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Prior work in Bristol

Performance portability across many-core
architectures using OpenCL.:
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CloverLeaf: Peta—=> Exascale
hydrodynamics mini-app

Sandia r\%
@ National W E
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* Developed in collaboration with AWE in the UK

* CloverLeaf is a bandwidth-limited, structured grid
code and part of Sandia's "Mantevo" benchmarks.

» Solves the compressible Euler equations, which
describe the conservation of energy, mass and
momentum in a system.

* Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran.
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« CloverLeaf sustained bandwidth
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CloverLeaf (Peta)-scaling

Weak scaling performance of 960x960 instance of Cloverleaf CUDA on Titan
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« Weak scaled across 16,000 GPUs on Oak Ridge's Titan

* Represented ~1.9 PetaBytes/s of memory bandwidth
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Motivating application - Tealeaf

* Will complement the Mantevo-CloverLeaf
hydrodynamics mini-app

» Heat diffusion simulation
» 2D (3D coming)
* Implicit sparse matrix solver

* Written in FORTRAN, C, CUDA/OpenCL,
OpenMP, MPI etc.
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Fault tolerance — a crucial Exascale issue

* |dentified as one of the top 10 technical challenges

facing Exascale computing
- Feb 2014 DoE Exascale report

- Many different kinds of "fault" can cause errors
(G. Gibson, Proc. of the DSN2006, June, 2000):

« Soft errors (bit flips in memory etc)
« Hard errors (component breakage)
* Power outages
* OS errors
« System software errors
* Administrator error (human)

User error (human)
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“~ Research Status Anatomy

Checkpointing Diskless Algorithm Based
& Restart (C/R) Checkpointing Fault Tolerance
(ABFT)
S —
Large Overhead Small
S ——
Application Specificity
Small Large

Jack Dongarra, ISC, Leipzig, June 2014
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ABF T: Application Based Fault Tolerance

* One of the main new techniques to enable
FT Exascale applications without always
resorting to naive checkpoint/restart

* Potentially has great advantage over non-
application based approaches:

* Much lower overhead than checkpoint/restart

» User knowledge enables wider range of fault
recovery techniques
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ABF T existing examples

* One of the earliest developed by
K.H. Huang and Jacob Abraham:
ABFT for Matrix Operations,
IEEE Trans. Computers, January 1984.

» This approach was recently implemented
by Dongarra and others in dense linear
algebra libraries (ScaLAPACK etc)
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ABF T dense linear algebra example

« Before the factorization starts, a
checksum is taken and Algorithm Based
Fault Tolerance (ABFT) is used to carry
the checksum along with the computation.
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Jack Dongarra, ISC, Leipzig, June 2014
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ABFT for sparse matrix computations

 Most of the matrix elements are zero
» Stored in a compressed format

* Which elements are zero may change
over time

So we need a different approach for sparse
matrices...
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Sparse matrix compressed formats

* Sparse matrices are typically mostly O

* E.g. in the University of Florida sparse
matrix collection (~2,600 real, floating
point examples), the median fill of non-
zeros is just ~0.24%

* Therefore stored in a compressed format,
such as COOrdinate format (COO) and
Compressed Sparse Row (CSR)

i
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COO sparse matrix format

x-coord y-coord 64-bit value

0 31 32 63 64 127

» Conceptually think of each sparse matrix element as a
128-bit structure:
« Two 32-bit unsigned coordinates (x,y)
* One 64-bit floating point data value

* Observation 1: /In a COO format sparse matrix, there
IS as much data in the indices as in the floating point
values
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Protecting sparse matrix indices

* It turns out almost all sparse matrices
store their elements in sorted order

* Observation 2: We can exploit this
ordering, along with the sparse matrix
structure, to define a set of index
relationships, or criteria, which can then
be tested as elements are accessed
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Sparse matrix index criteria 1

For an m x n sparse matrix:
c 0<x,=m
* O0<yc=n

Does this help us?

 Largest matrix in UoFlorida set: ~118M?

* Only uses bottom 27 bits of (x,y)

* Top 5 bits (at least) must always be 0 (15%)

* We have reduced the number of susceptible bits

Vé University of
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Sparse matrix index criteria 2

Exploit the ordering of sparse matrix
elements:

Xy S X, S Xp\s
* Vi1 <Y When x,_; =X,
- where 1 <k <NNZ

Harder to evaluate how much these help us,
as the answer depends on the distribution of
the non-zeros in the matrix
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Distributions of non zeros

Vi) | s |y | e | Y/ 4

When non zeros are very spread out, potentially
many bits of y, could be flipped while still
satisfying the ordering constraint

Ye-1 | < | Yk || Yi+1

When non zeros are closer together, there are far
fewer susceptible bits, i.e. bits of y, that can be flipped
without the ordering constraint spotting the fault
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Non zero distributions

* Many real-world sparse matrices contain a
lot of "clumping” of the non-zeros

"nasasrb" "circuitboM"
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Statistical analysis of the UoFlorida
sparse matrix collection

* Analysed ~2,600 matrices in collection

* The scheme looks promising, protecting
many elements completely, and most bits
INn most sparse matrices
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Results from "nasasrb”

The number of protected bits as a proportion of all row index elements
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Results from "circuitbM"

The number of protected bits as a proportion of alLfow index elements
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Exploiting index constraints

* Most constraints can be implemented with
very simple integer operations

* Arithmetic, bit shifts, comparisons
* These can be implemented in just a few

Instructions on most modern computer
architectures

» Sparse matrix element accesses tend to
cause cache misses

* Opportunity to perform constraint checks in
parallel with long latency DRAM accesses
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Going beyond index constraint checking

Advantages of proposed approach:

* Fast to test, enables some correction

» Software implementation

» Catches majority of errors in many cases

Disadvantages:
* Doesn't catch all bit flip errors
* Only protects the indices, not the data

Elic University of
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Software ECC protection of sparse matrix
elements

- Remember that most sparse matrices only
use 27 bits of their 32-bit indices

* And most only use 24 bits

 Observation 3: This leave 10-16 bits that
could be "repurposed” for a software ECC
scheme

» A software ECC scheme could save
considerable energy, performance and
memory (all in region of 10-20%)
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COO sparse matrix format

X-coord y-coord 64-bit value

0 31 32 63 64 127
« Using 8 bits of the 128-bit compound element would

allow a full single error correct, double error detect
(SECDED) scheme in software

« Use e.g. 4 unused bits from the top of each index
* Limits their size to "just" 0..227 (0..134M)

« Can be used in conjunction with the index constraint
checking approach for even greater protection

Vé University of
BRISTOL MONT-BLANC

27



Future work

« Have a stand-alone implementation which
looks promising

 QOverheads look low

* Want to implement this in a real library like
PETSc

* Then want to test at scale in the presence of
injected faults to measure real impact on
performance

* Might be interesting to look at deliberately
structuring the matrix to aid its resilience
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Conclusions

 Fault tolerance / resilience is set to
become a first-order concern for
Exascale

* Application-based fault tolerance (ABFT)
IS one of the most promising techniques to
address this issue

 ABFT can be applied at the library-level
to help protect large-scale sparse matrix
operations
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