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BEYOND THE NODE 

§ So far have focused on heterogeneity within a node 

§ Many systems constructed from multiple nodes 
§ Easy for node types to diverge: 

–  Different technologies become available over time 
–  A mix of different nodes may be best to accommodate different applications 

§ E.g. Compute-intensive vs. Data-intensive 

§ Even homogeneous hardware may behave heterogeneously 

–  OS jitter, data-dependent application behavior, multi-user systems, … 
§ Thus heterogeneity extends right across a multi-node system 

§ See “High-performance heterogeneous computing” by A. Lastovetsky and J. Dongarra, 2009. 
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MESSAGE PASSING AND 
PARTITIONED GLOBAL 

ADDRESS SPACE 
PROGRAMMING 
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MPI OVERVIEW 
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MPI OVERVIEW 

§ The Message Passing Interface (MPI) has become the most widely used standard for distributed 
memory programming in HPC 
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MPI OVERVIEW 

§ Available for C and Fortran 

§ Library of functions & pre-processor Macros 
§ Standards: 

–  MPI 1.0, June 1994 (now at MPI 1.3) 
–  MPI 2.0 (now at MPI 2.2, Sep 2009) 

–  MPICH (MVAPICH for Infiniband networks) 
–  OpenMPI 

–  Proprietary tuned... (Cray, SGI, Microsoft, ...) 
§ Designed to be portable (although with the usual performance caveats) 

§ Used on most (all?) Top500 supercomputers for multi-node applications 
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MPI EXAMPLE: HELLO, WORLD 
#include "mpi.h"!
int main(int argc, char* argv[])!
{!

  ...!
  MPI_Init( &argc, &argv );!
  MPI_Initialized(&flag);!
  if ( flag != TRUE ) {!
    MPI_Abort(MPI_COMM_WORLD,EXIT_FAILURE);!
  }!

  MPI_Get_processor_name(hostname,&strlen);!
  MPI_Comm_size( MPI_COMM_WORLD, &size );!
  MPI_Comm_rank( MPI_COMM_WORLD, &rank );!
  printf("Hello, world; from host %s: process %d of %d\n", \!
          hostname, rank, size);!
  MPI_Finalize();!

}!
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COMPILING AND RUNNING MPI 
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MPI COMMUNICATORS 

§ The process mpirun waits until all instances of MPI_Init() have acquired knowledge of the cohort 

§ Ranks: 0 (master), 1, 2, 3,.. 

§ The queuing system decides how to distribute over nodes (servers) 
§ The kernel decides how to distribute over multi-core processors 
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MPI IS PRIMARILY POINT TO POINT 

§ Common pattern for MPI functions: 

–  MPI_<function>(message, count, datatype, .., comm, flag) 
§ E.g.: 

–  MPI_Recv(message, BUFSIZE, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);!
§ Supports both synchronous and asynchronous communication, buffered and unbuffered 

§ Later versions support one-sided communications 
§ However does support collective operations (broadcast, scatter, gather, reductions) 
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MPI IS LOW LEVEL 

§ Lets the programmer do anything they want 

§ Doesn’t necessarily encourage good programming style 
§ Message passing programs are, in general, hard to design, optimise and debug 

–  Challenges with deadlock, race conditions, et al. 

§ Design patterns can help (e.g. Mattson et al) 

§ Higher-level parallel programming models may use MPI underneath for optimised message passing 

§ Often used for homogeneous parallel structures (2D/3D grids etc), but can also be used to support 
heterogeneous computation, e.g. task farms with dynamic load balancing 

–  MPI 2 added support for dynamic task creation 
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PGAS LANGUAGES OVERVIEW: 
UPC, CAF, CHAPEL, X10 
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PARTITIONED GLOBAL ADDRESS SPACE (PGAS) LANGUAGES 

§ Provide shared memory-style higher-level programming on top of distributed memory computers 

§ Several examples: 

–  Unified Parallel C 
–  Co-Array Fortran 

–  Titanium 
–  X-10 

–  Chapel 



15 |  HiPEAC |  January, 2012 |  Public 

UNIFIED PARALLEL C (UPC) INTRODUCTION 

§ Extension of C/C++ 

§ First released 1999, one of the more widely used PGAS languages 
–  UPC support in GCC 4.5.1.2 (Oct 2010) 

–  Berkeley UPC compiler 2.12 released Nov 2010 
§ Supported by Berkeley, George Washington University, Michigan Tech University 

§ Supported by vendors including Cray, IBM 
§ User can express data locality via “shared” and “private” address space qualifiers 

§ Fixed number of threads spawned across the system (no spawning) 
§ Lightweight coordination between threads (user responsibility) 

§ upc_forall() operator for parallelism 
§ Provides a hybrid, user-controlled consistency model for the interaction of memory accesses in shared 

memory space. Each memory reference in the program may be annotated to be either “strict” or “relaxed”. 
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UPC EXAMPLE – MATRIX MULTIPLY 

#include<upc.h> !
#include<upc_strict.h>!
!
shared [N*P /THREADS] int a[N][P] , c[N][M]; !
shared int b[P][M] ;!
!
void main(void) {!
  int i,j,l;!
!
  upc_forall (i=0; i<N; i++; &a[i][0]) !
    // &a[i][0] specifies that this iteration will be executed by the thread!
    // that has affinity to element a[i][0] !
    for (j=0; j<M; j++) { !
       c[i][j] = 0; !
       for(l=0; l< P; l++) c[i][j] +=a[i][l]*b[l][j]; !
    }!
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CO-ARRAY FORTRAN 

§ An SPMD extension to Fortran 95 

§ Defined in 1998 
§ Adds a simple, explicit notation for data decomposition, similar to that used in message-passing models 

§ May be implemented on both shared- and distributed memory machines 
§ The ISO Fortran Committee include coarrays in Fortran the 2008 standard 

§ Adds two concepts to Fortran 95: 
–  Data distribution 

–  Work distribution 
§ Used in some important codes 

–  E.g. the UK Met Office’s Unified Model 
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CO-ARRAY FORTRAN PROGRAMMING MODEL 

§ Single-Program-Multiple-Data (SPMD) 

§ Fixed number of processes/threads/images 

–  Explicit data decomposition 
–  All data is local 

–  All computation is local 
–   One-sided communication through co-dimensions 

§ Explicit synchronization 

§ See “An Introduction to Co-Array Fortran” by Robert W. Numrich 
–  http://www2.hpcl.gwu.edu/pgas09/tutorials/caf_tut.pdf 
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CO-ARRAY FORTRAN WORK DISTRIBUTION 

§ A single Co-Array Fortran program is replicated a fixed number of times 

§ Each replication, called an “image”, has its own set of data objects 
§ Each image executes asynchronously  

§ The execution path may differ from image to image 
§ The programmer determines the actual control flow path for the image with the help of a unique image 

index, using normal Fortran control constructs, and by explicit synchronizations 

§ For code between synchronizations, the compiler is free to use all its normal optimisation techniques, as if 
only one image were present 
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CO-ARRAY FORTRAN DATA DISTRIBUTION 

§ One new entity, the co-array, is added to the language: 

REAL, DIMENSION(N)[*] :: X,Y!

X(:) = Y(:)[Q]!

§ Declares that each image has two real arrays of size N 
§ If Q has the same value on each image, the effect of this assignment statement is that each image copies 

the array Y from image Q and makes a local copy in array X (a broadcast) 

§ Array indices in parentheses follow the normal Fortran rules within one memory image 
§ Array indices in square brackets enable accessing objects across images and follow similar rules 

§ Bounds in square brackets in co-array declarations follow the rules of assumed-size arrays since co-arrays 
are always spread over all the images 
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MORE CO-ARRAY FORTRAN EXAMPLES 

      X       = Y[PE]  ! get from Y[PE]!

      Y[PE]   = X      ! put into Y[PE]!

      Y[:]    = X      ! broadcast X!

      Y[LIST] = X      ! broadcast X over subset of PE's in array LIST!

      Z(:)    = Y[:]   ! collect all Y!

      S = MINVAL(Y[:]) ! min (reduce) all Y!

      B(1:M)[1:N] = S  ! S scalar, promoted to array of shape (1:M,1:N)!
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CO-ARRAY FORTRAN MATRIX MULTIPLY 

  real,dimension(n,n)[p,*] :: a,b,c!

!

  do k=1,n!

    do q=1,p!

      c(i,j) = c(i,j) + a(i,k)[myP,q]*b(k,j)[q,myQ]!

    enddo!

  enddo!
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CHAPEL 

§ Cray development funded by DARPA as part of the HPCS program 
–  Available on Cray, SGI, Power, as well as for Linux clusters, GPU port underway 

§ “Chapel strives to vastly improve the programmability of large-scale parallel computers while matching or 
beating the performance and portability of current programming models like MPI.” 

§ Chapel is a clean sheet design but based on parallelism features from ZPL, High-Performance Fortran 
(HPF), and the Cray MTA™/Cray XMT™ extensions to C and Fortran 

§ Supports a multithreaded execution model with high-level abstractions for: 
–  data parallelism 
–  task parallelism 
–  concurrency, and  
–  nested parallelism.  

§ The locale type enables users to specify and reason about the placement of data and tasks on a target 
architecture in order to tune for locality 

§ Supports global-view data aggregates with user-defined implementations 
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CHAPEL CONCEPTS 

§ See: “Chapel: striving for productivity at Petascale, sanity at Exascale” by Brad Chamberlain, Dec 2011: 

–  http://chapel.cray.com/presentations/ChapelForLLNL2011-presented.pdf 
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CHAPEL CONCEPTS 
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X10 

§ Open source development by IBM, again funded by DARPA as part of HPCS 

§ An asynchronous PGAS (APGAS) loosely based on Java and functional languages 
§ Four basic principles: 

–  Asynchrony 
–  Locality 

–  Atomicity 
–  Order  

§ Developed on a type-safe, class-based, object-oriented foundation 
§ X10 implementations are available on Power, x86 clusters, on Linux, AIX, MacOS, Cygwin and Windows 
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X10 HELLO WORLD EXAMPLE 

class HelloWholeWorld {  !

  public static def main(args:Array[String](1)):void {!

    for (var i:Int=0; i<Place.MAX_PLACES; i++) {!

      val iVal = i;!

      async at (Place.places(iVal)) {!

        Console.OUT.println("Hello World from place "+here.id);!

      }!

    }!

  }!

}!
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X10 FUTURE 

§ Looking to add support for: 

–  Multiple levels of parallelism (hierarchy) 
–  Fault tolerance 

§ Actively being supported on multiple platforms 

§ One of the more promissing (A)PGAS languages 
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A HETEROGENEOUS EXAMPLE: 
MOLECULAR DOCKING USING 

OPENCL AND MPI 
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MOLECULAR DOCKING 

30 

Proteins typically O(1000) atoms 
Ligands typically O(100) atoms 
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EMPIRICAL FREE ENERGY FUNCTION (ATOM-ATOM) 

ΔGligand binding   = 
 
 i=1∑

Nprotein

j=1∑
Nligand

 f(xi,xj) 

Parameterised using 
experimental data† 

† N. Gibbs, A.R. Clarke & R.B. Sessions, "Ab-initio Protein Folding using Physicochemical 
  Potentials and a Simplified Off-Lattice Model", Proteins 43:186-202,2001 

31 
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MULTIPLE LEVELS OF PARALLELISM 

§ O(108) conformers from O(107) ligands, all independent 
§ O(105) poses per conformer (ligand), all independent 
§ O(103) atoms per protein 
§ O(102) atoms per ligand (drug molecule) 

§ Parallelism across nodes: 
–  Distribute ligands across nodes using MPI – 107-way parallelism 
–  Nodes request more work as needed – load balancing across nodes of different speeds 

§ Parallelism within a node: 
–  All the poses of one conformer distributed across all the OpenCL devices in a node – 103-way parallelism 

§ Parallelism within an OpenCL device (e.g. a GPU, CPUs) 
–  Each Work-Item (thread) performs an entire conformer-protein docking – 105-way parallelism 
–  à105 atom-atom force calculations per Work-Item 

32 
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BUDE’S OPENCL CHARACTERISTICS 

§ Single precision 

§ Compute intensive, not bandwidth intensive 
§ Very little data needs to be moved around 

–  KBytes rather than GBytes! 
§ Very little host compute required 

–  Can scale to many OpenCL devices per host 

33 
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BUDE’S HETEROGENEOUS APPROACH 

1.  Distribute ligands across nodes, nodes request more work when ready 
–  Copes with nodes of different performance and nodes dropping out 
–  Can use fault tolerant MPI for this 

2.  Within each node, discover all OpenCL platforms/devices, including CPUs and GPUs 
3.  Run a micro benchmark on each OpenCL device, ideally a short piece of real work 

–  Ideally use some real work so you’re not wasting resource 
–  Keep the microbenchmark very short otherwise slower devices penalize faster ones too much 

4.  Load balance across OpenCL devices using micro benchmark results 
5.  Re-run micro benchmark at regular intervals in case load changes within the node 

–  The behavior of the workload may change 
–  CPUs may become busy (or quiet) 

6.  Most important to keep the fastest devices busy 
–  Less important if slower devices finish slightly earlier than faster ones 

7.  Avoid using the CPU for both OpenCL host code and OpenCL device code at the same time 
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DISCOVERING OPENCL DEVICES AT RUN-TIME 

 // Get available platforms 
 cl_uint nPlatforms; 
 cl_platform_id platforms[MAX_PLATFORMS]; 
 int ret = clGetPlatformIDs(MAX_PLATFORMS, platforms, &nPlatforms); 
 
 // Loop over all platforms 
 for (int p = 0; p < nPlatforms; p++) { 
   // Get available devices 
   cl_uint nDevices = 0; 
   cl_device_id devices[MAX_DEVICES]; 
   clGetDeviceIDs(platforms[p], deviceType, MAX_DEVICES, devices, &nDevices); 
 
   // Loop over all devices in this platform 
   for (int d = 0; d < nDevices; d++) 
     getDeviceInformation(devices[d]); 
} 
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BENCHMARK RESULTS 

36 
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RELATIVE ENERGY AND RUN-TIME 
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Measurements are for a constant amount of work. 
Energy measurements are “at the wall” and include any idle components. 

88% reduction in energy 
93% reduction in time 
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NDM-1 AS A DOCKING TARGET 

38 

NDM-1 protein made up of 939 atoms 
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GPU-SYSTEM DEGIMA 

39 

•  Used 222 GPUs in parallel for drug docking simulations 
•  ATI Radeon HD5870 (2.72 TFLOPS) & Intel i5-2500T 

•  ~600 TFLOPS single precision 
•  Courtesy of Tsuyoshi Hamada and Felipe Cruz, Nagasaki 
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NDM-1 EXPERIMENT 

§ 7.65 million candidate drug molecules, 21.8 conformers each à 166.7x106 dockings 

§ 4.168 x 1012 poses calculated 
§ ~98 hours actual wall-time 

§ One of the largest collections of molecular docking simulations ever made 
§ Top 300 “hits” being analysed, down selecting to 10 compounds for wetlab trials soon 

40 
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PORTABLE PERFORMANCE 
WITH OPENCL 
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PORTABLE PERFORMANCE IN OPENCL 

§ Portable performance is always a challenge, more so when OpenCL devices can be so varied (CPUs, 
GPUs, …) 

§ The following slides are general advice on writing code that should work well on most OpenCL devices 
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PORTABLE PERFORMANCE IN OPENCL 

§ Don’t optimize too much for any one platform, e.g. 

–  Don’t write specifically for certain warp/wavefront sizes etc 
–  Be careful not to max out specific sizes of local/global memory 

–  OpenCL’s vector data types have varying degrees of support – faster on some devices, slower on 
others 

–  Some devices have caches in their memory hierarchies, some don’t, and it can make a big difference 
to your performance without you realizing 

–  Need careful selection of Work-Group sizes and dimensions for your kernels 

–  Performance differences between unified vs. disjoint host/global memories 
–  Double precision performance varies considerably from device to device 

§ Recommend trying your code on several different platforms to see what happens (profiling is good!) 

–  Try at least two different GPUs (ideally different vendors!) and at least one CPU 
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TIMING MICROBENCHMARKS 

for (int i = 0; i < numDevices; i++) { 
   // Wait for the kernel to finish 
   ret = clFinish(oclDevices[i].queue); 
   // Update timers 
   cl_ulong start, end; 
   ret = clGetEventProfilingInfo(oclDevices[i].kernelEvent, 
             CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL); 
   ret |= clGetEventProfilingInfo(oclDevices[i].kernelEvent,  
             CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL); 
   long timeTaken = (end - start); 
   speeds[i] = timeTaken / oclDevices[i].load; 
} 
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ADVICE FOR PERFORMANCE PORTABILITY 

§ Assigning Work-Items to Work-Groups will need different treatment for different devices 

–  E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs prefer lots of Work-Items per 
Work-Group (usually a multiple of the number of PEs per Compute Unit, i.e. 32, 64 etc) 

§ In OpenCL v1.1 you can discover the preferred Work-Group size multiple for a kernel once it’s been built 
for a specific device 

–  Important to pad the total number of Work-Items to an exact multiple of this 

–  Again, will be different per device 
§ The OpenCL run-time will have a go at choosing good EnqueueNDRangeKernel dimensions for you 

–  With very variable results 
§ For Bristol codes we could only do 5-10% better with manual tuning 

§ For other codes it can make a much bigger difference 

–  This is harder to do efficiently in a run-time, adaptive way! 
§ Your mileage will vary, the best strategy is to write adaptive code that makes decisions at run-time 

§ Assume heterogeneity! 


