
Trends in Heterogeneous Systems 
Architectures 

(and how they'll affect parallel 
programming models) 

 
Simon McIntosh-Smith  simonm@cs.bris.ac.uk 

Head of Microelectronics Research 
University of Bristol, UK 

1 



!  Moore’s Law today 

2 http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf 

Average 
Moore’s Law 

= 2x/2yrs 

2x/3yrs 

2x/2yrs 

High-performance 
MPU, e.g. 

Intel Nehalem 

Cost-performance 
MPU, e.g. 

Nvidia Tegra 

6-7B transistors 
~2B transistors 

20-30B transistors 



!  Herb Sutter’s new outlook 
http://herbsutter.com/welcome-to-the-jungle/ 

 
“In the twilight of Moore’s Law, the transitions to 

multicore processors, GPU computing, and HaaS cloud 
computing are not separate trends, but aspects of a 

single trend – mainstream computers from desktops to 
‘smartphones’ are being permanently transformed into 
heterogeneous supercomputer clusters. Henceforth, a 

single compute-intensive application will need to 
harness different kinds of cores, in immense 

numbers, to get its job done.” 
 

“The free lunch is over. 
Now welcome to the hardware jungle.” 

3 



!  Four causes of heterogeneity 

•  Multiple types of programmable core 
•  CPU (lightweight, heavyweight) 
•  GPU 
•  Others (accelerators, …) 

•  Interconnect asymmetry 
•  Memory hierarchies 
•  Software (OS, middleware, tools, …) 

4 



!  Heterogeneous Systems 

5 

AMD Llano Fusion APUs 

FP7 Mont Blanc ARM + GPU 

Intel MIC 

NVIDIA Tegra, Project Denver 



!  Heterogeneity is mainstream 

6 

Quad-core ARM Cortex A9 CPU 
Quad-core SGX543MP4+ Imagination GPU  

Most tablets and smartphones are already 
powered by heterogeneous processors. 

Dual-core ARM 1.4GHz, ARMv7s CPU 
Triple-core SGX554MP4 Imagination GPU  



!  Current limitations 
•  Disjoint view of memory spaces between 

CPUs and GPUs 
•  Hard partition between “host” and 

“devices” in programming models 
•  Dynamically varying nested parallelism 

almost impossible to support 
•  Large overheads in scheduling 

heterogeneous, parallel tasks 

7 



The emerging 
Heterogeneous System 

Architecture (HSA) standard 

8 



!  Current HSA members 

9 

Promoters 

Supporters             

Contributors 

Academic University of Illinois 
Computer Science  

Founders 



!  HSA overview 
•  The HSA Foundation launched mid 2012 
•  HSA is a new, open architecture specification 

•  HSAIL virtual (parallel) instruction set 
•  HSA memory model 
•  HSA dispatcher and run-time 

•  Provides an optimised platform architecture 
for heterogeneous programming models such 
as OpenCL, C++AMP, et al 

10 



!  HSA overview 

11 



!  Enabling more efficient heterogeneous 
programming 

•  Unified virtual address space for all cores 
•  CPU and GPU 
•  Enables PGAS-style distributed arrays 

•  Hardware queues per core with lightweight 
user mode task dispatch 
•  Enables GPU context switching, preemption, 

efficient heterogeneous scheduling 
•  First class barrier objects 

•  Aids parallel program composability 

12 



!  HSA Intermediate Layer (HSAIL) 
•  Virtual ISA for parallel programs 
•  Similar to LLVM IR and OpenCL SPIR 
•  Finalised to specific ISA by a JIT compiler 
•  Make late decisions on which core should run 

a task 
•  HSAIL features: 

•  Explicitly parallel 
•  Support for exceptions, virtual functions and other high-

level features 
•  Syscall methods (I/O, printf etc.) 
•  Debugging support 

13 



!  HSA memory model 
•  Compatible with C++11, OpenCL, Java and .NET 

memory models 
•  Relaxed consistency 
•  Designed to support both managed language 

(such as Java) and unmanaged languages (such 
as C) 

•  Will make it much easier to develop 3rd party 
compilers for a wide range of heterogeneous 
products 
•  E.g. Fortran, C++, C++AMP, Java et al 

14 



!  HSA dispatch 

•  HSA designed to enable heterogeneous 
task queuing 
•  A work queue per core (CPU, GPU, …) 
•  Distribution of work into queues 
•  Load balancing by work stealing 

•  Any core can schedule work for any other, 
including itself 

•  Significant reduction in overhead of 
scheduling work for a core 

15 



Command Flow Data Flow 

Soft 
Queue  

Kernel 
Mode 
Driver 

Application 
A 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Hardware 
Queue 

A GPU 
HARDWARE 

!  Today’s Command and Dispatch Flow 



!  Today’s Command and Dispatch Flow 

Hardware 
Queue 

A 
C 

B A B 

GPU 
HARDWARE 

Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
A 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
C 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
B 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 



!  Today’s Command and Dispatch Flow 
Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
A 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
C 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 
Queue 

Kernel 
Mode 
Driver 

Application 
B 

Command Buffer 

User 
Mode 
Driver 

Direct3D 

DMA Buffer 

Hardware 
Queue 

A GPU 
HARDWARE 

C 
B A B 



!  HSA enabled dispatch 

19 

Application / Runtime 

CPU2 CPU1 GPU 



!  HSA roadmap from AMD 

20 



!  Open Source software stack for HSA 

Component Name Purpose 

HSA Bolt Library Enable understanding and debug 

OpenCL HSAIL Code Generator Enable research 

LLVM Contributions Industry and academic collaboration 

HSA Assembler Enable understanding and debug 

HSA Runtime Standardize on a single runtime 

HSA Finalizer Enable research and debug 

HSA Kernel Driver For inclusion in Linux distros 

A Linux execution and compilation stack will be open-
sourced by AMD 

•  Jump start the ecosystem 
•  Allow a single shared implementation where appropriate 
•  Enable university research in all areas 



!  HSA should enable nested parallel 
programs like this 

22 

Support for multiple 
algorithms, even 
within a single 
application 
 
Task farms, 
pipeline, data 
parallelism, … 



!  Conclusions 
•  Heterogeneity is an increasingly important trend 
•  The market is finally starting to create and adopt 

the necessary open standards 
•  Proprietary models likely to start declining now 
•  Don’t get locked into any one vendor! 

•  Parallel programming models are likely to 
(re)proliferate 

•  HSA should enable much more dynamically 
heterogeneous nested parallel programs and 
programming models 

23 



www.cs.bris.ac.uk/Research/Micro 

24 


