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BEYOND THE NODE

= So far have focused on heterogeneity within a node
= Many systems constructed from multiple nodes
= Easy for node types to diverge:

— Different technologies become available over time

— A mix of different nodes may be best to accommodate different applications igh Ferformance

- Heterogeneous
- E.g. te-intensive vs. Data-intensi ’
g. Compute-intensive vs. Data-intensive ~ Computing

= Even homogeneous hardware may behave heterogeneously

— OS jitter, data-dependent application behavior, multi-user systems, ...

= Thus heterogeneity extends right across a multi-node system

WWILEY

= See “High-performance heterogeneous computing” by A. Lastovetsky and J. Dongarra, 20009.
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MPI OVERVIEW

= The Message Passing Interface (MPI) has become the most widely used standard for distributed
memory programming in HPC
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MPI OVERVIEW

Available for C and Fortran

Library of functions & pre-processor Macros

Standards
— MPI 1.0, June 1994 (now at MPI 1.3) Message-Passing Interface
— MPI 2.0 (now at MPI1 2.2, Sep 2009)

— MPICH (MVAPICH for Infiniband networks) Willam Gropp__
— OpenMPI s =

— Proprietary tuned... (Cray, SGI, Microsoft, ...)
Designed to be portable (although with the usual performance caveats)

Used on most (all?) Top500 supercomputers for multi-node applications
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MPI EXAMPLE: HELLO, WORLD

#include "mpi.h"
int main(int argc, char* argv[])

{

MPI_Init( &argc, &argv );
MPI Initialized(&flag);
if ( flag != TRUE ) {

MPI_Abort (MPI_COMM WORLD,EXIT FAILURE);
}
MPI_Get_processor_name(hostname, &strlen);
MPI_Comm_size( MPI_COMM WORLD, &size );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
printf("Hello, world; from host %s: process %d of %d\n", \

hostname, rank, size);

MPI Finalize();
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COMPILING AND RUNNING MPI

Makefile:
hello world c: hello_world.c

mpiéc —o_s@ SA
~———

mpi_submit:
#PBS -1 nodes=1:ppn=4,walltime=00:05:00

#! Create a machine file for MPI
cat $ > machine.file.$

= wC $PBS_NODEFILE | awk '{ print $1 }'°

# 1 the parallel MPI executable (nodes*ppn)
mpirun)-np $ \

-machinefile machine.file.$ \
s s
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MPI COMMUNICATORS

The process mpirun waits until all instances of MPTI_Init () have acquired knowledge of the cohort

MPI_COMM WORLD

Ranks: 0 (master), 1, 2, 3,..
The queuing system decides how to distribute over nodes (servers)

The kernel decides how to distribute over multi-core processors
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MPI IS PRIMARILY POINT TO POINT

i\send recv

&> - & Communicator, e.qg.
MPI_COMM_WORLD

message

Common pattern for MPI functions:

— MPI_<function>(message, count, datatype, .., comm, flag)
E.g.:

— MPI Recv(message, BUFSIZE, MPI CHAR, source, tag, MPI COMM WORLD, &status);
Supports both synchronous and asynchronous communication, buffered and unbuffered

Later versions support one-sided communications

However does support collective operations (broadcast, scatter, gather, reductions) )
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MPI IS LOW LEVEL

Lets the programmer do anything they want
Doesn’t necessarily encourage good programming style
Message passing programs are, in general, hard to design, optimise and debug

— Challenges with deadlock, race conditions, et al.

Design patterns can help (e.g. Mattson et al)

Higher-level parallel programming models may use MPI underneath for optimised message passing

Often used for homogeneous parallel structures (2D/3D grids etc), but can also be used to support
heterogeneous computation, e.g. task farms with dynamic load balancing

— MPI 2 added support for dynamic task creation
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PGAS LANGUAGES OVERVIEW:
UPC, CAF, CHAPEL, X10
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PARTITIONED GLOBAL ADDRESS SPACE (PGAS) LANGUAGES

Provide shared memory-style higher-level programming on top of distributed memory computers

Several examples:
— Unified Parallel C
— Co-Array Fortran
— Titanium
- X-10
— Chapel

AMD
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UNIFIED PARALLEL C (UPC) INTRODUCTION

Extension of C/C++
First released 1999, one of the more widely used PGAS languages

— UPC supportin GCC 4.5.1.2 (Oct 2010)

— Berkeley UPC compiler 2.12 released Nov 2010
Supported by Berkeley, George Washington University, Michigan Tech University
Supported by vendors including Cray, IBM
User can express data locality via “shared” and “private” address space qualifiers
Fixed number of threads spawned across the system (no spawning)
Lightweight coordination between threads (user responsibility)

operator for parallelism

Provides a hybrid, user-controlled consistency model for the interaction of memory accesses in shared
memory space. Each memory reference in the program may be annotated to be either “strict” or “relaxed”.
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UPC EXAMPLE — MATRIX MULTIPLY

#include<upc.h>
#include<upc_ strict.h>

shared [N*P /THREADS] int a[N][P] , c[N][M];
shared int b[P][M] ;

void main(void) {
int i,3,1;

upc_forall (i=0; i<N; i++; &a[i][0])
// &a[i][0] specifies that this iteration will be executed by the thread
// that has affinity to element a[i][0]
for (Jj=0; j<M; j++) {
c[i][J] = O;
for(1=0; 1< P; 1++) c[1i]1[J] *+=al[il[l1*b[l]1[]1;
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CO-ARRAY FORTRAN

An SPMD extension to Fortran 95
Defined in 1998
Adds a simple, explicit notation for data decomposition, similar to that used in message-passing models
May be implemented on both shared- and distributed memory machines
The ISO Fortran Committee include coarrays in Fortran the 2008 standard
Adds two concepts to Fortran 95:
— Data distribution
— Work distribution
Used in some important codes
— E.g. the UK Met Office’s Unified Model
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CO-ARRAY FORTRAN PROGRAMMING MODEL

Single-Program-Multiple-Data (SPMD)

Fixed number of processes/threads/images
— Explicit data decomposition
— All data is local
— All computation is local
— One-sided communication through co-dimensions

Explicit synchronization

See “An Introduction to Co-Array Fortran” by Robert W. Numrich
— http://lwww2.hpcl.gwu.edu/pgas09/tutorials/caf _tut.pdf
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CO-ARRAY FORTRAN WORK DISTRIBUTION

A single Co-Array Fortran program is replicated a fixed number of times
Each replication, called an “image”, has its own set of data objects
Each image executes asynchronously

The execution path may differ from image to image

The programmer determines the actual control flow path for the image with the help of a unique image
index, using normal Fortran control constructs, and by explicit synchronizations

For code between synchronizations, the compiler is free to use all its normal optimisation techniques, as if
only one image were present
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CO-ARRAY FORTRAN DATA DISTRIBUTION

One new entity, the co-array, is added to the language:

REAL, DIMENSION(N)[*] :: X,Y
X(:) = ¥Y(:)[Q]

Declares that each image has two real arrays of size N
If Q has the same value on each image, the effect of this assignment statement is that each image copies
the array Y from image Q and makes a local copy in array X (a broadcast)

Array indices in parentheses follow the normal Fortran rules within one memory image
Array indices in square brackets enable accessing objects across images and follow similar rules

Bounds in square brackets in co-array declarations follow the rules of assumed-size arrays since co-arrays
are always spread over all the images
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MORE CO-ARRAY FORTRAN EXAMPLES

X = Y[PE]
Y[PE] = X
Y[:] = X
Y[LIST] = X
Z(:) = Y[:]

S = MINVAL(Y[:])

B(1:M)[1:N]

S

get from Y[PE]

put into Y[PE]

broadcast X

broadcast X over subset of PE's in array LIST
collect all Y

min (reduce) all Y

S scalar, promoted to array of shape (1:M,1:N)
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CO-ARRAY FORTRAN MATRIX MULTIPLY

real,dimension(n,n)[p,*] :: a,b,c

do k=1,n
do g=1,p
c(i,j) = c(i,J) + a(i,k)[myP,ql*b(k,]J)[q,myQ]
enddo

enddo
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CHAPEL

Cray development funded by DARPA as part of the HPCS program
— Available on Cray, SGI, Power, as well as for Linux clusters, GPU port underway

“Chapel strives to vastly improve the programmability of large-scale parallel computers while matching or
beating the performance and portability of current programming models like MPI.”

Chapel is a clean sheet design but based on parallelism features from ZPL, High-Performance Fortran
(HPF), and the Cray MTA™/Cray XMT™ extensions to C and Fortran

Supports a multithreaded execution model with high-level abstractions for:
— data parallelism
— task parallelism
— concurrency, and
— nested parallelism.

The locale type enables users to specify and reason about the placement of data and tasks on a target
architecture in order to tune for locality

Supports global-view data aggregates with user-defined implementations
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CHAPEL CONCEPTS

See: “Chapel: striving for productivity at Petascale, sanity at Exascale” by Brad Chamberlain, Dec 2011:

General/dynamic/multithreaded parallelism

Distinct concepts for parallelism vs. locality

e.g., cobegin creates tasks, locale type represents locality

Rich set of array types, potentially distributed

_'_('\ — M .
\ X700
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CHAPEL CONCEPTS

Parallel and Serial Iteration

forall (i,j) in D do (i + 3/10.0); ]

Array Slicing; Domain Algebra

A[InnerD] = B[InnerD+(O,l)];]

Promotion of Scalar Functions and Operators
A =B + alpha * C;W A = exp (B, C);]

And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, ...
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X10

Open source development by IBM, again funded by DARPA as part of HPCS
An asynchronous PGAS (APGAS) loosely based on Java and functional languages
Four basic principles:
— Asynchrony
— Locality
— Atomicity
— Order
Developed on a type-safe, class-based, object-oriented foundation
X10 implementations are available on Power, x86 clusters, on Linux, AlX, MacOS, Cygwin and Windows
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X10 HELLO WORLD EXAMPLE

class HelloWholeWorld {
public static def main(args:Array[String](l)):void {
for (var i:Int=0; i<Place.MAX PLACES; i++) {
val ival = i;
async at (Place.places(ival)) {
Console.OUT.println("Hello World from place "+here.id);
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X10 FUTURE

Looking to add support for:
— Multiple levels of parallelism (hierarchy)

— Fault tolerance

Actively being supported on multiple platforms

One of the more promissing (A)PGAS languages
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A HETEROGENEOUS EXAMPLE:
MOLECULAR DOCKING USING
OPENCL AND MPI
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MOLECULAR DOCKING

Peptide - Drug
Candidate

Predicted Successful
Interaction

Enzyme - Drug Target

Proteins typically O(1000) atoms
Ligands typically O(100) atoms aMD
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EMPIRICAL FREE ENERGY FUNCTION (ATOM-ATOM)
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T N. Gibbs, A.R. Clarke & R.B. Sessions, "Ab-initio Protein Folding using Physicochemical

Potentials and a Simplified Off-Lattice Model", Proteins 43:186-202,2001 AMD
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MULTIPLE LEVELS OF PARALLELISM

O(108) conformers from O(107) ligands, all independent
O(10°) poses per conformer (ligand), all independent
O(103) atoms per protein

O(102) atoms per ligand (drug molecule)

Parallelism across nodes:

— Distribute ligands across nodes using MPI — 107-way parallelism

— Nodes request more work as needed — load balancing across nodes of different speeds
Parallelism within a node:

— All the poses of one conformer distributed across all the OpenCL devices in a node — 103-way parallelism
Parallelism within an OpenCL device (e.g. a GPU, CPUs)

— Each Work-Item (thread) performs an entire conformer-protein docking — 10%-way parallelism

— =>10% atom-atom force calculations per Work-ltem
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BUDE’S OPENCL CHARACTERISTICS

Single precision
Compute intensive, not bandwidth intensive
Very little data needs to be moved around
— KBytes rather than GBytes!
Very little host compute required
— Can scale to many OpenCL devices per host

AMD(1
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BUDE’S HETEROGENEOUS APPROACH

Distribute ligands across nodes, nodes request more work when ready

— Copes with nodes of different performance and nodes dropping out

— Can use fault tolerant MPI for this

Within each node, discover all OpenCL platforms/devices, including CPUs and GPUs

Run a micro benchmark on each OpenCL device, ideally a short piece of real work

— ldeally use some real work so you're not wasting resource

— Keep the microbenchmark very short otherwise slower devices penalize faster ones too much
Load balance across OpenCL devices using micro benchmark results

Re-run micro benchmark at regular intervals in case load changes within the node

— The behavior of the workload may change

— CPUs may become busy (or quiet)

Most important to keep the fastest devices busy

— Less important if slower devices finish slightly earlier than faster ones

Avoid using the CPU for both OpenCL host code and OpenCL device code at the same time

AMD
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DISCOVERING OPENCL DEVICES AT RUN-TIME

// Get available platforms

cl_uint nPlatforms;

cl_platform_id platforms[MAX_PLATFORMS];

int ret = clGetPlatformIDs(MAX_PLATFORMS, platforms, &nPlatforms);

// Loop over all platforms
for (int p = 0; p < nPlatforms; p++) {
I/l Get available devices
cl_uint nDevices = 0;
cl_device_id devices[MAX_DEVICES];
clGetDevicelDs(platforms|p], deviceType, MAX_ DEVICES, devices, &nDevices);

// Loop over all devices in this platform
for (int d = 0; d < nDevices; d++)
getDevicelnformation(devices[d]);

} AMD
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BENCHMARK RESULTS
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RELATIVE ENERGY AND RUN-TIME

18
16
14
12
1

O N OO O O

Measurements are for a constant amount of work.
Energy measurements are “at the wall” and include any idle components.

88% reduction in energy

93% reduction in time
= WwRelative Performance

13.2

Relative Performance Per Watt

M2050 + M2050 x2 GTX-580 HD5870+ HDS5870 E5620x2 A8-3850 i5-2500T
E5620 x2 19-2500T GPU
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NDM-1 AS A DOCKING TARGET

NDM-1 protein made up of 939 atoms

AMD
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GPU-SYSTEM DEGIMA

* Used 222 GPUs in parallel for drug docking simulations
» ATl Radeon HD5870 (2.72 TFLOPS) & Intel i5-2500T
+ ~600 TFLOPS single precision

» Courtesy of Tsuyoshi Hamada and Felipe Cruz, Nagasaki
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NDM-1 EXPERIMENT

7.65 million candidate drug molecules, 21.8 conformers each > 166.7x108 dockings
4.168 x 102 poses calculated

~98 hours actual wall-time

One of the largest collections of molecular docking simulations ever made

Top 300 “hits” being analysed, down selecting to 10 compounds for wetlab trials soon
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PORTABLE PERFORMANCE
WITH OPENCL
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PORTABLE PERFORMANCE IN OPENCL

Portable performance is always a challenge, more so when OpenCL devices can be so varied (CPUs,
GPUs, ...)

The following slides are general advice on writing code that should work well on most OpenCL devices
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PORTABLE PERFORMANCE IN OPENCL

Don’t optimize too much for any one platform, e.g.
— Don’t write specifically for certain warp/wavefront sizes etc
— Be careful not to max out specific sizes of local/global memory

— OpenCL’s vector data types have varying degrees of support — faster on some devices, slower on
others

— Some devices have caches in their memory hierarchies, some don'’t, and it can make a big difference
to your performance without you realizing

— Need careful selection of Work-Group sizes and dimensions for your kernels
— Performance differences between unified vs. disjoint host/global memories

— Double precision performance varies considerably from device to device

Recommend trying your code on several different platforms to see what happens (profiling is good!)

— Try at least two different GPUs (ideally different vendors!) and at least one CPU
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TIMING MICROBENCHMARKS

for (inti = 0; i < numDevices; i++) {

// Wait for the kernel to finish

ret = clFinish(oclDevices[i].queue);

// Update timers

cl_ulong start, end;

ret = clGetEventProfilingInfo(oclDevices[i].kernelEvent,
CL_PROFILING_COMMAND START, sizeof(cl_ulong), &start, NULL);

ret |= clGetEventProfilinginfo(oclDevices]i].kernelEvent,
CL_PROFILING_COMMAND END, sizeof(cl _ulong), &end, NULL);

long timeTaken = (end - start);

speedsJi] = timeTaken / oclDevices]i].load;

} AMD
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ADVICE FOR PERFORMANCE PORTABILITY

Assigning Work-ltems to Work-Groups will need different treatment for different devices

— E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs prefer lots of Work-Items per
Work-Group (usually a multiple of the number of PEs per Compute Unit, i.e. 32, 64 etc)

In OpenCL v1.1 you can discover the preferred Work-Group size multiple for a kernel once it's been built
for a specific device

— Important to pad the total number of Work-Items to an exact multiple of this
— Again, will be different per device
The OpenCL run-time will have a go at choosing good EnqueueNDRangeKernel dimensions for you

— With very variable results
= For Bristol codes we could only do 5-10% better with manual tuning

= For other codes it can make a much bigger difference

— This is harder to do efficiently in a run-time, adaptive way!

Your mileage will vary, the best strategy is to write adaptive code that makes decisions at run-time
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