Fault Tolerance
Techniques for
Sparse Matrix
Methods

Simon Mclntosh-Smith
Rob Hunt

«”) An Intel Parallel
'ntel Computing Center

% University of
BII{IST%L MONT-BLANC rwitter: @simonmes

Acknowledgements

* Funded by FP7 Exascale project:

Mont Blanc 2

* Also supported by the Numerical
Algorithms Group (NAG) and EPSRC

* My PhD student, Rob |
hard work

unt, did all the

University of
BRISTOL MONT-BLANC

Prior work in Bristol

Performance portability across many-core
architectures using OpenCL.:

50
46% %
44%
N 42% 42% > 45% m
6 40% 9.
)
a
30%
2.50
25
§ 2.13
1.92
O 20
-
= is 1.43 1.60
- b
e
= 1.0 -
© 0.68
':;; 0.35
= 0.5 - e
(7]
0.0 n T T T T T
NVIDIAGTX NVIDIAGTX NVIDIATesla AMD Radeon AMD Radeon AMD FirePro Intel Xeon Phi Intel
680 780 Ti K20c HD7970 R9 290X $10000 SE10P E5-2687W (x2)

wé University of "High Performarpe in SI'/I:CO Virtual Drug Screening on Many-Core Processors",
@,«; BRISTOL S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IIHPCA 2014
< DOI: 10.1177/1094342014528252

CloverLeaf: Peta—=> Exascale
hydrodynamics mini-app

Sandia r\%
@ National W E
Laboratories %

* Developed in collaboration with AWE in the UK

* CloverLeaf is a bandwidth-limited, structured grid
code and part of Sandia's "Mantevo" benchmarks.

» Solves the compressible Euler equations, which
describe the conservation of energy, mass and
momentum in a system.

* Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran.

Vé University of
BRISTOL MONT-BLANC

« CloverLeaf sustained bandwidth

0,
65% 65% 65% 80%

58% 60%
II zb/lllllllllllllll 54/0 R 60%
38% 40%
[0)
25% 40%
16% 20%
0.8 - ” 0%

W Pperf. / Peak TFLOPS M Fraction of peak memory bandW|dth

0.6

0.2 I

0.0 «- - . . . = BN |
A

G\‘ Q‘°

|

l

d
@"\9,\%°+(‘”\°’\,(9q9’\9<\’»‘"
0 4
w\\é& < \@QQQQ QQQQ € & &
O
> o 1@

% S.N. MclIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the
, UIllVCl'Slt of performance portability of structured grid codes on many-core computer

BRISTOL architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

CloverLeaf (Peta)-scaling

Weak scaling performance of 960x960 instance of Cloverleaf CUDA on Titan

16384 I A U AU L A -
g19oL| — Actualspeedup| . . o0 =" B
~ 4096/| — Idealspeedup [= .
© 2048 — T - T T oo b e e e + -
DO1024F e
© 512F - ot e e e e T -
T 256+ — - — - - - I Lo 1 [NI
S o128F - T
E B -4 - — ek~ P et ——m——t ———d——— b~ — A4 = — — = — — + — -
g 32 e
8 16F e T T
wn s] R el il g i B T ST P e B e] e NI
1 1 e A

\
2'*#*** ****************************** T =

1]

I
256 512

1024 2048 4096 8192 16384

« Weak scaled across 16,000 GPUs on Oak Ridge's Titan

* Represented ~1.9 PetaBytes/s of memory bandwidth

MONT-BLANC

Elic University of
BRISTOL

Motivating application - Tealeaf

* Will complement the Mantevo-CloverLeaf
hydrodynamics mini-app

» Heat diffusion simulation
» 2D (3D coming)
* Implicit sparse matrix solver

* Written in FORTRAN, C, CUDA/OpenCL,
OpenMP, MPI etc.

University of
BRISTOL MONT-BLANC

Fault tolerance — a crucial Exascale issue

* |dentified as one of the top 10 technical challenges

facing Exascale computing
- Feb 2014 DoE Exascale report

- Many different kinds of "fault" can cause errors
(G. Gibson, Proc. of the DSN2006, June, 2000):

« Soft errors (bit flips in memory etc)
« Hard errors (component breakage)
* Power outages
* OS errors
« System software errors
* Administrator error (human)

User error (human)

Vé University of
BRISTOL MONT-BLANC :

{\)
“~ Research Status Anatomy

Checkpointing Diskless Algorithm Based
& Restart (C/R) Checkpointing Fault Tolerance
(ABFT)
S —
Large Overhead Small
S ——
Application Specificity
Small Large

Jack Dongarra, ISC, Leipzig, June 2014

% University of
BRISTOL MONT-BLANC

ABF T: Application Based Fault Tolerance

* One of the main new techniques to enable
FT Exascale applications without always
resorting to naive checkpoint/restart

* Potentially has great advantage over non-
application based approaches:

* Much lower overhead than checkpoint/restart

» User knowledge enables wider range of fault
recovery techniques

University of
BRISTOL MONT-BLANC 10

i

ABF T existing examples

* One of the earliest developed by
K.H. Huang and Jacob Abraham:
ABFT for Matrix Operations,
IEEE Trans. Computers, January 1984.

» This approach was recently implemented
by Dongarra and others in dense linear
algebra libraries (ScaLAPACK etc)

i

University of
BRISTOL MONT-BLANC

11

ABF T dense linear algebra example

« Before the factorization starts, a
checksum is taken and Algorithm Based
Fault Tolerance (ABFT) is used to carry
the checksum along with the computation.

Z

cv
Uxe UXw

Jack Dongarra, ISC, Leipzig, June 2014

University of
BRISTOL MONT-BLANC

ABFT for sparse matrix computations

 Most of the matrix elements are zero
» Stored in a compressed format

* Which elements are zero may change
over time

So we need a different approach for sparse
matrices...

University of
BRISTOL MONT-BLANC 13

Sparse matrix compressed formats

* Sparse matrices are typically mostly O

* E.g. in the University of Florida sparse
matrix collection (~2,600 real, floating
point examples), the median fill of non-
zeros is just ~0.24%

* Therefore stored in a compressed format,
such as COOrdinate format (COO) and
Compressed Sparse Row (CSR)

i

University of
BRISTOL MONT-BLANC

COO sparse matrix format

x-coord y-coord 64-bit value

0 31 32 63 64 127

» Conceptually think of each sparse matrix element as a
128-bit structure:
« Two 32-bit unsigned coordinates (x,y)
* One 64-bit floating point data value

* Observation 1: /In a COO format sparse matrix, there
IS as much data in the indices as in the floating point
values

Vé University of
BRISTOL MONT-BLANC 15

Protecting sparse matrix indices

* It turns out almost all sparse matrices
store their elements in sorted order

* Observation 2: We can exploit this
ordering, along with the sparse matrix
structure, to define a set of index
relationships, or criteria, which can then
be tested as elements are accessed

University of
BRISTOL MONT-BLANC

Sparse matrix index criteria 1

For an m x n sparse matrix:
c 0<x,=m
* O0<yc=n

Does this help us?

 Largest matrix in UoFlorida set: ~118M?

* Only uses bottom 27 bits of (x,y)

* Top 5 bits (at least) must always be 0 (15%)

* We have reduced the number of susceptible bits

Vé University of
BRISTOL MONT-BLANC 17

Sparse matrix index criteria 2

Exploit the ordering of sparse matrix
elements:

Xy S X, S Xp\s
* Vi1 <Y When x,_; =X,
- where 1 <k <NNZ

Harder to evaluate how much these help us,
as the answer depends on the distribution of
the non-zeros in the matrix

Elic University of

BRISTOL MONT-BLANC 18

Distributions of non zeros

Vi) | s |y | e | Y/ 4

When non zeros are very spread out, potentially
many bits of y, could be flipped while still
satisfying the ordering constraint

Ye-1 | < | Yk || Yi+1

When non zeros are closer together, there are far
fewer susceptible bits, i.e. bits of y, that can be flipped
without the ordering constraint spotting the fault

Vé University of
BRISTOL MONT-BLANC

19

Non zero distributions

* Many real-world sparse matrices contain a
lot of "clumping” of the non-zeros

"nasasrb" "circuitboM"

University of
BRISTOL MONT-BLANC

Statistical analysis of the UoFlorida
sparse matrix collection

* Analysed ~2,600 matrices in collection

* The scheme looks promising, protecting
many elements completely, and most bits
INn most sparse matrices

University of
BRISTOL MONT-BLANC 21

Results from "nasasrb”

The number of protected bits as a proportion of all row index elements

100 -
S
E 80
3 ‘V
S 6 All indices have at least 17
© of their 32 bits protected
o 40
(@)
S
3
O 208 Nearly 70% of all indices fully protected
al

03230282624222018161412108 6 4 2

Number of protected bits

Vé University of
BRISTOL MONT-BLANC 22

Results from "circuitbM"

The number of protected bits as a proportion of alLfow index elements

100 ()

All indices have at least 9
of their 32 bits protected

About 45% of all indices fully protected
0

32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Number of protected bits

Vé University of
BRISTOL MONT-BLANC

80

20

Percentage of elements (%)

Exploiting index constraints

* Most constraints can be implemented with
very simple integer operations

* Arithmetic, bit shifts, comparisons
* These can be implemented in just a few

Instructions on most modern computer
architectures

» Sparse matrix element accesses tend to
cause cache misses

* Opportunity to perform constraint checks in
parallel with long latency DRAM accesses

University of
BRISTOL MONT-BLANC

i

Going beyond index constraint checking

Advantages of proposed approach:

* Fast to test, enables some correction

» Software implementation

» Catches majority of errors in many cases

Disadvantages:
* Doesn't catch all bit flip errors
* Only protects the indices, not the data

Elic University of

BRISTOL MONT-BLANC 25

Software ECC protection of sparse matrix
elements

- Remember that most sparse matrices only
use 27 bits of their 32-bit indices

* And most only use 24 bits

 Observation 3: This leave 10-16 bits that
could be "repurposed” for a software ECC
scheme

» A software ECC scheme could save
considerable energy, performance and
memory (all in region of 10-20%)

University of
BRISTOL MONT-BLANC 26

COO sparse matrix format

X-coord y-coord 64-bit value

0 31 32 63 64 127
« Using 8 bits of the 128-bit compound element would

allow a full single error correct, double error detect
(SECDED) scheme in software

« Use e.g. 4 unused bits from the top of each index
* Limits their size to "just" 0..227 (0..134M)

« Can be used in conjunction with the index constraint
checking approach for even greater protection

Vé University of
BRISTOL MONT-BLANC

27

Future work

« Have a stand-alone implementation which
looks promising

 QOverheads look low

* Want to implement this in a real library like
PETSc

* Then want to test at scale in the presence of
injected faults to measure real impact on
performance

* Might be interesting to look at deliberately
structuring the matrix to aid its resilience

University of
BRISTOL MONT-BLANC 28

Conclusions

 Fault tolerance / resilience is set to
become a first-order concern for
Exascale

* Application-based fault tolerance (ABFT)
IS one of the most promising techniques to
address this issue

 ABFT can be applied at the library-level
to help protect large-scale sparse matrix
operations

Vé University of
BRISTOL MONT-BLANC

Related Publications

[1] "Fault Tolerance Techniques for Sparse Matrix Methods",
R. Hunt and S. MclIntosh-Smith, in preparation.

[2] "High Performance in silico Virtual Drug Screening on Many-Core
Processors”, S. Mclntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra,
IJHPCA 2014. DOI: 10.1177/1094342014528252

[3] "On the performance portability of structured grid codes on many-core
computer architectures"”, S.N. McIntosh-Smith, M. Boulton, D. Curran and

J.R. Price. ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

[4] "Accelerating hydrocodes with OpenACC, OpenCL and CUDA", Herdman,
J., Gaudin, W., MciIntosh-Smith, S., Boulton, M., Beckingsale, D., Mallinson,
A., Jarvis, S. In: High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:. (Nov 2012) 465-471. DOI: 10.1109/
SC.Companion.2012.66

Vé University of
BRISTOL MONT-BLANC 30

i

BACKUP

Vé
RISTOL

MONT-BLANC

