

The impact of many-core computer architectures on numerical libraries: past, present and future

Simon McIntosh-Smith simonm@cs.bris.ac.uk Head of Microelectronics Research

Processor CV: Many-core GPUs

University of BRISTOL

Pixelfusion F150: (2000)

- 0.25u embedded DRAM
- 76M transistors
- 3 MBytes eDRAM

Multi Threaded Array Processor

- 1,536 PEs + redundancy
- 4 parallel RAMBUS channels,
 6.4 GBytes/s

The first true GPGPU

Fully programmable

Many-core HPC processors

n Mem	ory interfac	e	
SRAM		ISU	
			Syst
Proc	essor		en se
Co	res		nvices
		er og en	
Chip-to-c	hip Bridge	e Ports	

ClearSpeed CS301 (2004)

- 25 GFLOPS (32-bit), 3W @ 200MHz
- 64 PEs, 4 KBytes SRAM each
- IBM 130nm, 41 million transistors

ClearSpeed CSX600 (2006)

- 40 GFLOPS (64-bit), 12W @ 210 MHz
- 96 PEs, 6 KBytes SRAM each
- Integrated DDR2-ECC
- IBM 130nm, 128 million transistors

ClearSpeed CSX700 (2008)

- 96 GFLOPS (64-bit), 10W @ 250MHz
- Fully 64-bit architecture
- **192** PEs (2x96)
- 2x ECC DDR2 controllers
- IBM 90nm, 256 million transistors

K First principles

What are the issues driving the development of numerical libraries?

Underlying hardware changes

Ke The real Moore's Law

45 years ago, Gordon Moore observed that the number of transistors on a single chip was doubling rapidly

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

Ke Moore's Law today

2009 ITRS - Functions/chip and Chip Size

http://www.itrs.net/Links/2009ITRS/2009Chapters 2009Tables/2009 ExecSum.pdf

Ke Moore's Law today

2009 ITRS - Functions/chip and Chip Size

Important technology trends

Herb Sutter, "The free lunch is over", Dr. Dobb's Journal, 30(3), March 2005. On-line version, August 2009. <u>http://www.gotw.ca/publications/concurrency-ddj.htm</u>

Kernel How best to use billions of transistors?

- Lots more cores on-chip (<u>doubling every 2 years</u>)
 - Core designs will stay roughly the same
- Power consumption must be held in check
 - Chip voltages can't be dialled down any more
 - Clock speeds may *decrease*
 - Memory bandwidth per core likely to decrease
 - Memory per core likely to decrease
- Different types of core
 - Heterogeneous computing
 - E.g. a few heavyweight (x86) cores together with many more lightweight (GPU) cores

Relative hardware trends

Ketterogeneous computing is not new

- Most systems are *already* heterogeneous
 - PCs have CPU, GPU, network processor, I/O processor, …
 - Has been a common approach in embedded systems since the early `90s

- But now heterogeneous systems are starting to include several *different* types of *generalpurpose, programmable* processors
 - Users have to programme more than one type of processor to get the most out of a system

✓ 5 core tablet at CES last week

K Trends in processors

- AMD's first "Fusion" chip, shipping since late 2011
- Integrates a quad core x86 CPU with an OpenCL programmable GPU in the same chip
- Also Intel (Ivy Bridge), Nvidia (Tegra, Denver), IBM (Cell), ...

Emerging standards

 OpenCL, OpenACC, DirectCompute, C++ AMP, ...

Ketterogeneous systems in the Top500

- Tokyo Tech's TSUBAME was first in 2006
 - Started with ClearSpeed, now using GPUs
- Now several systems in existence, more on their way:
 - #2 Tianhe-1A (China), 2.57 PFLOPS, Intel and NVIDIA
 - #4 Dawning (China), 1.27 PFLOPS, Intel and NVIDIA
 - #5 Tsubame 2 (Japan), 1.19 PFLOPS, Intel x86 and NVIDIA
 - #10 RoadRunner (USA), 1.04 PFLOPS, IBM Cell, AMD x86
 - Around 35 GPU-based systems in Top500 in Nov 2011
- Most of the >10 PFLOP systems using many-core processors (GPUs or Intel's MIC) – Titan (ORNL), Stampede (TACC), Blue Waters (UIUC/NCSA), ...

http://www.top500.org

Parallel numerical libraries:

Past, present and future

A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time					
LINPACK (70's) (Vector operations)		Rely on - Level-1 BLAS operations			
LAPACK (80's) (Blocking, cache friendly)		Rely on - Level-3 BLAS operations			
ScaLAPACK (90's) (Distributed Memory)		Rely on - PBLAS Mess Passing			
PLASMA (00's) New Algorithms (many-core friendly)		Rely on - a DAG/scheduler - block data layout - some extra kernels			

- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

KelearSpeed's CSXL BLAS/LAPACK

- CSXL was a BLAS/LAPACK library that used run-time heuristics to load balance across heterogeneous compute resources
- Transparently harnessed multiple host CPU cores and multiple accelerators *simultaneously*
- Could also handle datasets larger than the memories of the accelerators
- S. McIntosh-Smith, J. Irwin, "Delivering aggregated performance for high-performance math libraries in accelerated systems", International SuperComputing, Dresden, June 2007

Steps in the LAPACK LU

10 A

PLASMA coverage

FUNCTIONALITY

COVERAGE

Linear Systems of Equations	Cholesky, LDLT, LU with partial pivoting
Matrix Inversion	Cholesky, LU with partial pivoting
Least Squares	QR and LQ
Mixed Precision Iterative Refinement	linear systems using Cholesky or LU, least squares using QR or LQ
Symmetric Figenvalue Problem	aiganyalyaa anly
oyinineene Eigenvalue Frobieni	eigenvalues only
Singular Value Problem	singular values only
Singular Value Problem Level 3 Tile BLAS	singular values only GEMM, HEMM, HER2K, HERK, SYMM, SYR2K, SYRK, TRMM, TRSM

Solving Linear System (DGESV)

Solving Least Squares Problem (DGELS) 48-core, 2.1 GHz AMD Magny-Cours System

Solving Singular Value Problem (DGESVD)

48-core, 2.1 GHz AMD Magny-Cours System

KMAGMA

- Extends PLASMA to support heterogeneous systems (GPUs et al)
- Host of extra considerations:
 - Where does the data live?
 - Data formats? (Natural, blocked, ...)
 - Multiple accelerators
 - Streaming?

₭ MAGMA 1.1 coverage

MAGMA 1.1 ROUTINES & FUNCTIONALITIES	SINGLE GPU	MULTI-GPU STATIC		MULTI-GPU DYNAMIC
One-sided Factorizations (LU, QR, Cholesky)	1		/	
Linear System Solvers	V.			
Linear Least Squares (LLS) Solvers	_			
Matrix Inversion				
0: 1 W I D II (0)(D)			Hubrid LAPACK a	loorithms with static schaduling
Singular Value Problem (SVP)	· · · · · · · · · · · · · · · · · · ·	INGLE GPU and LAPACK data		LAPACK data layout
Non-symmetric Eigenvalue Problem	\[MULTI-GPU	ULTI-GPU Hybrid LAPACK algorithms with 1D block cyclic static scheduling and LAPACK data layout	
Symmetric Eigenvalue Problem		STATIC		
Generalized Symmetric Eigenvalue Problem	 , 	MULTI-GPU DYNAMIC	Tile algorithms v	with StarPU scheduling and tile matrix layout

Keeneland system, using one node 3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB) 2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

 GPU
 Fermi C2050 (448 CUDA Cores @ 1.15 GHz)
 CPU
 AMD I

 + Intel Q9300 (4 cores @ 2.50 GHz)
 [8 soc

 DP peak
 515 + 40 GFlop/s
 DP pea

 Power*
 ~220 W
 Power

AMD Istanbul [8 sockets x 6 cores (48 cores) @2.8GHz] DP peak 538 GFlop/s Power* ~1,022 W

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

Big Issue:

Composibility of Parallelism

"Who owns the parallelism?"

- Multiple levels in the software stack:
 - Operating system / run-time
 - Libraries
 - Application
- Who decides what runs where?
- Who owns the resources?

K Composibility

Consider the following example using a modern dual socket, multi-core server (12 to 16 cores today):

- Your application is written in OpenMP or MPI in order to use all these cores
- Then you want to call a parallel version of a numerical library, such as BLAS, LAPACK etc.
- Essentially have to "pass over" ownership of the hardware resources from the application to the library
- This problem gets worse as the width and depth of the parallelism increase – GPUs with OpenCL etc

Composibility continued

More issues:

- What if you want varying widths of parallelism? (Elastic widths)
- What effect do multiple users have on the available parallelism? Don't know how much you have until execution time...

More future issues for NA libs

From Dongarra et al, SIAM PP08:

- Dynamic Data Driven Execution
- Self Adapting
- Mixed Precision in the Algorithm
- Exploit Hybrid/Many-core Architectures
- Fault Tolerant Methods
- Communication Avoidance

KSummary and Conclusions

- Future hardware will see considerable increases in:
 - Width of parallelism (cores, vectors, ...)
 - Depth of parallelism (heavyweight, lightweight, threads, instructions, ...)
 - Depth and complexity of memory hierarchy
 - Heterogeneity
- Core counts will increase faster than bandwidth, memory capacity and latency
- Future numerical libraries will need to adapt at runtime to exploit available resources
- Thus the very nature of software libraries will fundamentally change (ship as source?)
- Major unresolved issue around parallel composibility

For an introduction to GPUs

The GPU Computing Revolution – a Knowledge Transfer Report from the London Mathematical Society and the KTN for Industrial Mathematics

 <u>https://ktn.innovateuk.org/web/mathsktn/</u> <u>articles/-/blogs/the-gpu-computing-</u> <u>revolution</u>

KASEArch CCP

- New CCP just formed to help in this area:
 - Algorithms and Software for Emerging Architectures – ASEArch
 - Collaboration between Oxford, STFC, Bristol and Edinburgh
 - <u>http://www.oerc.ox.ac.uk/research/asearch</u>

