
HETEROGENEOUS COMPUTING

Benedict Gaster, AMD
Lee Howes, AMD
Simon McIntosh-Smith, University of Bristol

2 | HiPEAC | January, 2012 | Public

BEYOND THE NODE

3 | HiPEAC | January, 2012 | Public

BEYOND THE NODE

§ So far have focused on heterogeneity within a node

§ Many systems constructed from multiple nodes
§ Easy for node types to diverge:

–  Different technologies become available over time
–  A mix of different nodes may be best to accommodate different applications

§ E.g. Compute-intensive vs. Data-intensive

§ Even homogeneous hardware may behave heterogeneously

–  OS jitter, data-dependent application behavior, multi-user systems, …
§ Thus heterogeneity extends right across a multi-node system

§ See “High-performance heterogeneous computing” by A. Lastovetsky and J. Dongarra, 2009.

4 | HiPEAC | January, 2012 | Public

MESSAGE PASSING AND
PARTITIONED GLOBAL

ADDRESS SPACE
PROGRAMMING

5 | HiPEAC | January, 2012 | Public

MPI OVERVIEW

6 | HiPEAC | January, 2012 | Public

MPI OVERVIEW

§ The Message Passing Interface (MPI) has become the most widely used standard for distributed
memory programming in HPC

7 | HiPEAC | January, 2012 | Public

MPI OVERVIEW

§ Available for C and Fortran

§ Library of functions & pre-processor Macros
§ Standards:

–  MPI 1.0, June 1994 (now at MPI 1.3)
–  MPI 2.0 (now at MPI 2.2, Sep 2009)

–  MPICH (MVAPICH for Infiniband networks)
–  OpenMPI

–  Proprietary tuned... (Cray, SGI, Microsoft, ...)
§ Designed to be portable (although with the usual performance caveats)

§ Used on most (all?) Top500 supercomputers for multi-node applications

8 | HiPEAC | January, 2012 | Public

MPI EXAMPLE: HELLO, WORLD
#include "mpi.h"!
int main(int argc, char* argv[])!
{!

 ...!
 MPI_Init(&argc, &argv);!
 MPI_Initialized(&flag);!
 if (flag != TRUE) {!
 MPI_Abort(MPI_COMM_WORLD,EXIT_FAILURE);!
 }!

 MPI_Get_processor_name(hostname,&strlen);!
 MPI_Comm_size(MPI_COMM_WORLD, &size);!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);!
 printf("Hello, world; from host %s: process %d of %d\n", \!
 hostname, rank, size);!
 MPI_Finalize();!

}!

9 | HiPEAC | January, 2012 | Public

COMPILING AND RUNNING MPI

10 | HiPEAC | January, 2012 | Public

MPI COMMUNICATORS

§ The process mpirun waits until all instances of MPI_Init() have acquired knowledge of the cohort

§ Ranks: 0 (master), 1, 2, 3,..

§ The queuing system decides how to distribute over nodes (servers)
§ The kernel decides how to distribute over multi-core processors

11 | HiPEAC | January, 2012 | Public

MPI IS PRIMARILY POINT TO POINT

§ Common pattern for MPI functions:

–  MPI_<function>(message, count, datatype, .., comm, flag)
§ E.g.:

–  MPI_Recv(message, BUFSIZE, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);!
§ Supports both synchronous and asynchronous communication, buffered and unbuffered

§ Later versions support one-sided communications
§ However does support collective operations (broadcast, scatter, gather, reductions)

12 | HiPEAC | January, 2012 | Public

MPI IS LOW LEVEL

§ Lets the programmer do anything they want

§ Doesn’t necessarily encourage good programming style
§ Message passing programs are, in general, hard to design, optimise and debug

–  Challenges with deadlock, race conditions, et al.

§ Design patterns can help (e.g. Mattson et al)

§ Higher-level parallel programming models may use MPI underneath for optimised message passing

§ Often used for homogeneous parallel structures (2D/3D grids etc), but can also be used to support
heterogeneous computation, e.g. task farms with dynamic load balancing

–  MPI 2 added support for dynamic task creation

13 | HiPEAC | January, 2012 | Public

PGAS LANGUAGES OVERVIEW:
UPC, CAF, CHAPEL, X10

14 | HiPEAC | January, 2012 | Public

PARTITIONED GLOBAL ADDRESS SPACE (PGAS) LANGUAGES

§ Provide shared memory-style higher-level programming on top of distributed memory computers

§ Several examples:

–  Unified Parallel C
–  Co-Array Fortran

–  Titanium
–  X-10

–  Chapel

15 | HiPEAC | January, 2012 | Public

UNIFIED PARALLEL C (UPC) INTRODUCTION

§ Extension of C/C++

§ First released 1999, one of the more widely used PGAS languages
–  UPC support in GCC 4.5.1.2 (Oct 2010)

–  Berkeley UPC compiler 2.12 released Nov 2010
§ Supported by Berkeley, George Washington University, Michigan Tech University

§ Supported by vendors including Cray, IBM
§ User can express data locality via “shared” and “private” address space qualifiers

§ Fixed number of threads spawned across the system (no spawning)
§ Lightweight coordination between threads (user responsibility)

§ upc_forall() operator for parallelism
§ Provides a hybrid, user-controlled consistency model for the interaction of memory accesses in shared

memory space. Each memory reference in the program may be annotated to be either “strict” or “relaxed”.

16 | HiPEAC | January, 2012 | Public

UPC EXAMPLE – MATRIX MULTIPLY

#include<upc.h> !
#include<upc_strict.h>!
!
shared [N*P /THREADS] int a[N][P] , c[N][M]; !
shared int b[P][M] ;!
!
void main(void) {!
 int i,j,l;!
!
 upc_forall (i=0; i<N; i++; &a[i][0]) !
 // &a[i][0] specifies that this iteration will be executed by the thread!
 // that has affinity to element a[i][0] !
 for (j=0; j<M; j++) { !
 c[i][j] = 0; !
 for(l=0; l< P; l++) c[i][j] +=a[i][l]*b[l][j]; !
 }!

17 | HiPEAC | January, 2012 | Public

CO-ARRAY FORTRAN

§ An SPMD extension to Fortran 95

§ Defined in 1998
§ Adds a simple, explicit notation for data decomposition, similar to that used in message-passing models

§ May be implemented on both shared- and distributed memory machines
§ The ISO Fortran Committee include coarrays in Fortran the 2008 standard

§ Adds two concepts to Fortran 95:
–  Data distribution

–  Work distribution
§ Used in some important codes

–  E.g. the UK Met Office’s Unified Model

18 | HiPEAC | January, 2012 | Public

CO-ARRAY FORTRAN PROGRAMMING MODEL

§ Single-Program-Multiple-Data (SPMD)

§ Fixed number of processes/threads/images

–  Explicit data decomposition
–  All data is local

–  All computation is local
–  One-sided communication through co-dimensions

§ Explicit synchronization

§ See “An Introduction to Co-Array Fortran” by Robert W. Numrich
–  http://www2.hpcl.gwu.edu/pgas09/tutorials/caf_tut.pdf

19 | HiPEAC | January, 2012 | Public

CO-ARRAY FORTRAN WORK DISTRIBUTION

§ A single Co-Array Fortran program is replicated a fixed number of times

§ Each replication, called an “image”, has its own set of data objects
§ Each image executes asynchronously

§ The execution path may differ from image to image
§ The programmer determines the actual control flow path for the image with the help of a unique image

index, using normal Fortran control constructs, and by explicit synchronizations

§ For code between synchronizations, the compiler is free to use all its normal optimisation techniques, as if
only one image were present

20 | HiPEAC | January, 2012 | Public

CO-ARRAY FORTRAN DATA DISTRIBUTION

§ One new entity, the co-array, is added to the language:

REAL, DIMENSION(N)[*] :: X,Y!

X(:) = Y(:)[Q]!

§ Declares that each image has two real arrays of size N
§ If Q has the same value on each image, the effect of this assignment statement is that each image copies

the array Y from image Q and makes a local copy in array X (a broadcast)

§ Array indices in parentheses follow the normal Fortran rules within one memory image
§ Array indices in square brackets enable accessing objects across images and follow similar rules

§ Bounds in square brackets in co-array declarations follow the rules of assumed-size arrays since co-arrays
are always spread over all the images

21 | HiPEAC | January, 2012 | Public

MORE CO-ARRAY FORTRAN EXAMPLES

 X = Y[PE] ! get from Y[PE]!

 Y[PE] = X ! put into Y[PE]!

 Y[:] = X ! broadcast X!

 Y[LIST] = X ! broadcast X over subset of PE's in array LIST!

 Z(:) = Y[:] ! collect all Y!

 S = MINVAL(Y[:]) ! min (reduce) all Y!

 B(1:M)[1:N] = S ! S scalar, promoted to array of shape (1:M,1:N)!

22 | HiPEAC | January, 2012 | Public

CO-ARRAY FORTRAN MATRIX MULTIPLY

 real,dimension(n,n)[p,*] :: a,b,c!

!

 do k=1,n!

 do q=1,p!

 c(i,j) = c(i,j) + a(i,k)[myP,q]*b(k,j)[q,myQ]!

 enddo!

 enddo!

23 | HiPEAC | January, 2012 | Public

CHAPEL

§ Cray development funded by DARPA as part of the HPCS program
–  Available on Cray, SGI, Power, as well as for Linux clusters, GPU port underway

§ “Chapel strives to vastly improve the programmability of large-scale parallel computers while matching or
beating the performance and portability of current programming models like MPI.”

§ Chapel is a clean sheet design but based on parallelism features from ZPL, High-Performance Fortran
(HPF), and the Cray MTA™/Cray XMT™ extensions to C and Fortran

§ Supports a multithreaded execution model with high-level abstractions for:
–  data parallelism
–  task parallelism
–  concurrency, and
–  nested parallelism.

§ The locale type enables users to specify and reason about the placement of data and tasks on a target
architecture in order to tune for locality

§ Supports global-view data aggregates with user-defined implementations

24 | HiPEAC | January, 2012 | Public

CHAPEL CONCEPTS

§ See: “Chapel: striving for productivity at Petascale, sanity at Exascale” by Brad Chamberlain, Dec 2011:

–  http://chapel.cray.com/presentations/ChapelForLLNL2011-presented.pdf

25 | HiPEAC | January, 2012 | Public

CHAPEL CONCEPTS

26 | HiPEAC | January, 2012 | Public

X10

§ Open source development by IBM, again funded by DARPA as part of HPCS

§ An asynchronous PGAS (APGAS) loosely based on Java and functional languages
§ Four basic principles:

–  Asynchrony
–  Locality

–  Atomicity
–  Order

§ Developed on a type-safe, class-based, object-oriented foundation
§ X10 implementations are available on Power, x86 clusters, on Linux, AIX, MacOS, Cygwin and Windows

27 | HiPEAC | January, 2012 | Public

X10 HELLO WORLD EXAMPLE

class HelloWholeWorld { !

 public static def main(args:Array[String](1)):void {!

 for (var i:Int=0; i<Place.MAX_PLACES; i++) {!

 val iVal = i;!

 async at (Place.places(iVal)) {!

 Console.OUT.println("Hello World from place "+here.id);!

 }!

 }!

 }!

}!

28 | HiPEAC | January, 2012 | Public

X10 FUTURE

§ Looking to add support for:

–  Multiple levels of parallelism (hierarchy)
–  Fault tolerance

§ Actively being supported on multiple platforms

§ One of the more promissing (A)PGAS languages

29 | HiPEAC | January, 2012 | Public

A HETEROGENEOUS EXAMPLE:
MOLECULAR DOCKING USING

OPENCL AND MPI

30 | HiPEAC | January, 2012 | Public

MOLECULAR DOCKING

30

Proteins typically O(1000) atoms
Ligands typically O(100) atoms

31 | HiPEAC | January, 2012 | Public

EMPIRICAL FREE ENERGY FUNCTION (ATOM-ATOM)

ΔGligand binding =

 i=1∑

Nprotein

j=1∑
Nligand

 f(xi,xj)

Parameterised using
experimental data†

† N. Gibbs, A.R. Clarke & R.B. Sessions, "Ab-initio Protein Folding using Physicochemical
 Potentials and a Simplified Off-Lattice Model", Proteins 43:186-202,2001

31

32 | HiPEAC | January, 2012 | Public

MULTIPLE LEVELS OF PARALLELISM

§ O(108) conformers from O(107) ligands, all independent
§ O(105) poses per conformer (ligand), all independent
§ O(103) atoms per protein
§ O(102) atoms per ligand (drug molecule)

§ Parallelism across nodes:
–  Distribute ligands across nodes using MPI – 107-way parallelism
–  Nodes request more work as needed – load balancing across nodes of different speeds

§ Parallelism within a node:
–  All the poses of one conformer distributed across all the OpenCL devices in a node – 103-way parallelism

§ Parallelism within an OpenCL device (e.g. a GPU, CPUs)
–  Each Work-Item (thread) performs an entire conformer-protein docking – 105-way parallelism
–  à105 atom-atom force calculations per Work-Item

32

33 | HiPEAC | January, 2012 | Public

BUDE’S OPENCL CHARACTERISTICS

§ Single precision

§ Compute intensive, not bandwidth intensive
§ Very little data needs to be moved around

–  KBytes rather than GBytes!
§ Very little host compute required

–  Can scale to many OpenCL devices per host

33

34 | HiPEAC | January, 2012 | Public

BUDE’S HETEROGENEOUS APPROACH

1.  Distribute ligands across nodes, nodes request more work when ready
–  Copes with nodes of different performance and nodes dropping out
–  Can use fault tolerant MPI for this

2.  Within each node, discover all OpenCL platforms/devices, including CPUs and GPUs
3.  Run a micro benchmark on each OpenCL device, ideally a short piece of real work

–  Ideally use some real work so you’re not wasting resource
–  Keep the microbenchmark very short otherwise slower devices penalize faster ones too much

4.  Load balance across OpenCL devices using micro benchmark results
5.  Re-run micro benchmark at regular intervals in case load changes within the node

–  The behavior of the workload may change
–  CPUs may become busy (or quiet)

6.  Most important to keep the fastest devices busy
–  Less important if slower devices finish slightly earlier than faster ones

7.  Avoid using the CPU for both OpenCL host code and OpenCL device code at the same time

35 | HiPEAC | January, 2012 | Public

DISCOVERING OPENCL DEVICES AT RUN-TIME

 // Get available platforms
 cl_uint nPlatforms;
 cl_platform_id platforms[MAX_PLATFORMS];
 int ret = clGetPlatformIDs(MAX_PLATFORMS, platforms, &nPlatforms);

 // Loop over all platforms
 for (int p = 0; p < nPlatforms; p++) {
 // Get available devices
 cl_uint nDevices = 0;
 cl_device_id devices[MAX_DEVICES];
 clGetDeviceIDs(platforms[p], deviceType, MAX_DEVICES, devices, &nDevices);

 // Loop over all devices in this platform
 for (int d = 0; d < nDevices; d++)
 getDeviceInformation(devices[d]);
}

36 | HiPEAC | January, 2012 | Public

BENCHMARK RESULTS

36

13.4
11.7

8.0 7.3 6.5
5.3 4.3

0.8

13.6
11.7

6.6 5.9
4.6

1.2 1.0 0.9 0.9 0.7 0.3 0.3
0
2
4
6
8

10
12
14
16

Sp
ee

du
p

(h
ig

he
r i

s
be

tte
r)

37 | HiPEAC | January, 2012 | Public

15.4 15.2
13.2

6.6 5.9

1.0 0.8 0.7

10.6 11.4

16.2

9.3 9.1

1.0

4.5

2.4

0
2
4
6
8

10
12
14
16
18

M2050 +
E5620 x2

M2050 x2 GTX-580 HD5870 +
i5-2500T

HD5870 E5620 x2 A8-3850
GPU

i5-2500T

Relative Performance

Relative Performance Per Watt

RELATIVE ENERGY AND RUN-TIME

37

Measurements are for a constant amount of work.
Energy measurements are “at the wall” and include any idle components.

88% reduction in energy
93% reduction in time

38 | HiPEAC | January, 2012 | Public

NDM-1 AS A DOCKING TARGET

38

NDM-1 protein made up of 939 atoms

39 | HiPEAC | January, 2012 | Public

GPU-SYSTEM DEGIMA

39

•  Used 222 GPUs in parallel for drug docking simulations
•  ATI Radeon HD5870 (2.72 TFLOPS) & Intel i5-2500T

•  ~600 TFLOPS single precision
•  Courtesy of Tsuyoshi Hamada and Felipe Cruz, Nagasaki

40 | HiPEAC | January, 2012 | Public

NDM-1 EXPERIMENT

§ 7.65 million candidate drug molecules, 21.8 conformers each à 166.7x106 dockings

§ 4.168 x 1012 poses calculated
§ ~98 hours actual wall-time

§ One of the largest collections of molecular docking simulations ever made
§ Top 300 “hits” being analysed, down selecting to 10 compounds for wetlab trials soon

40

41 | HiPEAC | January, 2012 | Public

PORTABLE PERFORMANCE
WITH OPENCL

42 | HiPEAC | January, 2012 | Public

PORTABLE PERFORMANCE IN OPENCL

§ Portable performance is always a challenge, more so when OpenCL devices can be so varied (CPUs,
GPUs, …)

§ The following slides are general advice on writing code that should work well on most OpenCL devices

43 | HiPEAC | January, 2012 | Public

PORTABLE PERFORMANCE IN OPENCL

§ Don’t optimize too much for any one platform, e.g.

–  Don’t write specifically for certain warp/wavefront sizes etc
–  Be careful not to max out specific sizes of local/global memory

–  OpenCL’s vector data types have varying degrees of support – faster on some devices, slower on
others

–  Some devices have caches in their memory hierarchies, some don’t, and it can make a big difference
to your performance without you realizing

–  Need careful selection of Work-Group sizes and dimensions for your kernels

–  Performance differences between unified vs. disjoint host/global memories
–  Double precision performance varies considerably from device to device

§ Recommend trying your code on several different platforms to see what happens (profiling is good!)

–  Try at least two different GPUs (ideally different vendors!) and at least one CPU

44 | HiPEAC | January, 2012 | Public

TIMING MICROBENCHMARKS

for (int i = 0; i < numDevices; i++) {
 // Wait for the kernel to finish
 ret = clFinish(oclDevices[i].queue);
 // Update timers
 cl_ulong start, end;
 ret = clGetEventProfilingInfo(oclDevices[i].kernelEvent,
 CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
 ret |= clGetEventProfilingInfo(oclDevices[i].kernelEvent,
 CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
 long timeTaken = (end - start);
 speeds[i] = timeTaken / oclDevices[i].load;
}

45 | HiPEAC | January, 2012 | Public

ADVICE FOR PERFORMANCE PORTABILITY

§ Assigning Work-Items to Work-Groups will need different treatment for different devices

–  E.g. CPUs tend to prefer 1 Work-Item per Work-Group, while GPUs prefer lots of Work-Items per
Work-Group (usually a multiple of the number of PEs per Compute Unit, i.e. 32, 64 etc)

§ In OpenCL v1.1 you can discover the preferred Work-Group size multiple for a kernel once it’s been built
for a specific device

–  Important to pad the total number of Work-Items to an exact multiple of this

–  Again, will be different per device
§ The OpenCL run-time will have a go at choosing good EnqueueNDRangeKernel dimensions for you

–  With very variable results
§ For Bristol codes we could only do 5-10% better with manual tuning

§ For other codes it can make a much bigger difference

–  This is harder to do efficiently in a run-time, adaptive way!
§ Your mileage will vary, the best strategy is to write adaptive code that makes decisions at run-time

§ Assume heterogeneity!

