

Exploiting OpenCL for heterogeneous computing: a case study

Simon McIntosh-Smith simonm@cs.bris.ac.uk
Head of Microelectronics Research

Collaborators

- Richard B. Sessions, Amaurys Avila Ibarra
 - University of Bristol, Biochemistry
- James Price
 - University of Bristol, Computer Science
- Tsuyoshi Hamada, Felipe Cruz
 - University of Nagasaki, Japan

Molecular docking

Proteins typically O(1000) atoms Ligands typically O(100) atoms

BUDE: Bristol University Docking Engine

Speed

Typical docking scoring functions

Empirical Free Energy Forcefield **BUDE**

Free Energy calculations MM^{1,2} QM/MM³

Entropy:

solvation configurational Electrostatics All atom

Explicit solvent

? No No

No Yes
Approx
Prox
Approx
Prox
Approx
No Yes
No No

Yes Yes Yes Yes

- 1. MD Tyka, AR Clarke, RB Sessions, J. Phys. Chem. B 110 17212-20 (2006)
- 2. MD Tyka, RB Sessions, AR Clarke, J. Phys. Chem. B 111 9571-80 (2007)
- 3. CJ Woods, FR Manby, AJ Mulholland, J. Chem. Phys. 128 014109 (2008)

K How BUDE's EMC works

Experimental results

Redocking into Xray Structure

Another example

OpenCL for heterogeneous computing

A modern computer includes:

- One or more CPUs
- One or more GPUs

OpenCL (Open Compute Language) lets programmers write a single <u>portable</u> program that uses <u>ALL</u> resources in the heterogeneous platform

BUDE's heterogeneous approach

- Discover all OpenCL platforms/devices, inc. both CPUs and GPUs
- 2. Run a *micro benchmark* on each device, ideally a short piece of real work
- Load balance using micro benchmark results
- 4. Re-run micro benchmark at regular intervals in case load changes

Benchmark results

Relative energy and run-time

88% reduction in energy 93% reduction in time

Measurements are for a constant amount of work. Energy measurements are "at the wall" and include any idle components.

What does this let us do?

Potentially save lives

NDM-1 responsible for antibiotic resistance giving rise to "superbugs"

GPU-system DEGIMA

- Used 144 GPUs in parallel for drug docking simulations
 - ATI Radeon HD5870 & Intel i5-2500T
- ~300 TFLOPS single precision
- Courtesy of Tsuyoshi Hamada and Felipe Cruz, Nagasaki

№ NDM-1 experiment

- 1 million candidate drug molecules times
 20 conformers each → 20M dockings
- 1.23x10¹⁷ atom-atom energies calculated
- 267 days of GPU compute time and 224 days of CPU compute time
- ~55 hours actual wall-time
- A second run with 8 million molecules, 160M conformers on >200 GPUs is running right now!

K Conclusions

- OpenCL enables truly heterogeneous computing, harnessing all hardware resources in a system
- GPUs can yield significant savings in energy costs (and equipment costs)
- OpenCL can work just as well for multi-core CPUs as it does for GPUs

It's possible to screen libraries of millions of molecules against complex targets using highly accurate, computationally-expensive methods in one weekend using equipment costing O(£100K)

For an introduction to GPUs

The GPU Computing Revolution – a Knowledge Transfer Report from the London Mathematical Society and the KTN for Industrial Mathematics

 https://ktn.innovateuk.org/web/mathsktn/ articles/-/blogs/the-gpu-computing-

The GPU Computing

revolution

References

- S. McIntosh-Smith, T. Wilson, A.A. Ibarra, J. Crisp and R.B. Sessions, "Benchmarking energy efficiency, power costs and carbon emissions on heterogeneous systems", The Computer Journal, September 12th 2011. DOI: 10.1093/comjnl/bxr091
- N. Gibbs, A.R. Clarke & R.B. Sessions, "Abinitio Protein Folding using Physicochemical Potentials and a Simplified Off-Lattice Model", Proteins 43:186-202,200

