
Developing
performance
portable many-
core codes
Simon McIntosh-Smith

1 Twitter: @simonmcs

An Intel Parallel
Computing Center

!  Simon	 McIntosh-‐Smith	

2

Graduated	 as	 Valedictorian	 in	 Computer	 Science	
from	 Cardiff	 University	 in	 1991	

Joined	 Inmos	 to	 work	 for	 David	 May	 as	 a	
microprocessor	 architect	

Moved	 to	 Pixelfusion	 in	 1999	 –	 a	 high-‐tech	 start-‐
up	 designing	 the	 first	 GPGPU,	 a	 many-‐core	
general	 purpose	 graphics	 processor	

Co-‐founded	 ClearSpeed	 in	 2002	 as	 Director	 of	
Architecture	 and	 ApplicaLons	

Joined	 the	 CS	 department	 at	 the	 University	 of	
Bristol	 in	 April	 2009	 to	 focus	 on	 High	
Performance	 CompuLng.	 Member	 of	 OpenCL	
standards	 body,	 Khronos,	 involved	 in	 running	
the	 UK's	 naLonal	 HPC	 service,	 …	

!  Bristol HPC industrial collaborations

•  AWE / Sandia:
•  Co-developers of the Mantevo benchmark suite of

mini-apps (http://mantevo.org)

•  Los Alamos National Laboratory:
•  Jointly created OpenCL annual conference,

IWOCL (http://iwocl.org)

3

! UoB a partner in global HPC projects
Exascale:
•  Mont Blanc (ARM+GPU

for HPC)
National HPC services:
•  Archer (Cray XC30,

>100,000 cores)
•  HECToR
European HPC projects:
•  PRACE
•  European Exascale

Software Initiative (EESI)

4

! UoB contributing to HPC standards

Major contributor to OpenCL and its new
Standard Portable Intermediate

Representation (SPIR)

5

!  Motivation
•  All HPC processors going many-core / data parallel

(Intel Xeon Phi, Nvidia, AMD)
•  Initially very divergent parallel programming

languages / APIs required:
•  Vector intrinsics
•  Cn (ClearSpeed)
•  Brook / Stream
•  CUDA
•  OpenMP / OpenACC
•  MPI

•  This is a nightmare situation for software developers!
•  Does it have to be this way?

6

!  BUDE – molecular docking

7

!  What is BUDE?
•  Dr Richard Sessions, PI (Biochemistry)
•  Bristol University Docking Engine
•  Designed for true in silico virtual drug screening by

docking
•  Employs a genetic algorithm-based search of the

six degrees of freedom in the arrangement of the
protein and drug molecules to reduce the search
space

•  Uses a tuned empirical free-energy forcefield for
predicting the binding pose and energy of the
ligand with the target protein

8

!  BUDE protein-ligand docking

9

!  What did we do?

•  Started with OpenCL
•  Supported by all the major vendors (even

Nvidia!)
•  Optimised initially for the most parallel

device we had
•  Kept checking that the optimisations

weren't making things worse on the other
devices

10

!  More specifically…

•  Ported all the code to the accelerator
•  Helped the compiler turn all the conditional

branches into straight-line, predicated
code
•  Involved eyeballing the generated PTX

•  Did all the usual things to optimise
memory accesses
•  Alignment, padding, coalescence etc.

•  Chose sensible problem/work-group sizes

11

!  Optimising conditional branches

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)

{
 acc += (a - b*c);
}

Corresponding PTX

setp.gt.f32 %pred, %a, %b
@!%pred bra $endif
mul.f32 %f0, %b, %c
sub.f32 %f1, %a, %f0

add.f32 %acc, %acc, %f1
$endif:

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);

mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Corresponding PTX

mul.f32 %f0, %b, %c
sub.f32 %temp, %a, %f0
setp.gt.f32 %pred, %a, %b
selp.f32 %mask, %one, %zero, %pred

mad.f32 %acc, %mask, %temp, %acc

12

!  Instruction mix

13

!  Target hardware

14

!  BUDE results

15

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

!  How much the optimisations helped

16

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

!  Performance portability

•  BUDE was highly performance portable
•  Compute intensive, N-body / Monte Carlo

•  Bandwidth intensive codes next
•  Structured grid codes:

•  Lattice Boltzmann
•  CloverLeaf (hydrodynamics)
•  ROTORSIM (CFD)

17

!  Structured Grid Codes

18

!  Lattice Boltzmann (LBM)

•  A versatile approach for solving
incompressible flows based on a simplified
gas-kinetic description of the Boltzmann
equation (used for CFD etc)

•  Ports well to most parallel architectures
•  We targeted one of the most widely used

variants, D3Q19-BGK

19

!  D3Q19-BGK LBM

•  To update a cell, need to access 19 of the
27 surrounding cell values in the 3D grid

20

!  Methodology
•  Developed a code that was efficient but not over complicated

•  "Identical" versions in OpenCL and CUDA
•  Single precision grid 1283 (∼2m grid points, 304 MBytes)
•  The OpenCL three dimensional work-group size was fixed at

(128,1,1) for all OpenCL runs on all devices
•  Same arrangement for CUDA version

•  The OpenMP code was as close as possible to the OpenCL/
CUDA versions

•  Ensured the OpenMP code was being vectorised by the
compiler (latest Intel icc)

21

!  Performance results for 1283

22 Single precision results

6.9X
9.9X 8.3X

5.3X

16
cores

!  Performance results for 1283

23 OpenCL single precision results

57%
67%

80%

Reg.
spill/
fill

!  So perf. portable, but is it fast?

•  On an Nvidia K20, our best 1283 single
precision performance in OpenCL was 1,110
MLUPS

•  In the literature, the fastest quoted results are
~1,000 MLUPS (Januszewski and Kostur's
Sailfish program) and 982 MLUPS (Mawson
and Revell)

•  Our results are a 13% improvement over
Mawson-Revell and a 10% improvement over
Januszewski-Kostur

24

!  Impact of work-group sizes

25

! CloverLeaf: A Lagrangian- Eulerian
hydrodynamics benchmark
•  A collaboration between AWE, Warwick & Bristol
•  CloverLeaf is a bandwidth-limited, structured grid

code and part of Sandia's "Mantevo" benchmarks.
•  Solves the compressible Euler equations, which

describe the conservation of energy, mass and
momentum in a system.

•  These equations are solved on a Cartesian grid in
2D with second-order accuracy, using an explicit
finite-volume method.

•  Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran.

26

! CloverLeaf benchmark parameters

•  Double precision grid of size 1920×3840
•  ∼7.4m grid points, 25 values per grid point
à∼1.5 Gbytes in working dataset

•  The OpenCL and CUDA parallelisations
were performed in an identical manner
•  One work-item/thread for each grid point
•  Identical arrangements for work-group sizes

and layouts
•  E.g. 2D work-groups of (128, 1) for OpenCL

27

!  Results – performance

28

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

8.1X

3.7X

6.1X

1.9X

!  Results – sustained bandwidth

29

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

48%
54%

!  ROTORSIM

•  A production multiblock, compressible
finite-volume CFD code

•  Developed in Bristol by Prof. Chris Allen
•  Upwind, third-order accurate spatial

stencil, with an explicit time integration
scheme for steady flows

•  Implicit dual-time approach for time-
accurate calculations

•  Optimised versions in MPI and OpenCL
30

!  Results – performance

31

5.1X

4.0X

Double precision results

!  Results – sustained bandwidth

32 Double precision results

33

Performance portability isn't what we expect

But why not?

!  Why don't we expect perf. portability?

•  Historical reasons
•  Started with immature drivers
•  Started with immature architectures
•  Started with immature applications

•  But things have changed
•  Drivers now mature / maturing
•  Architectures now mature / maturing
•  Applications now mature / maturing

34

!  Is anyone else achieving
performance portability?
•  Some very interesting data from Karl Rupp's ViennaCL
•  Historical study into performance portability of BLAS

functions (L1 to L3)
•  His results show that performance was much more

"peaky" on older devices and older drivers
•  Much smoother today – and indeed possible to tune

on one device to represent many
•  To appear in "Performance Portability Study of Linear

Algebra Kernels in OpenCL", Karl Rupp et al.,
International Workshop on OpenCL (IWOCL), May
12-13th 2014, Bristol, UK. ACM ICPS, ISBN
978-1-4503-3007-7

35

!  Performance portability techniques

•  Use a platform portable parallel language

•  Aim for 80-90% of optimal

•  Avoid platform-specific optimisations

•  Most optimisations make the code faster
on most platforms

36

!  Other motivations…

37

16 cores of Sandy Bridge at 3.1 GHz

!  Conclusions

•  We have demonstrated that it's possible to
achieve good performance portability for two
classes of application so far:
•  N-body / Monte Carlo codes – BUDE

•  Structured grid codes - lattice Boltzmann,
CloverLeaf and ROTORSIM

•  OpenCL can straightforwardly enable a much
better degree of performance portability than
you might expect

38
Google: HandsOnOpenCL on Github

!  Related Publications
[1] "High Performance in silico Virtual Drug Screening on Many-Core

Processors", S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra,
IJHPCA 2014. DOI: 10.1177/1094342014528252

[2] "On the performance portability of structured grid codes on many-core
computer architectures", S.N. McIntosh-Smith, M. Boulton, D. Curran and
J.R. Price. ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

[3] "Evaluation of a performance portable lattice Boltzmann code using

OpenCL", S.N. McIntosh-Smith and D. Curran. International Workshop on
OpenCL (IWOCL), May 12-13th 2014, Bristol, UK. ACM ICPS, ISBN
978-1-4503-3007-7

[4] "Accelerating hydrocodes with OpenACC, OpenCL and CUDA", Herdman,
J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D.,
Mallinson, A., Jarvis, S. In: High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:. (Nov 2012) 465-471.
DOI: 10.1109/SC.Companion.2012.66

39

!  Backup

40

!   "Isn't OpenCL much harder than CUDA?"

•  Nope
•  Kernels are almost identical
•  Latest OpenCL C++ API does the same

for the host code
•  OpenCL is being very strongly supported

by Intel and AMD (and ARM, IMG, …)
•  Nvidia's OpenCL implementation is

surprisingly good, though they hate to
admit it!

41

! Enqueue a kernel (C++)

CUDA C
dim3
threads_per_block(30,20);

dim3 num_blocks(10,10);

kernel<<<num_blocks,
 threads_per_block>>>(…);

OpenCL C++
const cl::NDRange
 global(300, 200);

const cl::NDRange
 local(30, 20);

kernel(
 EnqueueArgs(global, local),
 …);

!  Allocating and copying memory

CUDA C OpenCL C++

Allocate float* d_x;
cudaMalloc(&d_x,
 sizeof(float)*size);

cl::Buffer
 d_x(begin(h_x), end(h_x), true);

Host to
Device

cudaMemcpy(d_x, h_x,
 sizeof(float)*size,
 cudaMemcpyHostToDevice);

cl::copy(begin(h_x), end(h_x),
 d_x);

Device
to Host

cudaMemcpy(h_x, d_x,
 sizeof(float)*size,
 cudaMemcpyDeviceToHost);

cl::copy(d_x,
 begin(h_x), end(h_x));

