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Processor CV: Many-core GPUs

Pixelfusion F150: (2000)
e 0.25u embedded DRAM
« 76M transistors

- 3 MBytes eDRAM

Multi Threaded Array Processor

« 1,536 PEs + redundancy

* 4 parallel RAMBUS channels,
6.4 GBytes/s

AL g; The first true GPGPU
* Fully programmable
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I\/Iany core HPC processors

ClearSpeed CS301 (2004)

« 25 GFLOPS (32-bit), 3W @ 200MHz
64 PEs, 4 KBytes SRAM each
 |BM 130nm, 41 million transistors

ClearSpeed CSX600 (2006)

* 40 GFLOPS (64-bit), 12W @ 210 MHz
« 96 PEs, 6 KBytes SRAM each

* Integrated DDR2-ECC

* IBM 130nm, 128 million transistors

ClearSpeed CSX700 (2008)
— 96 GFLOPS (64-bit), 10W @ 250MHz
— Fully 64-bit architecture
— 192 PEs (2x96)
— 2x ECC DDRZ2 controllers
— IBM 90nm, 256 million transistors




First principles

What are the issues driving the development
of numerical libraries?

Underlying hardware changes
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The real Moore’s Law
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45 years ago,
Gordon Moore
observed that the
number of transistors
on a single chip was
doubling rapidly

http://www.intel.com/technology/mooreslaw/



Moore’'s Law today

2009 ITRS - Functions/chip and Chip Size
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Moore’s Law today

2009 ITRS - Functions/chip and Chip Size
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Important technology trends

. / The real Moore’s Law
000,000 "
Intel CPU Trends o A
100,000 (sources: Intel, Wikipedia, K. Olukotun) ¢
The clock speed plateau
The power ceiling
) Instruction level
14 — l —=—_ parallelism limit
t,1970 1975 1980 1985 1990 1995 2000 2005 2010
-% Unlver51t of Herb Sutter, “The free lunch is over”, Dr. Dobb's Journal, 30(3),
-. BRISTOL March 2005. On-line version, August 2009. 8

http://www.gotw.ca/publications/concurrency-ddj.htm




How best to use billions of transistors?

* Lots more cores on-chip (doubling every 2 years)
« Core designs will stay roughly the same

* Power consumption must be held in check
« Chip voltages can’t be dialled down any more
» Clock speeds may decrease
» Memory bandwidth per core likely to decrease
» Memory per core likely to decrease

* Different types of core
- Heterogeneous computing

- E.g. a few heavyweight (x86) cores together with many
more lightweight (GPU) cores

Elic University of
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Relative hardware trends

A We need to icroprocessor performance
design codes ~55% per annum
for here!

Memory capacity
~49% per annum
and slowing down?)

Memory bandwidth
~30% per annum
(and slowing down?)

Relative improvement

Memory latency
<<30% per annum

Time
University of

|4
AL 7 BRISTOL 10



Heterogeneous computing is not new

* Most systems are already heterogeneous

 PCs have CPU, GPU, network processor, |/O
Processor, ... .

* Has been a common approach in embedded
systems since the early 90s

» But now heterogeneous systems are starting
to include several different types of general-
purpose, programmable processors

« Users have to programme more than one type of
processor to get the most out of a system

Elic University of
BRISTOL 1



5 core tablet at CES last week

$249

NVIDIA Tegra 3:

* Quad core ARM CPU

* NVIDIA GPU

* And a low-power ARM core

Vé University of
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Trends in processors

AMD’s first “Fusion” chip, shipping since late
2011

* |Integrates a quad core
x86 CPU with an

OpenCL programmable
GPU in the same chip

 Also Intel (lvy Bridge),
Nvidia (Tegra, Denver),
IBM (Cell), ...
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Emerging standards

* OpenCL, OpenACC, DirectCompute,
C++ AMP,
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Heterogeneous systems in the Top500

Tokyo Tech’'s TSUBAME was first in 2006
 Started with ClearSpeed, now using GPUs

Now several systems in existence, more on their way:

« #2 Tianhe-1A (China), 2.57 PFLOPS, Intel and NVIDIA

« #4 Dawning (China), 1.27 PFLOPS, Intel and NVIDIA

« #5 Tsubame 2 (Japan), 1.19 PFLOPS, Intel x86 and NVIDIA
« #10 RoadRunner (USA), 1.04 PFLOPS, IBM Cell, AMD x86
« Around 35 GPU-based systems in Top500 in Nov 2011

Most of the >10 PFLOP systems using many-core
processors (GPUs or Intel’'s MIC) — Titan (ORNL),
Stampede (TACC), Blue Waters (UIUC/NCSA), ...

http://www.top500.or
|4 University of P P |
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& A New Generation of Software:

- Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90’s) Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ... )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



ClearSpeed’s CSXL BLAS/LAPACK

CSXL was a BLAS/LAPACK library that used run-time heuristics to load
balance across heterogeneous compute resources

e Transparently harnessed multiple host CPU cores and multiple
accelerators simultaneously
e Could also handle datasets larger than the memories of the accelerators
e S. McIntosh-Smith, J. Irwin, “Delivering aggregated performance for high-performance math libraries in
accelerated systems”, International SuperComputing, Dresden, June 2007
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<= Steps 1n the LAPACK LU

ﬂ LAPACK

l LAPACK
ﬂ LAPACK

DGETF2
(Factor a panel)

DLSWP
(Backward swap)
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Threads — no lookahead

Bulk Sync Phases

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

£. LU Timing Profile (4 processor system)
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daptive Lookahead - Dynamic

Event Driven
Multithreading

Ideas not new.

Many papers use the
DAG approach.

while (1)

fetch_task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dtrsm() ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp() ;
return;

Reorganizing
algorithms to use

this approach o



QR —- quad—socket dual—-core Opteron
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PLASMA coverage

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Matrix Inversion

Least Squares

Mixed Precision lterative Refinement

Symmetric Eigenvalue Problem
Singular Value Problem

Level 3 Tile BLAS

In-Place Layout Translation

-% University of
BEI BRISTOL

Cholesky, LDLT, LU with partial pivoting
Cholesky, LU with partial pivoting
QR and LQ

linear systems using Cholesky or LU,
least squares using QR or LQ

eigenvalues only

singular values only

GEMM, HEMM, HER2K, HERK, SYMM,
SYR2K, SYRK, TRMM, TRSM

CM, RM, CCRB, CRRB, RCRB, RRRB

23



Solving Linear System (DGESV)
48-core, 2.1 GHz AMD Magny-Cours System
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Solving Symmetric EVP (DSYEV)
48-core, 2.1 GHz AMD Magny-Cours System
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Solving Singular Value Problem (DGESVD)
48-core, 2.1 GHz AMD Magny-Cours System
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MAGMA

« Extends PLASMA to support
heterogeneous systems (GPUs et al)
* Host of extra considerations:
* Where does the data live?
- Data formats? (Natural, blocked, ...)
* Multiple accelerators
« Streaming”?

University of
I BRISTOL
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MAGMA 1.1 coverage

K v ML g
One-sided Factorizations (LU, QR, Cholesky) \/ /
Linear System Solvers \/
Linear Least Squares (LLS) Solvers /

Matrix Inversion /
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i Hybnd LAPACK algorithms with static schedubng
Singular Value Problem (SVP) SINGLE GPU 28 LAPACK data Isyout
Non-symmetric Eigenvalue Problem MULTI-GPU  Hybrid LAPACK algorithms with 10 block cyche
Symmetric Eigenvalue Problem STATIC statc schaduling and LAPACK data layout

. e MULTI-GPU Tée algorithms with StarPU scheduling and tile
Generalized Symmetric Eigenvalue Problem gy et
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MAGMA LU in double precision on multi-GPUs (Fermi C2070)
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Big Issue:

Composibility of Parallelism
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“Who owns the parallelism?”

* Multiple levels in the software stack:
* Operating system / run-time
* Libraries
* Application

 \WWho decides what runs where?
 \Who owns the resources?

University of
BRISTOL
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Composibility

Consider the following example using a modern dual
socket, multi-core server (12 to 16 cores today):

* Your application is written in OpenMP or MPI in
order to use all these cores

* Then you want to call a parallel version of a
numerical library, such as BLAS, LAPACK etc.

- Essentially have to “pass over” ownership of the
hardware resources from the application to the
library

* This problem gets worse as the width and depth of
the parallelism increase — GPUs with OpenCL etc

Elic University of
I BRISTOL
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Composibility continued

More issues:

* What if you want varying widths of
parallelism? (Elastic widths)

* What effect do multiple users have on the
available parallelism? Don’'t know how
much you have until execution time...

University of
BRISTOL 31



More future issues for NA libs

From Dongarra et al, SIAM PPOQ8:

* Dynamic Data Driven Execution

» Self Adapting

* Mixed Precision in the Algorithm

+ Exploit Hybrid/Many-core Architectures
» Fault Tolerant Methods

- Communication Avoidance

University of
BRISTOL
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Summary and Conclusions

 Future hardware will see considerable increases in:
« Width of parallelism (cores, vectors, ...)

« Depth of parallelism (heavyweight, lightweight, threads,
instructions, ...)

* Depth and complexity of memory hierarchy
» Heterogeneity

« Core counts will increase faster than bandwidth,
memory capacity and latency

* Future numerical libraries will need to adapt at run-
time to exploit available resources

* Thus the very nature of software libraries will
fundamentally change (ship as source?)

Major unresolved issue around parallel composibility

Elic University of
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For an introduction to GPUs

The GPU Computing Revolution — a
Knowledge Transfer Report from the London
Mathematical Society and the KTN for
Industrial Mathematics

 https://ktn.innovateuk.org/web/mathsktn/
articles/-/blogs/the-gpu-computing-
revolution
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ASEArch CCP

* New CCP just formed to help in this area:

 Algorithms and Software for Emerging
Architectures — ASEArch

e Collaboration between Oxford, STFC, Bristol
and Edinburgh

 http://www.oerc.ox.ac.uk/research/asearch
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