
Fault Tolerance
Techniques for
Sparse Matrix
Methods

Simon McIntosh-Smith
Rob Hunt

1 Twitter: @simonmcs

An Intel Parallel
Computing Center

!  Acknowledgements

•  Funded by FP7 Exascale project:
Mont Blanc 2

•  Also supported by the Numerical
Algorithms Group (NAG) and EPSRC

•  My PhD student, Rob Hunt, did all the
hard work

2

!  Prior work in Bristol
Performance portability across many-core
architectures using OpenCL:

3
"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014
DOI: 10.1177/1094342014528252

! CloverLeaf: PetaàExascale
hydrodynamics mini-app

•  Developed in collaboration with AWE in the UK
•  CloverLeaf is a bandwidth-limited, structured grid

code and part of Sandia's "Mantevo" benchmarks.
•  Solves the compressible Euler equations, which

describe the conservation of energy, mass and
momentum in a system.

•  Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran.

4

! CloverLeaf sustained bandwidth

5

S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
performance portability of structured grid codes on many-core computer
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

54%

! CloverLeaf (Peta)-scaling

6

Cloverleaf reminder

! Hydrodynamics simulation

! 2D (soon to be 3D)

! Explicit solver

! Written in FORTRAN/C/CUDA/OpenCL/etc

! Shown to scale well up to thousands of GPUs (>40 million cores)

Figure : Scaling

Testing how programs would work at exascale

•  Weak scaled across 16,000 GPUs on Oak Ridge's Titan
•  Represented ~1.9 PetaBytes/s of memory bandwidth

!  Motivating application - TeaLeaf

•  Will complement the Mantevo-CloverLeaf
hydrodynamics mini-app

•  Heat diffusion simulation
•  2D (3D coming)
•  Implicit sparse matrix solver
•  Written in FORTRAN, C, CUDA/OpenCL,

OpenMP, MPI etc.

7

!  Fault tolerance – a crucial Exascale issue
•  Identified as one of the top 10 technical challenges

facing Exascale computing
 - Feb 2014 DoE Exascale report

•  Many different kinds of "fault" can cause errors
(G. Gibson, Proc. of the DSN2006, June, 2006):
•  Soft errors (bit flips in memory etc)
•  Hard errors (component breakage)
•  Power outages
•  OS errors
•  System software errors
•  Administrator error (human)
•  User error (human)

8

9

Research Status Anatomy

7

Checkpointing!
& Restart (C/R)!

Diskless !
Checkpointing !

Algorithm Based!
Fault Tolerance!

(ABFT)!

Overhead!
Small!Large!

Large!
Application Specificity!

Small!

Jack Dongarra, ISC, Leipzig, June 2014

!  ABFT: Application Based Fault Tolerance

•  One of the main new techniques to enable
FT Exascale applications without always
resorting to naïve checkpoint/restart

•  Potentially has great advantage over non-
application based approaches:
•  Much lower overhead than checkpoint/restart
•  User knowledge enables wider range of fault

recovery techniques

10

!  ABFT existing examples

•  One of the earliest developed by
K.H. Huang and Jacob Abraham:
ABFT for Matrix Operations,
IEEE Trans. Computers, January 1984.

•  This approach was recently implemented
by Dongarra and others in dense linear
algebra libraries (ScaLAPACK etc)

11

!  ABFT dense linear algebra example

12

Algorithm&Based&Fault&Tolerance&

•  Before the factorization starts, a
checksum is taken and Algorithm Based
Fault Tolerance (ABFT) is used to carry
the checksum along with the computation.

����/3&��6)&.�! �*2����'"$3/1*9"3*/.��!�*2�./3�,/6&1�31*".(4,"1��

Algorithm&Based&Fault&Tolerance&

•  Before the factorization starts, a
checksum is taken and Algorithm Based
Fault Tolerance (ABFT) is used to carry
the checksum along with the computation.

����/3&��6)&.�! �*2����'"$3/1*9"3*/.��!�*2�./3�,/6&1�31*".(4,"1��
Jack Dongarra, ISC, Leipzig, June 2014

!  ABFT for sparse matrix computations

•  Most of the matrix elements are zero
•  Stored in a compressed format
•  Which elements are zero may change

over time

So we need a different approach for sparse
matrices…

13

!  Sparse matrix compressed formats

•  Sparse matrices are typically mostly 0
•  E.g. in the University of Florida sparse

matrix collection (~2,600 real, floating
point examples), the median fill of non-
zeros is just ∼0.24%

•  Therefore stored in a compressed format,
such as COOrdinate format (COO) and
Compressed Sparse Row (CSR)

14

!  COO sparse matrix format

•  Conceptually think of each sparse matrix element as a
128-bit structure:
•  Two 32-bit unsigned coordinates (x,y)
•  One 64-bit floating point data value

•  Observation 1: In a COO format sparse matrix, there
is as much data in the indices as in the floating point
values

15

x-coord y-coord 64-bit value

0 31 32 63 64 127

!  Protecting sparse matrix indices

•  It turns out almost all sparse matrices
store their elements in sorted order

•  Observation 2: We can exploit this
ordering, along with the sparse matrix
structure, to define a set of index
relationships, or criteria, which can then
be tested as elements are accessed

16

!  Sparse matrix index criteria 1
For an m x n sparse matrix:
•  0 < xk ≤ m
•  0 < yk ≤ n

Does this help us?
•  Largest matrix in UoFlorida set: ~118M2

•  Only uses bottom 27 bits of (x,y)
•  Top 5 bits (at least) must always be 0 (15%)
•  We have reduced the number of susceptible bits

17

!  Sparse matrix index criteria 2

Exploit the ordering of sparse matrix
elements:
•  xk-1 ≤ xk ≤ xk+1
•  yk-1 < yk when xk-1 = xk
•  where 1 < k < NNZ

Harder to evaluate how much these help us,
as the answer depends on the distribution of
the non-zeros in the matrix

18

!  Distributions of non zeros

19

yk-1 yk yk+1

When non zeros are very spread out, potentially
many bits of yk could be flipped while still

satisfying the ordering constraint

yk-1 yk yk+1

When non zeros are closer together, there are far
fewer susceptible bits, i.e. bits of yk that can be flipped

without the ordering constraint spotting the fault

!  Non zero distributions

•  Many real-world sparse matrices contain a
lot of "clumping" of the non-zeros

20

"nasasrb" "circuit5M"

!  Statistical analysis of the UoFlorida
sparse matrix collection

•  Analysed ~2,600 matrices in collection

•  The scheme looks promising, protecting
many elements completely, and most bits
in most sparse matrices

21

 0

 20

 40

 60

 80

 100

2468101214161820222426283032

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts
 (%

)

Number of protected bits

The number of protected bits as a proportion of all row index elements

!  Results from "nasasrb"

22

Nearly 70% of all indices fully protected

All indices have at least 17
of their 32 bits protected

 0

 20

 40

 60

 80

 100

2468101214161820222426283032

Pe
rc

en
ta

ge
 o

f e
le

m
en

ts
 (%

)

Number of protected bits

The number of protected bits as a proportion of all row index elements

!  Results from "circuit5M"

23

About 45% of all indices fully protected

All indices have at least 9
of their 32 bits protected

!  Exploiting index constraints

•  Most constraints can be implemented with
very simple integer operations
•  Arithmetic, bit shifts, comparisons

•  These can be implemented in just a few
instructions on most modern computer
architectures

•  Sparse matrix element accesses tend to
cause cache misses
•  Opportunity to perform constraint checks in

parallel with long latency DRAM accesses

24

!  Going beyond index constraint checking

Advantages of proposed approach:
•  Fast to test, enables some correction
•  Software implementation
•  Catches majority of errors in many cases

Disadvantages:
•  Doesn't catch all bit flip errors
•  Only protects the indices, not the data

25

!  Software ECC protection of sparse matrix
elements
•  Remember that most sparse matrices only

use 27 bits of their 32-bit indices
•  And most only use 24 bits

•  Observation 3: This leave 10-16 bits that
could be "repurposed" for a software ECC
scheme

•  A software ECC scheme could save
considerable energy, performance and
memory (all in region of 10-20%)

26

!  COO sparse matrix format

•  Using 8 bits of the 128-bit compound element would
allow a full single error correct, double error detect
(SECDED) scheme in software

•  Use e.g. 4 unused bits from the top of each index
•  Limits their size to "just" 0..227 (0..134M)

•  Can be used in conjunction with the index constraint
checking approach for even greater protection

27

x-coord y-coord 64-bit value

0 31 32 63 64 127

!  Future work

•  Have a stand-alone implementation which
looks promising

•  Overheads look low
•  Want to implement this in a real library like

PETSc
•  Then want to test at scale in the presence of

injected faults to measure real impact on
performance

•  Might be interesting to look at deliberately
structuring the matrix to aid its resilience

28

!  Conclusions

•  Fault tolerance / resilience is set to
become a first-order concern for
Exascale

•  Application-based fault tolerance (ABFT)
is one of the most promising techniques to
address this issue

•  ABFT can be applied at the library-level
to help protect large-scale sparse matrix
operations

29

!  Related Publications
[1] "Fault Tolerance Techniques for Sparse Matrix Methods",

R. Hunt and S. McIntosh-Smith, in preparation.

[2] "High Performance in silico Virtual Drug Screening on Many-Core
Processors", S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra,
IJHPCA 2014. DOI: 10.1177/1094342014528252

[3] "On the performance portability of structured grid codes on many-core
computer architectures", S.N. McIntosh-Smith, M. Boulton, D. Curran and
J.R. Price. ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

[4] "Accelerating hydrocodes with OpenACC, OpenCL and CUDA", Herdman,
J., Gaudin, W., McIntosh-Smith, S., Boulton, M., Beckingsale, D., Mallinson,
A., Jarvis, S. In: High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:. (Nov 2012) 465-471. DOI: 10.1109/
SC.Companion.2012.66

30

!  BACKUP

31

