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!  Introduction 
•  There are challenges in constructing and 

maintaining benchmark suites, especially  
when the original codes are complex or 
classified 
•  Thus may not be shared directly with vendors 

or partners 
•  Can we automatically construct 

benchmarks that closely model the low-
level behavior of target workloads? 
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!  Methodology – I 
•  Select a set of open-source benchmarks that exhibit a 

reasonably wide range of behavior in terms of low-
level hardware metrics: 
•  Cycles per instruction 
•  Cache misses (instruction, data, multiple levels) 
•  DRAM accesses 
•  Data Translation Lookaside Buffer Misses (page faults) 
•  Branch instruction rate 
•  Mispredicted branches rate 

•  These metrics were selected as the most important in 
terms of their effect on the observed performance in a 
modern CPU architecture 
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!  Methodology – II 
•  Characterise target codes1; 
•  Characterise potential analogue 

benchmarks1; 
•  Create benchmark analogues; 
•  Assemble parameterised benchmark suite. 

•  1 Multiple copies in parallel, one per core 
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! Characterisation tools 
•  System Tap 

•  Standard Linux tool 
•  Records kernel-level stats about memory use, I/O 

etc 

•  Oprofile 
•  Standard Linux tool 
•  Records low-level hardware metrics (cycles per 

instruction, branch misprediction rate etc) 

•  Sampling issues have to be managed 
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!  Target benchmark 
characterization on Nehalem 
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Nehalem hardware counters from a twelve hour target job mix sample run 
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!  Nehalem cycles per instruction 
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! Characterising targets 
•  Do we run them: 

•  On one core at a time, 
•  On all the cores at the same time, or 
•  In a random mix? 

•  Observed the impact of running each target 
in parallel with itself 

•  Some counter sampling rate issues (too few 
and too many are both problems). 

8 



!  Target characterization on Nehalem 
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!   Target characterization on Magny-Cours 
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!  Analogue benchmarks 
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!  Analogue benchmark examples 
•  Fhourstones 

•  Something about Fhourstones 
•  Gups 

•  Something about Gups 
•  Single_core 

•  Something about single_core 
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! Characterising analogues 

For each target platform T 
For each analogue benchmark A 

For each parameterisation P 
AT(P)  - run A on T with parameters P 
Record low-level hardware metrics for AT(P) 
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! Fhourstones on Nehalem 
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! Fhourstones on Magny-Cours 
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! Fhourstones runtimes 
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! Gups on Nehalem 

17 



! Gups on Magny-Cours 
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! Gups runtimes 
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!  Effects of parallelism on sweeps 

20 Fhourstones sweep on Nehalem 
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!  Effects of parallelism on sweeps 

21 Gups sweep on Magny-Cours 
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!  Effects of parallelism on sweeps 

22 Single_core sweep on Magny-Cours 
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!  Assembling analogue 
benchmark suites 
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!  Exploration of analogue 
benchmark suite methodologies 

There are a number of different ways we 
can construct an analogue job mix that 
models a target job mix: 
1.  Manually select one analogue to 

represent one target 
2.  Automatic point-wise construction of a 

composite analogue job mix 
3.  Residual refinement of a composite 

analogue job mix 
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!  Method 1: hand selection of 
analogues for targets (Nehalem) 
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!  Method 1 results 
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The derived benchmark suite was assessed by comparing the 
breakdown of the percentage of CPU time for each analogue over a 
nine hour extended run of the analogue benchmark job mix.  
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!  Method 1 results summary 
•  Across the whole target and analogue job 

mixes, the differences in the runtimes 
represent an 8.2% overestimate on 
Nehalem and a 1.3% overestimate on 
Magny-Cours.  

•  In summary, the parameterization was 
successful, delivering analogue 
benchmark job mixes that estimate 
performance to within 10% overall of the 
target benchmark job mix.  
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!  Method 2 
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Automatic point-wise construction of a composite analogue job mix 
•  In this approach we took an aggregate view of the target job mix, 

using the Oprofile metrics averaged across all the target 
benchmarks across all the platforms. This gives a set of thirty 
metrics which describe the aggregate ‘shape’ of the target job mix 
across all platforms. 

•  We then took the sweep dataset previously constructed by running 
each analogue benchmark with a range of different input parameters 
across all the platforms, resulting in 141 data points, each with the 
same thirty metrics as the aggregate for the target job mix. 

•  An analogue job mix was then constructed by creating a pool of 100 
job slots which were incrementally tested against all of the 141 
analogues to determine whether a better least-squares fit would 
result from the replacement of the previous job by the new one. An 
iteration involved testing each of the job slots on turn. 

•  The stopping criteria were that are either the number of iterations 
exceeded 1000 or the difference in the least squares error between 
iterations falls below 0.01. 



!  Method 2 results 

The analogue job mix constructed using this algorithm converged 
quickly, taking just seven passes to meet the stopping criteria. 
The convergence of the least-squares error is shown above. 
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!  Method 2 results (Nehalem) 
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!  Method 2 results (Nehalem) 
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!  Method 2 results (Nehalem) 
•  The method 2 analogue job mix has been 

constructed in a way that makes it behave 
very closely to that of the target job mix, as 
measured by the Oprofile hardware metrics. 

•  All of the most important metrics show errors 
of less than 4% between the target and 
analogue job mixes. 

•  Larger errors are limited to the less important 
metrics that have lower sampling rates. 

•  With this approach the performance across 
the whole analogue job mix is indicated by 
the cycles per instruction metric. 
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!  Method 3 
Residual refinement of a composite analogue job mix 
•  An aggregate view of the target job mix is taken using 

the Oprofile metrics summarised across all the target 
benchmarks and across all the platforms. 

•  We then attempt to iteratively build a representative 
workload using as our measure of fitness the least 
squares difference between the average metric scores 
of the new job mix with those of the target job mix. 

•  This method differs from method 2 in that job slots are 
filled incrementally. Thus the algorithm starts from an 
empty job mix and incrementally looks for analogues 
which reduce the residual error. 

•  10.3.3.  The error for the first 100 slots is show in 
Figure 44 below. The x axis represents the job slot. 
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!  Method 3 results 
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The least squares difference rapidly converges to around 11.5 and by the time we have 
used 5000 job slots this has only dropped to 11.4. Thus by the time we have around 
100 jobs we have a good analogue job mix that should closely match the behavior of 
the target job mix. 
 



!  Method 3 results (Nehalem) 
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!  Method 3 results (Nehalem) 
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!  Method 3 results (Nehalem) 
•  One can see from these results that this new analogue 

job mix also behaves in a manner very close to that of 
the target job mix, as measured by the Oprofile 
metrics. 

•  The first two most important metrics show errors of 
less than 5% between the target and analogue job 
mixes. 

•  Again, less important metrics with lower sampling 
rates show larger errors. 

•  Method 3 did not prove as accurate as method 2, with 
larger errors in general. 

•  As with the previous new approach, the performance 
across the whole analogue job mix is indicated by the 
cycles per instruction metric. 
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!  Comparison of the three methods 
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Method 1: hand selection 

Target benchmark job mix 

Method 2: pointwise construction 

Method 3: residual refinement 



!  Conclusions 
•  The results show that these approaches are useful, 

producing analogue benchmark job mixes that are 
within 10-15% of the runtime of the target benchmark 
job mix across a range of different platforms. 

•  We found that the optimal mix of analogue 
benchmarks varied by platform, suggesting caution is 
needed when interpreting the results when using the 
analogue benchmark job mixes.  

•  Results also showed that we lacked an analogue that 
exhibited significant branch mispredictions compared 
to the target benchmarks 

•  These techniques can be useful in abstracting away 
from classified codes. 
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