for

write imagef (dst, (int2) (x, y), src_val);

CPU

Program

GPU
code

CPU
code

- Page 27

VecAdd: Create and Build the Program

// create the program

cl program program = clCreateProgramWithSource (
context,
1, // number of source strings
&§program source, // program strings
NULL, // string lengths if not NULL term’td
NULL) ; // error code

// build the program

cl int err = clBuildProgram(program,
0, // device number within the device list
NULL, // device list
NULL, // options
NULL, // notifier callback function ptr
NULL); // user data for callback function

- Page 28

Kernel Objects

* Kernel objects encapsulate
- Specific kernel functions declared in a program
- Argument values used for kernel execution
» Creating kernel objects
- clCreateKernel() - creates a kernel object for a single function in a
program
« Setting arguments
- clSetKernelArg(<kernel>, <argument index>)
- Each argument’s data must be set for each kernel function
- Argument values are copied and stored in the kernel object
* Kernel objects vs. program objects
- Kernels are related to program execution
- Programs are related to program source

- Page 29

VecAdd: Create the Kernel and Set the Arguments

// create the kernel
cl kernel kernel = clCreateKernel (program, “vec add”, NULL) ;

// set the “a” argument

err = clSetKernelArg (kernel,
0, // argument index
(void *) &amemobjs[0], // argument data
sizeof (cl mem)) ; // argument data size

// set the “b” argument
err |= clSetKernelArg(kernel, 1, (void *) &memobijs[1],
sizeof (cl mem)) ;

// set the “c¢” argument

err |= clSetKernelArg(kernel, 2, (void *) &memobijs[2],
sizeof (cl mem)) ;

- Page 30

File structure of OpenCL programs
ociDotProduct.cpp

DotProduct.cl

See oclLoadProgSource() in ~/NVIDIA_GPU_Computing_SDK/OpenCL/common/src g 31

Kernel Execution

« A command to execute a kernel must be enqueued to
the command-queue

- Command-queues could be explicitly flushed to the device
- Command-queues execute in-order or out-of-order

- In-order: commands complete in the order queued and memory
Is consistent

- Out-of-order: no guarantee of (1) when commands are executed
or (2) |C1!‘ memory is consistent ... unless specific synchronization
IS used.

- Page 32

Enqueue command types

clEnqueueNDRangeKernel()

- N Dimensional Range (N=1..3)

- Data-parallel execution model

- Describes the index space for kernel execution

- Requires information on NDRange dimensions and work-group size

clEnqueueTask()

- Task-parallel execution model (multiple queued tasks)
- Kernel is executed on a single work-item

clEnqueueNativeKernel()

- Task-parallel execution model _ _

- Execqltes a native C/C++ function not compiled using the OpenCL
compiler

- This mode does not use a kernel object so arguments must be
passed in

- Page 33

VecAdd: Invoke Kernel

size t global work size[l] = n; // set work-item dimensions
// execute kernel

err = clEnqueueNDRangeKernel (cmd queue, kernel,

1, // Work dimensions

NULL, // must be NULL (work offset)
global work size,

NULL, // automatic local work size
0, // no events to wait on

NULL, // list of events to wait for

NULL) ; // event created for this kernel

- Page 34

Synchronization

« Synchronization
- Signals when commands are completed to the host or to other
commands still in the queue

- Blocking calls
- Commands that do not return until complete
- clEnqueueReadBuffer() can be called as blocking and will block until

complete

- Event objects

- Tracks execution status of a command

- Some commands can be blocked until event objects signal a
completion of previous command

- clEnqueueNDRangeKernel() can take an event object as an
argument and wait until a previous command (e.g.,
clEnqueueWriteBuffer) is complete

- Queue barriers
- Queued commands that can block command execution

- Page 35

VecAdd: Read Output

// read output array

err

clEnqueueReadBuffer (context, memobjs[2],

CL_TRUE,
0,

//
//

n*sizeof (cl_float), //

dst,
0, NULL, NULL);

//
//

blocking

offset (must be 0)
size in bytes

host memory pointer

events

- Page 36

