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A brief biography

Graduated as Valedictorian in Computer
— Science from Cardiff University in 1991

- Joined Inmos to work for David May as a
INMOsS microprocessor architect

Moved to Pixelfusion in 1999 — a high-tech
start-up designing the first many-core
general purpose graphics processor
— (GPGPU)

- Co-founded ClearSpeed in 2002 as Director
/
ClearSpeed of Architecture and Applications

- Joined the CS department at the University of
gt Bristol to focus on HPC and advanced
computer architectures
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The real Moore’s Law

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

Moore’'s Law graph, 1965
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45 years ago,
Gordon Moore
observed that the
number of transistors
on a single chip was
doubling rapidly

http://www.intel.com/technology/mooreslaw/



Important technology trends
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Moore's Law today

2009 ITRS - Functions/chip and Chip Size
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Moore's Law today

2009 ITRS - Functions/chip and Chip Size
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What to do with billions of transistors?

» Lots more cores on-chip
« Core designs will stay roughly the same

* But power consumption must be held in check
« Chip voltages can’t be dialled down any more! (0.7V)
» Clock speeds may decrease!
» Memory bandwidth per core may decrease!
» Memory per core may decrease!

 Different types of cores
- Heterogeneous computing!

- E.g. a few heavyweight (x86) cores together with many
more lightweight (GPU) cores

Elic University of
AL BRISTOL



Heterogeneous computing is not new

* Most systems are already heterogeneous
* PCs have CPU, GPU, network processor, 1/O
pProcessor, ...

* Has been a common approach in embedded
systems since the early ‘90s

- But now heterogeneous systems are starting
to include several different types of general-
purpose, programmable processors

» Users have to programme more than one type of
processor to get the most out of a system

University of
AL BRISTOL 10



GPUs driven by advances in graphics APls

DirectX5  DirectX 6 DirectX 7 DirectX 8 Cg DirectX 9 DirectX 9.0c
LA DA 2 A R A R R LI B L S
1998 1999 2000 2001 2002 2003 2004

Half-Life Quake 3 UE3
Added simpl Much more flexible
ed simple
programmable pixel Could write a general program
shading executed for every pixel
| 2 Added ability to branch and execute
r University of . . .

BRIST}C,)L floating point operations

David Kirk and Wen-mei W. Hwu, 2007



GPGPU computing

GPGPU (General-Purpose computation on
Graphics Processing Units)

* Term first coined by Mark Harris in 2002
» http://gpgpu.org/ [IdGPU|

» The first GPGPU applications were still graphics-
oriented (ray tracing, video, ...)

* Found early use in Seismic Processing
* FFT intensive, something GPUs are good at

Also BLAS, PDEs, RNGs, ...

University of
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From GPGPU to ...

Truly general purpose massively parallel processors

 Fully-fledged parallel languages such as Nvidia’s
Cuda started to appear in 2006

» GPUs started to add 64-bit floating point

» Remaining graphics-oriented limitations rapidly
disappeared

* True High Performance Computing features now
appearing in some GPUs, e.g. Nvidia’s Fermi

-% University of
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Comparing Fermi and Nehalem

* 512 simple cores

« ~3 billion transistors

« ~1.5GHz

« ~1,500 GFLOPS S.P.

« ~750 GFLOPS D.P.

« ~190 GBytes/s

IEEE 754-2008 support
ECC on all memories

University of
BRISTOL

4 complex cores

/31 million transistors
~3GHz

96 GFLOPS S.P.

48 GFLOPS D.P.

~30 GBytes/s

IEEE 754-1985 support
ECC on all memories
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Future GPU architectures

* Tens of thousands of cores per chip
» Highly integrated (mainstream)
* Shared memory models

s PR BB Pixelfusion F150
PEARRAY Rl 1,536 simple PEs

DU R 1 ‘ t
Ay o 3 [ 4o - 1) H t !

i Mo i i | || = x ' VA

3 ! N 3 o bt it 1 ol
I N 1 A ?‘" 314 u | g o |
Calkel < ol (0] 65 01 1L i .
AC = = = ~ |
T »4'.. :» I*'."'.f !'" ";'-' |

CLEARCONNECT '

University of
BRISTOL

15



The future iIs now...

AMD'’s first “Fusion” chip, disclosed at
ISSCC in San Francisco earlier this year

* 'Llano' Accelerated
Processing Unit (APU)

* |Integrates a quad core
x86 CPU with an OpenCL

programmable GPU in the
same chip

» Intel’s doing this too Bl oo susam scason

-% University of
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Emerging standards

* OpenCL, DirectCompute, ...
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* OpenCL being adopted rapidly in mobile
computing (compilers from ARM,
Imagination, Zii Labs, ...)

 Just adopted by IBM for the POWER7-based
BlueWaters 20 PFLOP UIUC supercomputer

-Vé University of
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Heterogeneous systems in the 500

* Tokyo Tech’'s TSUBAME was first in 2006
+ Started with ClearSpeed, now using GPUs

* Now several systems in existence, more on
their way:

» #2 is Nebulae, 1.3 PFLOPS mostly from 4,640
Nvidia Fermi GPUs

» #7 is the Tianhe-1 System in China which delivers
563 TFLOPS from Intel x86 + AMD GPUs

* More coming from Tennessee/Oak Ridge, Tokyo
Tech, more Chinese systems, ...

5]
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DOWNLOAD CUDA

New NVIDIA GPU Technology Conference Content Posted Online

WHAT IS CUDA
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BPU accelerated analysis of
financial markets

Acceleration of a Finite-
Difference WENO Scheme for
Large-Scale Simulations ' 5p

ClusterTech Financial Library
in GPU
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BPU-Assisted Surface
Reconstruction on Locally-
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3D stacked memories

* Vertically stack many-core processors with
DRAM - greater bandwidth and greater

enerqy efficiency
3D Server-on-Chip :

University of . oud EP7 oroiect oud
BRISTOL uroclou project, www.eurocloudserver.com 21




3D stacked memories

* Vertically stack many-core processors with
DRAM - greater bandwidth and greater

enerqy efficiency

A A A A S

%ﬂ’%ﬁiﬁd’{ Samsung 3D DRAM 22



Photonic networks

» Roadmaps to achieve 1 ExaFLOP (1000
PetaFLOPS — 10'8) by 2018 are relying on
some major hardware breakthroughs to
improve energy efficiency

* Prof Keren Bergmen’s work at Columbia
sponsored by US DoE, Intel, IBM

* Moving data becoming an increasingly
dominant fraction of energy dissipation in
microelectronics

-% University of
B BRISTOL 23



Why photonics?

PHOTONICS: ELECTRONICS:

* Modulate/receive ultra- - Buffer, receive and re-
high bandwidth data transmit at every router
stream once per - Each bus lane routed
communication event independently

* Broadband switch routes . Off-chip BW requires
entire multi-wavelength much more power than
stream on-chip BW

« Off-chip BW = on-chip BW
for nearly same power

e

University of
BRISTOL 24
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Photonic NoC integration

photonic NoC -
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Elic University of
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Optically interconnected
supercomputing board

DRAM  CMPs 3DI Stack

Supercomputing board with
3Dl stack and DRAM
3Dl stack with CMPs,
10 teraflops per chip memory, and photonic
64 CMPs per chip NoC

Bisectional data rate on-chip: 10 TB/s
Bisectional data rate off-chip: 10 TB/s

Elic University of
BRISTOL Bergmen, SIAM PP10, Feb 2010
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Silicon photonic integration
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« First complete photonic link

il oy VAN o N oy N
optical data

)

electrical data

Integrated optical interconnect with silicon electro-optical
modulator, silicon waveguide, and germanium-on-silicon
photodetector

L. Chen, Optics Express, August 2009
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Hybrid photonic/electronic systems
will behave very differently

/ Photonic Elements \

(" 2x2 PSE )

S

\

(" Coupler Crossing

—a| X

N [/ Waveguide "\

J\ /

(Modulator\

[Detector\

€5

d.

\_

/~ Bending \ [/  Staight T\
Waveguide Waveguide

V4

)

/ Electronic Elements \

fCrossbar Switcm

x|

\.

J

4 Arbiter Logic \

Route PSE
Logic Control

I Resource Allocation

[ Input Buffer]
\ =

s

\,

Wire

=

a Switch Fabric )

29




Important implications

Hardware disruptions may invalidate any/all
assumptions from prior performance
modelling

These disruptions are (mostly) unpredictable!

Hierarchies for processing, networks and
storage will become increasingly diverse

Hardware will become increasingly unreliable

Elic University of
BRISTOL
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MAPPING SOFTWARE TO
HETEROGENEOUS
ARCHITECTURES
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The Seven Dwarfs

The Landscape of Parallel Computing Research: A
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View from Berkeley

Krste Asanovic

Ras Bodik

Bryan Christopher Catanzaro
Joseph James Gebis
Parry Husbands

Kurt Keutzer

David A. Patterson
William Lester Plishker
John Shalf

Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-183
hitp/iwww.eecs. berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183_html

December 18, 2006
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First described by Phil
Colella (LBNL 2004)

Built on earlier work by
Per Brinch Hansen

Expanded to 13 dwarfs
by a group of
researchers at
Berkeley in 2006
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What are the Seven Dwarfs?

Describe key algorithmic kernels in many
scientific applications

1.Dense linear algebra — BLAS, ScalLAPACK
2.Sparse linear algebra — SpMV, SuperlLU
3.Spectral methods — FFT

4.N-body methods — Fast Multipole
5.Structured grids — Lattice Boltzmann
6.Unstructured grids — ABAQUS, Fluent
/.Monte Carlo

-% University of
A& BRISTOL
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Seven Heterogeneous Dwarfs

1. Dense linear algebra — excellent progress
«  PLASMA/MAGMA - Dongarra et al
FLAME - Robert van de Geijn et al
« Vendor libraries — CUBIlas, ACML, NAG, ...

2. Sparse linear algebra

- lterative solvers — good progress

«  Nathan Bell and Michael Garland (NVIDIA Research) have
general-purpose iterative solvers using efficient sparse
matrix-vector multiplication

*  Andreas Klockner (Brown University) has “lterative CUDA”
package based on same SpMV products

«  Manfred Liebmann & colleagues (University of Graz) have
implemented algebraic multigrid

5]

Vé University of “Looking after the 7 dwarfs: numerical libraries / frameworks for GPUs”,
BRISTOL Mike Giles, http://www.industrialmath.net/CUDAQ9_talks/giles.pdf 34



Seven Heterogeneous Dwarfs

3. Spectral methods — good progress

 FFT libraries from vendors

*  “Auto-Tuning 3-D FFT Library for CUDA GPUSs”
Akira Nukada, Satoshi Matsuoka, Tokyo Institute of
Technology, SC09

Very fast, 160 GFLOPS for 2563 32-bit 3D FFT

4. N-body methods — excellent progress
NAMD/VMD - Phillips, Stone, UIUC

OpenMM, Folding@Home — Pande, Stanford

« Fast multipole methods - “42 TFlops Hierarchical N-
body Simulations on GPUs with Applications in both
Astrophysics and Turbulence”, Hamada et al, SC09

University of
AL BRISTOL



Seven Heterogeneous Dwarfs

5. Structured grids — excellent progress

*  “Turbostream” turbulent fluid flow
application framework, Pullan and
Brandvik, Cambridge

20X speedup
« Datta et al SCO8

« Jonathan Cohen at NVIDIA Research
developing a library called OpenCurrent

i
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Seven Heterogeneous Dwarfs

6. Unstructured grids — good progress

* Several projects underway in the CFD
community

* Rainald Lohner (GMU — Washington DC)
« Jamil Appa (BAE Systems)
* Graham Markell / Paul Kelly (Imperial)

» Mike Giles (Oxford) working with Markell,
Kelly and others on a general-purpose, open-
source framework called OP2

* QOthers underway

University of “Looking after the 7 dwarfs: numerical libraries / frameworks for GPUs”,
m BRISTOL Mike Giles, http://www.industrialmath.net/CUDAQ9_talks/giles.pdf 37



Seven Heterogeneous Dwarfs

/. Monte Carlo — excellent progress
* Massively parallel, an excellent fit

* Vendors providing examples

* Mike Giles (Oxford) working with NAG to
develop a GPU library of RNG routines

« E.g. mrg32k3a and Sobol generators
« http://www.nag.co.uk/numeric/GPUs/

* Lots of work in this space

&

University of “Looking after the 7 dwarfs: numerical libraries / frameworks for GPUs”,

BRISTOL Mike Giles, http://www.industrialmath.net/CUDAQ9 _talks/giles.pdf



Important takeaways

» Heterogeneous computing is here to stay

» Even single chips will contain tens of
thousands of cores

» Hierarchies will become deeper
- Hardware will become increasingly unreliable

» Higher level application templates, libraries
and auto-tuners will be essential

* ltis crucial that anyone modelling future
systems or developing software is aware of
these implications!

-% University of
A& BRISTOL
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