

ENVISION. ACCELERATE.

The best of both worlds: Delivering aggregated performance for high-performance math libraries in accelerated systems

Dr James Irwin and Mr Simon McIntosh-Smith ClearSpeed Technology plc

Copyright © 2007 ClearSpeed Technology plc. All rights reserved.

www.clearspeed.com

ARR

Introduction to accelerated systems

Many systems are already reaching infrastructure limits:

- Data center size
- Power supply
- Cooling

Accelerators emerging to significantly increase performance per (cubic meter, watt)

Tokyo Tech created the first of the new wave of accelerated supercomputers, TSUBAME

- Performance increased from 38 TFLOPS to 47 TFLOPS with 360 ClearSpeed Advance[™] accelerators
- An increase in performance of 24%, but for just a 1% increase in power consumption
- #9 in the November 2006 Top500

Professor Matsuoka standing beside TSUBAME at Tokyo Tech

ClearSpeed accelerators and CSXL

ClearSpeed Advance[™] accelerator:

- ~66 GFLOPS DGEMM @210MHz
- PCI-X now, PCI Express x8 soon
- ~25 watts for entire board
- 1GByte of local DRAM with ECC
- 20cm long
- CSXL accelerated math library includes key routines from L3 BLAS and LAPACK

– E.g. DGEMM, DGETRF

 Plug-and-play: applications call routines in CSXL like any other BLAS/LAPACK library

Data transfers to/from accelerator handled internally

LINPACK

Eile Source Files Window Help											
□ □ ○											
/ hundredPercent.cst \ fivePercent.cst \											
🛅 Timeline							······································				
63558 🗸 🛏 📼 😜 😜 🔿											
usecs	108048600	114404400	120760200	127116000	133471800	139827600	146183400				
				•	17648	343	<u>→</u>				
(19818) PDGESV(KZ)							▲				
(19818) PDGESV(K2) PFACT											
(19818) PDGESV(K2) DEPTH PRECHARGE											
(19818) PDGESV(K2) MPI											
(19818) PDRPAN(RLN) DGEMM											
(19818) PDRPAN(RLN) DTRSM											
(19818) PDUPDATE(NN)											
(19856) PDUPDATE(NN) CS DTRSM											
(19856) PDUPDATE(NN) CS DGEMM											
(19818) PDUPDATE(NN) MPI											
(19818) Unknown											
•				30353		888888					
m = 9560, n = 4608, k = 1152 GFLOPS = 1	= 5.751 m = 9560, n = 4608, k = 1152 GFLOPS = 5.751										
3045/3045 records loaded				129	376095 J147024	438 17648343					

ClearSpeed's visual profiler showing the LINPACK benchmark running on an unaccelerated 1.8GHz dual-core AMD Opteron

4

Accelerators: replacement performance

- Typically an accelerator runs a computationally intensive kernel instead of the host
- This leaves performance on the table
 - Today's multi-core CPUs are capable of tens of GFLOPS

Accelerators: additive performance

Extend CSXL so that it can heterogeneously use the host and the accelerator at the same time

Additive LINPACK

Eile Source Files Window Help											
Buffer 55458846 Position 0 < >											
(hundredPercent.cst) fivePercent.cst)											
Timeline											
15597											
usecs 26514900 28074600	29634300	31194000	32753700	34313400	35873100						
			•	_ 1700509 _ ►							
(20849) PDGESV(K2)					▲						
(20849) PDGESV(K2) PFACT											
(20849) PDGESV(K2) DEPTH PRECHARGE											
(20849) PDGESV(K2) MPI											
(20849) PDRPAN(RLN) DGEMM											
(20849) PDRPAN(RLN) DTRSM											
(20849) PDUPDATE(NN)		-									
(20890) PDUPDATE(NN) CS DTRSM											
(20890) PDUPDATE(NN) CS DGEMM		-		C							
(20849) PDUPDATE(NN) MPI											
(20849) Unknown											
m = 9560, n = 4608, k = 1152 GFLOPS = 59.686	m = 9560,	m = 9560, n = 4608, k = 1152 GFLOPS = 59.686									
6629/6629 records loaded		330	330360 35530	869 1700509	J						

DGEMM now using the dual core Opteron and the accelerator at the same time

DGEMM performance increased from 46 to 60 GFLOPS

Static load balancing

- Once CSXL can use the host and the accelerator to perform DGEMM at the same time, how should it divide the work from a single DGEMM call across these heterogeneous resources?
- A simple approach is to use a static host fraction
 - Split every call to DGEMM into a fixed amount for the host and the rest for the accelerator
- Advantages of this approach:
 - Can be very finely tuned by experimentation
 - Simple to implement
- Disadvantages of this approach:
 - Inflexible different sizes and shapes of DGEMM may suit different host fractions
 - Time consuming deriving the ideal host fraction may require much experimentation
 - Static host fraction derived as the ratio of the DGEMM performance curves of the host and the accelerator

Dynamic host fraction and auto calibration

- The static host fraction scheme has drawbacks
- We developed a dynamic host fraction method which employs a model of the performance of a homogeneous system when multiplying an m×k matrix by a k×n matrix:

$d_1mn+d_2mk+d_3nk+d_4mnk$

- The values of the d_i coefficients can be derived automatically as part of a calibration step
- Advantages over the static scheme:
 - Flexible: works for varying shapes and sizes of DGEMM
 - Easy to use: auto calibration

Test system specifications

- We tested the effectiveness of the dynamic host fraction scheme in two different multicore systems:
 - 1. A four core system
 - Two AMD Opteron 280s (2.4GHz dual-core)
 - 2. An eight core system
 - Four AMD Opteron 870s (2GHz dual-core)
- Both systems included a single ClearSpeed accelerator

Predicted vs. measured DGEMM performance

 Individually validating the models of the hosts and the accelerators

4 core system

8 core system

Dynamic host fractions

Resulting dynamic host fractions

4 core system

8 core system

Measured aggregate DGEMM performance

Do we achieve additive performance?

4 core system

8 core system

How good are these results?

• What additive performance might we expect for DGEMM?

- One simple model would be to sum the performance predicted by the models for the host and the accelerator
- Ignores important effects:
 - · Overhead on the host supporting the accelerator
 - Peaky DGEMM performance

Additive LINPACK results

Static (took a morning to manually calibrate):

- 4 core system: *41.3* GFLOPS
- 8 core system: *43.6* GFLOPS

Dynamic (auto calibrated in 10 seconds):

- 4 core system: 35.79 GFLOPS
 - 87% of best static score
- 8 core system: 39.57 GFLOPS
 - 91% of best static score

LINPACK job size was ~6GBytes, relatively small

Conclusions

 We have demonstrated that aggregating heterogeneous compute resources across multi-core general purpose CPUs and accelerators can be efficient and flexible

- We believe this method is widely applicable within HPC

- The heterogeneous DGEMM implementation in both static and dynamic host fraction forms achieved excellent aggregate performance
- The dynamic host fraction version was significantly easier to use, and delivers better performance in situations where the shapes of the DGEMM calls varied

Further Work

- More accurate models and calibration of DGEMM performance on the host and accelerator
- Extend heterogeneous support across:
 - Other BLAS/LAPACK functions, such as *DTRSM*
 - Other data parallel computations
- Support multiple accelerators simultaneously
- Extend the range of supported heterogeneous processor classes to include remote resources
- Optimize for performance per watt vs. outright performance

Acknowledgements

- We would like to thank our colleagues at ClearSpeed who have been developing the CSXL library and who have significantly contributed to this work, including:
 - Matthias Dejaegher
 - John Gustafson
- Our thanks go to the entire CSXL team!
- A full of this paper will be available online from www.clearspeed.com