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!  Simon	  McIntosh-‐Smith	  

2 

Graduated	  as	  Valedictorian	  in	  Computer	  Science	  
from	  Cardiff	  University	  in	  1991	  

Joined	  Inmos	  to	  work	  for	  David	  May	  as	  a	  
microprocessor	  architect	  

Moved	  to	  Pixelfusion	  in	  1999	  –	  a	  high-‐tech	  start-‐
up	  designing	  the	  first	  GPGPU,	  a	  many-‐core	  
general	  purpose	  graphics	  processor	  

Co-‐founded	  ClearSpeed	  in	  2002	  as	  Director	  of	  
Architecture	  and	  ApplicaLons	  

Joined	  the	  CS	  department	  at	  the	  University	  of	  
Bristol	  in	  April	  2009	  to	  focus	  on	  High	  
Performance	  CompuLng.	  Member	  of	  OpenCL	  
standards	  body,	  Khronos,	  involved	  in	  running	  
the	  UK's	  naLonal	  HPC	  service,	  …	  



!  Bristol HPC industrial collaborations 

•  AWE / Sandia: 
•  Co-developers of the Mantevo benchmark suite of 

mini-apps (http://mantevo.org) 

•  Los Alamos National Laboratory: 
•  Jointly created OpenCL annual conference, 

IWOCL (http://iwocl.org) 
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! UoB a partner in global HPC projects 
Exascale: 
•  Mont Blanc (ARM+GPU 

for HPC) 
National HPC services: 
•  Archer (Cray XC30, 

>100,000 cores) 
•  HECToR 
European HPC projects: 
•  PRACE 
•  European Exascale 

Software Initiative (EESI) 
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! UoB contributing to HPC standards 

Major contributor to OpenCL and its new 
Standard Portable Intermediate 

Representation (SPIR) 
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!  Motivation 
•  All HPC processors going many-core / data parallel 

(Intel Xeon Phi, Nvidia, AMD) 
•  Initially very divergent parallel programming 

languages / APIs required: 
•  Vector intrinsics 
•  Cn (ClearSpeed) 
•  Brook / Stream 
•  CUDA 
•  OpenMP / OpenACC 
•  MPI 

•  This is a nightmare situation for software developers! 
•  Does it have to be this way? 
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!  BUDE – molecular docking 
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!  What is BUDE? 
•  Dr Richard Sessions, PI (Biochemistry) 
•  Bristol University Docking Engine 
•  Designed for true in silico virtual drug screening by 

docking 
•  Employs a genetic algorithm-based search of the 

six degrees of freedom in the arrangement of the 
protein and drug molecules to reduce the search 
space 

•  Uses a tuned empirical free-energy forcefield for 
predicting the binding pose and energy of the 
ligand with the target protein 
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!  BUDE protein-ligand docking 
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!  What did we do? 

•  Started with OpenCL 
•  Supported by all the major vendors (even 

Nvidia!) 
•  Optimised initially for the most parallel 

device we had  
•  Kept checking that the optimisations 

weren't making things worse on the other 
devices 
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!  More specifically… 

•  Ported all the code to the accelerator 
•  Helped the compiler turn all the conditional 

branches into straight-line, predicated 
code 
•  Involved eyeballing the generated PTX 

•  Did all the usual things to optimise 
memory accesses 
•  Alignment, padding, coalescence etc. 

•  Chose sensible problem/work-group sizes 
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!  Optimising conditional branches 

Conditional execution 
// Only evaluate expression 
// if condition is met 
if (a > b) 

{ 
  acc += (a - b*c); 
} 
 

Corresponding PTX 
 
setp.gt.f32 %pred, %a, %b                                   
@!%pred bra $endif 
mul.f32 %f0, %b, %c                                         
sub.f32 %f1, %a, %f0                                        

add.f32 %acc, %acc, %f1  
$endif: 

Selection and masking 
// Always evaluate expression 
// and mask result 
temp = (a - b*c); 

mask = (a > b ? 1.f : 0.f); 
acc += (mask * temp); 
 
 

Corresponding PTX 
 
mul.f32 %f0, %b, %c                                         
sub.f32 %temp, %a, %f0                                      
setp.gt.f32 %pred, %a, %b                                   
selp.f32 %mask, %one, %zero, %pred                          

mad.f32 %acc, %mask, %temp, %acc  
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!  Instruction mix 
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!  Target hardware 
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!  BUDE results 
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"High Performance in silico Virtual Drug Screening on Many-Core Processors", 
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014 
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!  How much the optimisations helped 
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"High Performance in silico Virtual Drug Screening on Many-Core Processors", 
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014 
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!  Performance portability 

•  BUDE was highly performance portable 
•  Compute intensive, N-body / Monte Carlo 

•  Bandwidth intensive codes next 
•  Structured grid codes: 

•  Lattice Boltzmann 
•  CloverLeaf (hydrodynamics) 
•  ROTORSIM (CFD) 
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!  Structured Grid Codes 
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!  Lattice Boltzmann (LBM)  

•  A versatile approach for solving 
incompressible flows based on a simplified 
gas-kinetic description of the Boltzmann 
equation (used for CFD etc) 

•  Ports well to most parallel architectures 
•  We targeted one of the most widely used 

variants, D3Q19-BGK 
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!  D3Q19-BGK LBM 

•  To update a cell, need to access 19 of the 
27 surrounding cell values in the 3D grid 
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!  Methodology 
•  Developed a code that was efficient but not over complicated 

•  "Identical" versions in OpenCL and CUDA 
•  Single precision grid 1283 (∼2m grid points, 304 MBytes) 
•  The OpenCL three dimensional work-group size was fixed at 

(128,1,1) for all OpenCL runs on all devices 
•  Same arrangement for CUDA version 

•  The OpenMP code was as close as possible to the OpenCL/
CUDA versions 

•  Ensured the OpenMP code was being vectorised by the 
compiler (latest Intel icc) 
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!  Performance results for 1283 
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!  Performance results for 1283 
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!  So perf. portable, but is it fast? 

•  On an Nvidia K20, our best 1283 single 
precision performance in OpenCL was 1,110 
MLUPS 

•  In the literature, the fastest quoted results are 
~1,000 MLUPS (Januszewski and Kostur's 
Sailfish program) and 982 MLUPS (Mawson 
and Revell) 

•  Our results are a 13% improvement over 
Mawson-Revell and a 10% improvement over 
Januszewski-Kostur 
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!  Impact of work-group sizes 
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! CloverLeaf: A Lagrangian- Eulerian 
hydrodynamics benchmark 
•  A collaboration between AWE, Warwick & Bristol 
•  CloverLeaf is a bandwidth-limited, structured grid 

code and part of Sandia's "Mantevo" benchmarks. 
•  Solves the compressible Euler equations, which  

describe the conservation of energy, mass and 
momentum in a system. 

•  These equations are solved on a Cartesian grid in 
2D with second-order accuracy, using an explicit 
finite-volume method. 

•  Optimised parallel versions exist in OpenMP, MPI, 
OpenCL, OpenACC, CUDA and Co-Array Fortran. 

26 



! CloverLeaf benchmark parameters 

•  Double precision grid of size 1920×3840 
•  ∼7.4m grid points, 25 values per grid point  
à∼1.5 Gbytes in working dataset 

•  The OpenCL and CUDA parallelisations 
were performed in an identical manner 
•  One work-item/thread for each grid point 
•  Identical arrangements for work-group sizes 

and layouts 
•  E.g. 2D work-groups of (128, 1) for OpenCL 

27 



!  Results – performance 
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!  Results – sustained bandwidth 
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!  ROTORSIM 

•  A production multiblock, compressible 
finite-volume CFD code 

•  Developed in Bristol by Prof. Chris Allen 
•  Upwind, third-order accurate spatial 

stencil, with an explicit time integration 
scheme for steady flows 

•  Implicit dual-time approach for time-
accurate calculations 

•  Optimised versions in MPI and OpenCL 
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!  Results – performance 
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!  Results – sustained bandwidth 

32 Double precision results 
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Performance portability isn't what we expect 

But why not? 



!  Why don't we expect perf. portability? 

•  Historical reasons 
•  Started with immature drivers 
•  Started with immature architectures 
•  Started with immature applications 

•  But things have changed 
•  Drivers now mature / maturing 
•  Architectures now mature / maturing 
•  Applications now mature / maturing 
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!  Is anyone else achieving 
performance portability? 
•  Some very interesting data from Karl Rupp's ViennaCL 
•  Historical study into performance portability of BLAS 

functions (L1 to L3) 
•  His results show that performance was much more 

"peaky" on older devices and older drivers 
•  Much smoother today – and indeed possible to tune 

on one device to represent many 
•  To appear in "Performance Portability Study of Linear 

Algebra Kernels in OpenCL", Karl Rupp et al., 
International Workshop on OpenCL (IWOCL), May 
12-13th 2014, Bristol, UK. ACM ICPS, ISBN 
978-1-4503-3007-7 
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!  Performance portability techniques 

•  Use a platform portable parallel language 

•  Aim for 80-90% of optimal 

•  Avoid platform-specific optimisations 

•  Most optimisations make the code faster 
on most platforms 
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!  Other motivations… 
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16 cores of Sandy Bridge at 3.1 GHz 



!  Conclusions 

•  We have demonstrated that it's possible to 
achieve good performance portability for two 
classes of application so far: 
•  N-body / Monte Carlo codes – BUDE 

•  Structured grid codes - lattice Boltzmann, 
CloverLeaf and ROTORSIM  

•  OpenCL can straightforwardly enable a much 
better degree of performance portability than 
you might expect 
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!  Backup 
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!   "Isn't OpenCL much harder than CUDA?" 

•  Nope 
•  Kernels are almost identical 
•  Latest OpenCL C++ API does the same 

for the host code 
•  OpenCL is being very strongly supported 

by Intel and AMD (and ARM, IMG, …) 
•  Nvidia's OpenCL implementation is 

surprisingly good, though they hate to 
admit it! 
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! Enqueue a kernel (C++) 

CUDA C 
dim3 
threads_per_block(30,20); 
 
dim3 num_blocks(10,10); 
 
 
kernel<<<num_blocks,        
  threads_per_block>>>(…); 

OpenCL C++ 
const cl::NDRange 
       global(300, 200); 
 
const cl::NDRange 
       local(30, 20); 
 
kernel( 
  EnqueueArgs(global, local), 
  …); 



!  Allocating and copying memory 

CUDA C OpenCL C++ 

Allocate float* d_x; 
cudaMalloc(&d_x,   
    sizeof(float)*size); 
 

cl::Buffer 
  d_x(begin(h_x), end(h_x), true); 
 

Host to 
Device 

cudaMemcpy(d_x, h_x, 
    sizeof(float)*size, 
    cudaMemcpyHostToDevice); 
 

cl::copy(begin(h_x), end(h_x),  
         d_x); 

Device 
to Host 

cudaMemcpy(h_x, d_x, 
    sizeof(float)*size, 
    cudaMemcpyDeviceToHost); 

cl::copy(d_x,  
         begin(h_x), end(h_x)); 
 


