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!  Prior work in Bristol 
Performance portability across many-core 
architectures using OpenCL: 
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! CloverLeaf: PetaàExascale 
hydrodynamics mini-app 

•  Developed in collaboration with AWE in the UK 
•  CloverLeaf is a bandwidth-limited, structured grid 

code and part of Sandia's "Mantevo" benchmarks. 
•  Solves the compressible Euler equations, which  

describe the conservation of energy, mass and 
momentum in a system. 

•  Optimised parallel versions exist in OpenMP, MPI, 
OpenCL, OpenACC, CUDA and Co-Array Fortran. 
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! CloverLeaf sustained bandwidth 
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S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the 
performance portability of structured grid codes on many-core computer 
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 
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! CloverLeaf (Peta)-scaling 
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Cloverleaf reminder

! Hydrodynamics simulation

! 2D (soon to be 3D)

! Explicit solver

! Written in FORTRAN/C/CUDA/OpenCL/etc

! Shown to scale well up to thousands of GPUs (>40 million cores)

Figure : Scaling

Testing how programs would work at exascale

•  Weak scaled across 16,000 GPUs on Oak Ridge's Titan 
•  Represented ~1.9 PetaBytes/s of memory bandwidth 



!  Motivating application - TeaLeaf 

•  Will complement the Mantevo-CloverLeaf 
hydrodynamics mini-app 

•  Heat diffusion simulation 
•  2D (3D coming) 
•  Implicit sparse matrix solver 
•  Written in FORTRAN, C, CUDA/OpenCL, 

OpenMP, MPI etc. 
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!  Fault tolerance – a crucial Exascale issue 
•  Identified as one of the top 10 technical challenges 

facing Exascale computing 
    - Feb 2014 DoE Exascale report 

•  Many different kinds of "fault" can cause errors 
(G. Gibson, Proc. of the DSN2006, June, 2006): 
•  Soft errors (bit flips in memory etc) 
•  Hard errors (component breakage) 
•  Power outages 
•  OS errors 
•  System software errors 
•  Administrator error (human) 
•  User error (human) 
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Research Status Anatomy 
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Jack Dongarra, ISC, Leipzig, June 2014 



!  ABFT: Application Based Fault Tolerance 

•  One of the main new techniques to enable 
FT Exascale applications without always 
resorting to naïve checkpoint/restart 

•  Potentially has great advantage over non-
application based approaches: 
•  Much lower overhead than checkpoint/restart 
•  User knowledge enables wider range of fault 

recovery techniques 
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!  ABFT existing examples 

•  One of the earliest developed by 
K.H. Huang and Jacob Abraham: 
ABFT for Matrix Operations, 
IEEE Trans. Computers, January 1984. 

•  This approach was recently implemented 
by Dongarra and others in dense linear 
algebra libraries (ScaLAPACK etc) 
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!  ABFT dense linear algebra example 
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Algorithm&Based&Fault&Tolerance&

•  Before the factorization starts, a 
checksum is taken and Algorithm Based 
Fault Tolerance (ABFT) is used to carry 
the checksum along with the computation.  
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!  ABFT for sparse matrix computations 

•  Most of the matrix elements are zero 
•  Stored in a compressed format 
•  Which elements are zero may change 

over time 

So we need a different approach for sparse 
matrices… 
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!  Sparse matrix compressed formats 

•  Sparse matrices are typically mostly 0 
•  E.g. in the University of Florida sparse 

matrix collection (~2,600 real, floating 
point examples), the median fill of non-
zeros is just ∼0.24% 

•  Therefore stored in a compressed format, 
such as COOrdinate format (COO) and 
Compressed Sparse Row (CSR) 
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!  COO sparse matrix format 

•  Conceptually think of each sparse matrix element as a 
128-bit structure: 
•  Two 32-bit unsigned coordinates (x,y) 
•  One 64-bit floating point data value 

•  Observation 1: In a COO format sparse matrix, there 
is as much data in the indices as in the floating point 
values 
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x-coord y-coord 64-bit value 

0 31 32 63 64 127 



!  Protecting sparse matrix indices 

•  It turns out almost all sparse matrices 
store their elements in sorted order 

•  Observation 2: We can exploit this 
ordering, along with the sparse matrix 
structure, to define a set of index 
relationships, or criteria, which can then 
be tested as elements are accessed 
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!  Sparse matrix index criteria 1 
For an m x n sparse matrix: 
•  0 < xk ≤ m 
•  0 < yk ≤ n 
 
Does this help us? 
•  Largest matrix in UoFlorida set: ~118M2 

•  Only uses bottom 27 bits of (x,y) 
•  Top 5 bits (at least) must always be 0 (15%) 
•  We have reduced the number of susceptible bits 
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!  Sparse matrix index criteria 2 

Exploit the ordering of sparse matrix 
elements: 
•  xk-1 ≤ xk ≤ xk+1 
•  yk-1 < yk  when  xk-1 = xk 
•  where  1 < k < NNZ 
 
Harder to evaluate how much these help us, 
as the answer depends on the distribution of 
the non-zeros in the matrix 
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!  Distributions of non zeros 

19 

yk-1 yk yk+1 

When non zeros are very spread out, potentially 
many bits of yk could be flipped while still 

satisfying the ordering constraint 

yk-1 yk yk+1 

When non zeros are closer together, there are far 
fewer susceptible bits, i.e. bits of yk that can be flipped 

without the ordering constraint spotting the fault 



!  Non zero distributions 

•  Many real-world sparse matrices contain a 
lot of "clumping" of the non-zeros 
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!  Statistical analysis of the UoFlorida 
sparse matrix collection 

•  Analysed ~2,600 matrices in collection 

•  The scheme looks promising, protecting 
many elements completely, and most bits 
in most sparse matrices 
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!  Results from "nasasrb"  
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Nearly 70% of all indices fully protected 

All indices have at least 17 
of their 32 bits protected 
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!  Results from "circuit5M"  
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About 45% of all indices fully protected 

All indices have at least 9 
of their 32 bits protected 



!  Exploiting index constraints 

•  Most constraints can be implemented with 
very simple integer operations 
•  Arithmetic, bit shifts, comparisons 

•  These can be implemented in just a few 
instructions on most modern computer 
architectures 

•  Sparse matrix element accesses tend to 
cause cache misses 
•  Opportunity to perform constraint checks in 

parallel with long latency DRAM accesses 
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!  Going beyond index constraint checking 

Advantages of proposed approach: 
•  Fast to test, enables some correction 
•  Software implementation 
•  Catches majority of errors in many cases 

Disadvantages: 
•  Doesn't catch all bit flip errors 
•  Only protects the indices, not the data 
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!  Software ECC protection of sparse matrix 
elements 
•  Remember that most sparse matrices only 

use 27 bits of their 32-bit indices 
•  And most only use 24 bits 

•  Observation 3: This leave 10-16 bits that 
could be "repurposed" for a software ECC 
scheme 

•  A software ECC scheme could save 
considerable energy, performance and 
memory (all in region of 10-20%) 
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!  COO sparse matrix format 

•  Using 8 bits of the 128-bit compound element would 
allow a full single error correct, double error detect 
(SECDED) scheme in software 

•  Use e.g. 4 unused bits from the top of each index 
•  Limits their size to "just" 0..227 (0..134M) 

•  Can be used in conjunction with the index constraint 
checking approach for even greater protection 

27 

x-coord y-coord 64-bit value 

0 31 32 63 64 127 



!  Future work 

•  Have a stand-alone implementation which 
looks promising 

•  Overheads look low 
•  Want to implement this in a real library like 

PETSc 
•  Then want to test at scale in the presence of 

injected faults to measure real impact on 
performance 

•  Might be interesting to look at deliberately 
structuring the matrix to aid its resilience 
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!  Conclusions 

•  Fault tolerance / resilience is set to 
become a first-order concern for 
Exascale 

•  Application-based fault tolerance (ABFT) 
is one of the most promising techniques to 
address this issue 

•  ABFT can be applied at the library-level 
to help protect large-scale sparse matrix 
operations 
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