
Trends in Heterogeneous Systems
Architectures

(and how they'll affect parallel
programming models)

Simon McIntosh-Smith simonm@cs.bris.ac.uk

Head of Microelectronics Research
University of Bristol, UK

1

Heterogeneous Systems
Architectures

2

!  Moore’s Law today

3 http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf

!  Moore’s Law today

4 http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf

Average
Moore’s Law

= 2x/2yrs

2x/3yrs

2x/2yrs

High-performance
MPU, e.g.

Intel Nehalem

Cost-performance
MPU, e.g.

Nvidia Tegra

2-3B transistors
~1B transistors

20-30B transistors

!  Important technology trends

5
Herb Sutter, “The free lunch is over”, Dr. Dobb's Journal, 30(3),
March 2005. On-line version, August 2009.
http://www.gotw.ca/publications/concurrency-ddj.htm

The real Moore’s Law

The clock speed plateau

The power ceiling

Instruction level
parallelism limit

!  Herb Sutter’s new outlook
http://herbsutter.com/welcome-to-the-jungle/

In the twilight of Moore’s Law, the transitions to multicore
processors, GPU computing, and HaaS cloud computing
are not separate trends, but aspects of a single trend –
mainstream computers from desktops to ‘smartphones’
are being permanently transformed into heterogeneous
supercomputer clusters. Henceforth, a single compute-

intensive application will need to harness different
kinds of cores, in immense numbers, to get its job

done.

The free lunch is over. Now welcome to the hardware
jungle.

6

Major hardware trends

7

!  The five major hardware trends
that will affect Exascale software

1.  Heterogeneity
2.  Changes to memory hierarchies
3.  The impact of fault tolerance
4.  Focus on energy efficiency
5.  Scale

(For a discussion of 2-5 see "Major hardware trends affecting
Exascale developments and their potential impact on software",
PRACE- 1IP Work Package 9 Future Technologies Workshop,
Daresbury, UK, Apr 11th 2012, http://www.cs.bris.ac.uk/~simonm/
publications/sms_prace_exascale_2012.pdf)

8

!  Causes of heterogeneity

•  Multiple types of core
•  Interconnect
•  Memory type, capacity, …
•  Software (OS, middleware, tools, …)

9

!  Heterogeneous Systems

10

AMD Llano Fusion APUs

FP7 Mont Blanc ARM + GPU

Intel MIC

NVIDIA Tegra, Project Denver

!  Heterogeneity is mainstream

11

Quad-core ARM Cortex A9 CPU

Quad-core SGX543MP4+ Imagination GPU

!  You might have one in your pocket

12

!  Hot off the press…

13

!  Implications
•  New programming languages, models, …

•  Dynamically adaptive software
•  Discover resources at run-time

•  Auto-tuning

•  Application frameworks and libraries

14

OpenCL
(Open Computing Language)

15

! OpenCL

GMCH = graphics memory control hub

 ICH = Input/output control hub

16

•  Open standard for portable, parallel programming of
heterogeneous systems

•  Lets programmers write a single portable program that uses
all resources in the heterogeneous platform

GMCH GPU

ICH

CPU CPU

DRA
M

A modern system includes:
– One or more CPUs
– One or more GPUs
– DSP processors
– …other devices?

! OpenCL platform model

•  One Host + one or more Compute Devices
•  Each Compute Device is composed of one or more Compute Units
•  Each Compute Unit is further divided into one or more Processing

Elements
17

!  The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each point
in a problem domain (index space).

• E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void
trad_mul(const int n,
 const float *a,
 const float *b,
 float *c) {
 int i;
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];
 }

Traditional loops
kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c) {
 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data parallel OpenCL

18

! OpenCL memory model
•  Private Memory

•  Per Work-Item

•  Local Memory
•  Shared within a Work-Group

•  Global / Constant Memories
•  Visible to all Work-Groups

•  Host Memory
•  On the CPU

Work-Group

Work-Item

Compute Device

Work-Item

Work-Group

Host

Private
Memory

Private
Memory

Local Memory Local Memory

Global Memory & Constant Memory

Host Memory

Memory management is explicit
You must move data from host à global à local and back

Work-Item Work-Item

Private
Memory

Private
Memory

19

!  Issues with OpenCL*

•  It does not compose
•  Disjoint memory address spaces (local/global)
•  Barriers

•  It provides no resource management
•  Kernels are a statically allocated resource

20

* And most other parallel programming languages

! Composability

21

Need to support many
algorithms, even within
a single application

Task farms, pipelines,
data parallelism, …

See similar
composability
challenges with
OpenMP and parallel
libraries, for example

Heterogeneous System
Architecture (HSA)

22

!  HSA overview
•  The HSA Foundation launched this in June 2012

and already includes AMD, ARM, Imagination
Technology and Texas Instruments

•  HSA is a new, open architecture specification
•  HSAIL virtual ISA
•  HSA memory model
•  HSA dispatch

•  Provides an optimised platform architecture for
heterogeneous programming models such as
OpenCL, C++AMP, Android’s RenderScript et al

23

!  Announced 12/6/2012

24 http://hsafoundation.com/

!  HSA overview

25

!  HSA features: simplifying programming

•  Much finer grained integration of CPU and GPU
cores in silicon

•  Unified address space for all cores
•  Will support GPU context switching, preemption
•  PGAS-style distributed arrays

•  Memory hierarchy abstraction to address function
composition

•  First class barrier objects
•  Aids composability

26

!  HSA Intermediate Layer (HSAIL)
•  Virtual ISA for parallel programs
•  Similar idea to LLVM’s IR – goal is to be a

good target for compilers
•  Finalised to specific ISA by a JIT compiler
•  Features:

•  Explicitly parallel
•  Support for exceptions, virtual functions and other

high-level features
•  Syscall methods (I/O, printf etc.)
•  Debugging support

27

!  HSA memory model
•  Compatible with C++11, Java and .NET memory

models
•  Relaxed consistency
•  Designed to support both managed language

(such as Java) and unmanaged languages (such
as C)

•  Will make it much easier to develop 3rd party
compilers to target a wide range of heterogeneous
products
•  Fortran, C++, C++AMP et al

28

!  HSA dispatch

•  HSA designed to enable heterogeneous task
queuing
•  A work queue per core (CPUs, GPUs et al)
•  Distribution of work into queues
•  Load balancing by work stealing

•  Any core can schedule work for any other,
including itself

•  Significant reduction in overhead of
scheduling work for a core

29

!  Today’s command and dispatch flow

!  How does HSA improve this?

31

!  Heterogeneous interoperability

32

!  HSA roadmap (from AMD)

33

!  HSA tools released as open source

34

!  Conclusions
•  Heterogeneity is an increasingly important trend
•  The market is finally starting to create and adopt

the necessary open standards
•  Proprietary models likely to start declining now
•  Don’t get locked into any one vendor!

•  Parallel programming models are likely to
(re)proliferate

•  Exciting times ahead!

35

