“A next-generation many-core processor with reliability, fault tolerance and adaptive power management features optimized for embedded and high performance computing applications.”

Simon McIntosh-Smith, VP of Applications
simon@clearspeed.com
ClearSpeed Federal Systems based in San Jose, CA, founded in 2008
ClearSpeed Technology HQ in Bristol, UK, founded in 2002
Deliver the world’s most power efficient, high-performance processors
Over 100 patents on the core technology
Solutions for defence, embedded systems and high performance computing
Licensed IP to BAE Systems for use in future space-based systems
Partnering with HP, SGI, IBM, and Sun
ClearSpeed’s “Smart SIMD” MTAP processor core

- “Smart SIMD” Multi-Threaded Array Processing:
 - Multi-threading for asynchronous, overlapped I/O with compute
 - Scalable array of many Processor Elements (PEs)
 - Coarse-grained data parallel processing
 - Supports redundancy and resiliency

- Programmed in an extended version of ANSI C called C^n:
 - Rich expressive semantics
 - Single “poly” data type modifier
Smart SIMD Processing Elements (PEs)

- Multiple execution units per PE
 - Floating point adder
 - Floating point multiplier
- Fixed-point MAC 16x16 → 32+64
- Integer ALU with shifter
- Load/store
- Fast inter-PE communication path
- Closely coupled, ECC-protected SRAM for data
- High bandwidth per PE DMA (PIO)
- Per PE address generators
- Platform design enables PE variants

32 & 64-bit IEEE 754
The ClearConnect™ “Network on Chip” system bus

- Scalable, System on Chip (SoC) platform interconnect
- Used to connect together all the major blocks on a chip:
 - Multiple MTAP smart SIMD cores
 - Multiple memory controllers
 - On-chip memories
 - System interfaces, e.g. PCI Express
- Unified memory architecture
- Distributed arbitration
- Scalable bandwidths
- Low power design
ClearSpeed’s product range

• Processors
 – CSX700, CSX600

• Boards
 – e720, e710, e620, X620

• Systems
 – CATS-700 1TFLOP in 1U

• Software
 – Compiler
 – Libraries
 – Heterogeneous profiler
 – GDB-based debugger
The CSX700 Processor

- Includes dual MTAP cores:
 - 96 GFLOPS peak (32 & 64-bit)
 - 48 GMACS peak (16x16 → 32+64)
 - 10 power consumption
 - 250MHz clock speed
 - 192 Processing Elements (2x96)
 - 8 spare PEs for resiliency
 - ECC on all internal memories

- Dual integrated 64-bit DDR2 memory controllers with ECC
- Integrated PCI Express x16
- CCBR chip-to-chip bridge port
- 2x128 KBytes of on-chip SRAM
- IBM 90nm process
- 266 million transistors
Reliability and fault tolerance

- 8 spare PEs can be kept in reserve
- Error Correcting Codes (ECC) on all on-chip memories
- ECC with memory scrubber on all external memories
- On-die temperature sensors
- Low power and modest clock speed design
- Programming model supports graceful degradation

Adaptive power management

- Ability for software to modify clock speed dynamically, even while an application is running
- On-die temperature sensors allow for thermal ceilings to be set by software
- Can also throttle clock speed based on power consumption
Powerful software development environment

- Version 3.11 launched in June 08
- Binary compatible across all ClearSpeed products
- ANSI C-based optimising compiler – C^n
- GDB-based debugger
- Profiling with heterogeneous, system-wide capabilities
- Libraries (BLAS, RNG, FFT, more…) & High level APIs (CSPX)
- ECLIPSE-based IDE
Standard Eclipse graphical debug interface for CSX processor debugging.

CSX processor provides full hardware debugging of application code.

Provides a seamless view of many processor cores in parallel with their associated state.

Allows full symbolic debug of the Cn language.

Enhanced views for CSX specific information.
ClearSpeed profiler for heterogeneous multi-processor systems

HOST CODE PROFILING

HOST/BOARD INTERACTION PROFILING

Advance™ Accelerator Board

CSX Pipeline

CSX Pipeline

Host CPU(s)

PCIe/X

CSX PIPELINE PROFILING

CSX SYSTEM PROFILING
Defense focus

Processor technology with a signal-processing focus
- Radar, Sonar
- Imaging
- Target discrimination
- Electronic warfare
- Communications intelligence

Engineered for optimal Size, Weight, and Power
- Best performance per watt in the industry

Deployable across harsh environments
- Air, land, and sea
- Commercial, rugged, conduction cooled configurations
- Embedded form factors
Embedded/Defense Concept XMC and VXS modules

XMC card
- **Performance**
 - 96 GFLOPS, 48 GMACS
 - 192 GBytes/s peak on-chip bandwidth
 - 8 GBytes/s peak off-chip
- **High bandwidth via PCI Express I/O**
 - Up to 2 GBytes/sec via PCIe x2, x4, x8
 - Up to 4 GBytes/sec via PCIe x16
- **15 watts typical, 25 watts max**

Vita 41 (VME Switched Serial - VXS) Module
- **Performance**
 - 192 GFLOPS, 96 GMACS
 - 384 GBytes/s peak on-chip bandwidth
 - 16 GBytes/s peak off-chip
- **High bandwidth**
 - VME interface (P1 & P2) PCIe x4
 - ClearConnect CCBR for chip-to-chip
 - (2) 4x PCIe links off-board (Vita 41.4)
- **30 watts typical, 50 watts max**

CONCEPTS, NOT COMMITTED PRODUCTS
• Power consumption figures are for a single CSX700 running at 0.9V and 42°C
• For 2D FFTs, timing and power consumption measurements include the corner turn
• All data always starts and finishes in the off-chip DRAM
• FFTs were run simultaneously on both MTAP cores of the CSX700
CSX700 1D FFT core power GFLOPS per watt

![Graph showing the relationship between Core Clock Speed and CSX700 core GFLOPS/W for different core sizes (128, 256, 512, 1024, 2048). The graph indicates that GFLOPS/W increases with higher Core Clock Speed and larger core sizes.](image-url)
With 12 CSX700 processors the CATS-700 can achieve:

- 4.2 million 1024 point 1D FFTs per second (215 GFLOPS)
- 26,000 1024x1024 2D FFTs per second (194 GFLOPS)
- 25 billion 32-bit inverse square roots
- 14 billion 32-bit sines
- 12 billion 32-bit exponentials
- An aggregate STREAM benchmark of ~80 GBytes/s
The graph shows the performance of various transcendental functions on the CSX700 processor. The y-axis represents the number of operations per second, while the x-axis lists the functions:

- cs_sinp
- cs_cosp
- cs_sincos
- cs_tanp
- cs_atanp
- cs_sqrtp
- cs_isqrtp
- cs_logp
- cs_expp

The performance is compared for 32-bit and 64-bit precision. The functions differ in their performance, with some showing a significant advantage in 64-bit precision, particularly cs_isqrtp.