
A method for automatically
generating analogue benchmark
suites using low-level hardware
metrics

Simon McIntosh-Smith
University of Bristol, UK
simonm@cs.bris.ac.uk

1

Owen Thomas
Red Oak Consulting
owen@redoakconsulting.co.uk

!  Introduction
•  There are challenges in constructing and

maintaining benchmark suites, especially
when the original codes are complex or
classified
•  Thus may not be shared directly with vendors

or partners
•  Can we automatically construct

benchmarks that closely model the low-
level behavior of target workloads?

2

!  Methodology – I
•  Select a set of open-source benchmarks that exhibit a

reasonably wide range of behavior in terms of low-
level hardware metrics:
•  Cycles per instruction
•  Cache misses (instruction, data, multiple levels)
•  DRAM accesses
•  Data Translation Lookaside Buffer Misses (page faults)
•  Branch instruction rate
•  Mispredicted branches rate

•  These metrics were selected as the most important in
terms of their effect on the observed performance in a
modern CPU architecture

3

!  Methodology – II
•  Characterise target codes1;
•  Characterise potential analogue

benchmarks1;
•  Create benchmark analogues;
•  Assemble parameterised benchmark suite.

•  1 Multiple copies in parallel, one per core

4

! Characterisation tools
•  System Tap

•  Standard Linux tool
•  Records kernel-level stats about memory use, I/O

etc

•  Oprofile
•  Standard Linux tool
•  Records low-level hardware metrics (cycles per

instruction, branch misprediction rate etc)

•  Sampling issues have to be managed

5

!  Target benchmark
characterization on Nehalem

6

Nehalem hardware counters from a twelve hour target job mix sample run

O
cc

ur
re

nc
es

 p
er

 c
yc

le

!  Nehalem cycles per instruction

7

! Characterising targets
•  Do we run them:

•  On one core at a time,
•  On all the cores at the same time, or
•  In a random mix?

•  Observed the impact of running each target
in parallel with itself

•  Some counter sampling rate issues (too few
and too many are both problems).

8

!  Target characterization on Nehalem

9

R
un

tim
e

in
 s

ec
on

ds

Degree of parallelism

!   Target characterization on Magny-Cours

10

R
un

tim
e

in
 s

ec
on

ds

Degree of parallelism

!  Analogue benchmarks

11

!  Analogue benchmark examples
•  Fhourstones

•  Something about Fhourstones
•  Gups

•  Something about Gups
•  Single_core

•  Something about single_core

12

! Characterising analogues

For each target platform T
For each analogue benchmark A

For each parameterisation P
AT(P) - run A on T with parameters P
Record low-level hardware metrics for AT(P)

13

! Fhourstones on Nehalem

14

! Fhourstones on Magny-Cours

15

! Fhourstones runtimes

16

R
un

tim
e

in
 s

ec
on

ds

! Gups on Nehalem

17

! Gups on Magny-Cours

18

! Gups runtimes

19

R
un

tim
e

in
 s

ec
on

ds

!  Effects of parallelism on sweeps

20 Fhourstones sweep on Nehalem

R
un

tim
e

in
 s

ec
on

ds

!  Effects of parallelism on sweeps

21 Gups sweep on Magny-Cours

R
un

tim
e

in
 s

ec
on

ds

!  Effects of parallelism on sweeps

22 Single_core sweep on Magny-Cours

R
un

tim
e

in
 s

ec
on

ds

!  Assembling analogue
benchmark suites

23

!  Exploration of analogue
benchmark suite methodologies

There are a number of different ways we
can construct an analogue job mix that
models a target job mix:
1.  Manually select one analogue to

represent one target
2.  Automatic point-wise construction of a

composite analogue job mix
3.  Residual refinement of a composite

analogue job mix
24

!  Method 1: hand selection of
analogues for targets (Nehalem)

25

!  Method 1 results

26

The derived benchmark suite was assessed by comparing the
breakdown of the percentage of CPU time for each analogue over a
nine hour extended run of the analogue benchmark job mix.

P
er

ce
nt

ag
e

of
 to

ta
l r

un
-ti

m
e

!  Method 1 results summary
•  Across the whole target and analogue job

mixes, the differences in the runtimes
represent an 8.2% overestimate on
Nehalem and a 1.3% overestimate on
Magny-Cours.

•  In summary, the parameterization was
successful, delivering analogue
benchmark job mixes that estimate
performance to within 10% overall of the
target benchmark job mix.

27

!  Method 2

28

Automatic point-wise construction of a composite analogue job mix
•  In this approach we took an aggregate view of the target job mix,

using the Oprofile metrics averaged across all the target
benchmarks across all the platforms. This gives a set of thirty
metrics which describe the aggregate ‘shape’ of the target job mix
across all platforms.

•  We then took the sweep dataset previously constructed by running
each analogue benchmark with a range of different input parameters
across all the platforms, resulting in 141 data points, each with the
same thirty metrics as the aggregate for the target job mix.

•  An analogue job mix was then constructed by creating a pool of 100
job slots which were incrementally tested against all of the 141
analogues to determine whether a better least-squares fit would
result from the replacement of the previous job by the new one. An
iteration involved testing each of the job slots on turn.

•  The stopping criteria were that are either the number of iterations
exceeded 1000 or the difference in the least squares error between
iterations falls below 0.01.

!  Method 2 results

The analogue job mix constructed using this algorithm converged
quickly, taking just seven passes to meet the stopping criteria.
The convergence of the least-squares error is shown above.

 29

!  Method 2 results (Nehalem)

30

!  Method 2 results (Nehalem)

31

!  Method 2 results (Nehalem)
•  The method 2 analogue job mix has been

constructed in a way that makes it behave
very closely to that of the target job mix, as
measured by the Oprofile hardware metrics.

•  All of the most important metrics show errors
of less than 4% between the target and
analogue job mixes.

•  Larger errors are limited to the less important
metrics that have lower sampling rates.

•  With this approach the performance across
the whole analogue job mix is indicated by
the cycles per instruction metric.

32

!  Method 3
Residual refinement of a composite analogue job mix
•  An aggregate view of the target job mix is taken using

the Oprofile metrics summarised across all the target
benchmarks and across all the platforms.

•  We then attempt to iteratively build a representative
workload using as our measure of fitness the least
squares difference between the average metric scores
of the new job mix with those of the target job mix.

•  This method differs from method 2 in that job slots are
filled incrementally. Thus the algorithm starts from an
empty job mix and incrementally looks for analogues
which reduce the residual error.

•  10.3.3. The error for the first 100 slots is show in
Figure 44 below. The x axis represents the job slot.

33

!  Method 3 results

34

The least squares difference rapidly converges to around 11.5 and by the time we have
used 5000 job slots this has only dropped to 11.4. Thus by the time we have around
100 jobs we have a good analogue job mix that should closely match the behavior of
the target job mix.

!  Method 3 results (Nehalem)

35

!  Method 3 results (Nehalem)

36

!  Method 3 results (Nehalem)
•  One can see from these results that this new analogue

job mix also behaves in a manner very close to that of
the target job mix, as measured by the Oprofile
metrics.

•  The first two most important metrics show errors of
less than 5% between the target and analogue job
mixes.

•  Again, less important metrics with lower sampling
rates show larger errors.

•  Method 3 did not prove as accurate as method 2, with
larger errors in general.

•  As with the previous new approach, the performance
across the whole analogue job mix is indicated by the
cycles per instruction metric.

37

!  Comparison of the three methods

38

Method 1: hand selection

Target benchmark job mix

Method 2: pointwise construction

Method 3: residual refinement

!  Conclusions
•  The results show that these approaches are useful,

producing analogue benchmark job mixes that are
within 10-15% of the runtime of the target benchmark
job mix across a range of different platforms.

•  We found that the optimal mix of analogue
benchmarks varied by platform, suggesting caution is
needed when interpreting the results when using the
analogue benchmark job mixes.

•  Results also showed that we lacked an analogue that
exhibited significant branch mispredictions compared
to the target benchmarks

•  These techniques can be useful in abstracting away
from classified codes.

39

