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Energy Aware COmputing (EACO): 
• Multi-core and many-core computer architectures 

• Inmos, XMOS, ClearSpeed, Pixelfusion, … 

• Algorithms for heterogeneous architectures (GPUs, OpenCL) 

• Electronic and Optical Network on Chip (NoC) 

• Reconfigurable architectures (FPGA) 

• Design verification (formal and simulation-based), formal 

specification and analysis 

• Silicon process variation 

• Fault tolerant design (hardware and software) 

• Design methodologies, modelling & simulation of MNT based 

structures and systems 



Overview 

• Parallelism in computing 

• Overview and discussion of current 

parallel languages 

• Chapel (HPC) 

• OpenCL (desktop/embedded) 

• Moving forward 

• Heterogeneous System Architecture 

• Research into general purpose highly parallel 

architectures 
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Didn’t parallel computing 

use to be a niche? 

6 © Simon McIntosh-Smith, Jamie Hanlon 



A long history in HPC… 
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But now parallelism is mainstream 
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Quad-core ARM Cortex A9 CPU 
 

Quad-core SGX543MP4+ Imagination GPU  
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HPC stronger than ever 
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• 705,024 SPARC64 processor cores delivering 10.51 

petaflops (10 quadrillion calculations per second) 

• No GPUs or accelerators 

• 9.9 MW 

 
© Simon McIntosh-Smith, Jamie Hanlon 



2nd fastest computer in the world 
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• Tianhe-1A in Tianjin, China 

• 2.6 petaflops 

• 14,336 Intel 2.93 GHz CPUs (57,334 cores) 

• 7,168 NVIDIA Tesla M2050 GPUs (100,000 cores) 

• 4 MW power consumption 



Big computing is mainstream too 
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http://www.nytimes.com/2006/06/14/technology/14search.html 

Report: Google Uses About 900,000 Servers (Aug 1st 2011) 
 

http://www.datacenterknowledge.com/archives/2011/08/01/ 

report-google-uses-about-900000-servers/  
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A renaissance in parallel programming 
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CSP 

• Erlang 

• Occam-pi 

• XC 

 

GPGPU 

• OpenCL 

• CUDA 

• HMPP 

• OpenACC 

 

Message-passing 

• MPI 
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Multi-threaded 

• OpenMP 

• Cilk 

• Go 

 

Object-orientated 

• C++ AMP 

• CHARM++ 

 

PGAS 

• Co-array Fortran 

• Chapel 

• Unified Parallel C 

• X10 

 

 



Chapel 
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Chapel 

• Cray development funded by DARPA as 

part of HPCS program 

• Partitioned global address space (PGAS) 

language 

• Central abstraction is a global array 

partitioned across a system 

• Programmer control of locality by allowing 

explicit affinity of both tasks and data to 

locales 

14 © Simon McIntosh-Smith, Jamie Hanlon 



Arrays and distribution 
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• Several array types 

• Can be distributed with a domain map 

• Standard maps and can be user-defined 

• Computation can remain the same 

regardless of a specific distribution 



Chapel’s data parallelism 

• Zippered forall: 

 

 

• loop body sees ith element from each iteration 

• Works over: 

• distributed arrays 

• arrays with different distributions 

• user-defined iterators – A,B,C could be trees 

or graphs 
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forall (a, b, c) in (A, B, C) do 

  a = b + alpha * c 



MPI+OpenMP 
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#include <hpcc.h> 

#ifdef _OPENMP 

#include <omp.h> 

#endif 

 

static int VectorSize; 

static double *a, *b, *c; 

 

int HPCC_StarStream(HPCC_Params *params) { 

  int myRank, commSize; 

  int rv, errCount; 

  MPI_Comm comm = MPI_COMM_WORLD; 

 

  MPI_Comm_size( comm, &commSize ); 

  MPI_Comm_rank( comm, &myRank ); 

 

  rv = HPCC_Stream( params, 0 == myRank); 

  MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 

    0, comm ); 

 

  return errCount; 

} 

 

int HPCC_Stream(HPCC_Params *params, int doIO) { 

  register int j; 

  double scalar; 

 

  VectorSize = HPCC_LocalVectorSize( params, 3, 

    sizeof(double), 0 ); 

 

  a = HPCC_XMALLOC( double, VectorSize ); 

  b = HPCC_XMALLOC( double, VectorSize ); 

  c = HPCC_XMALLOC( double, VectorSize ); 

 

 

  if (!a || !b || !c) { 

    if (c) HPCC_free(c); 

    if (b) HPCC_free(b); 

    if (a) HPCC_free(a); 

    if (doIO) { 

      fprintf( outFile, "Failed to allocate memory 

        (%d).\n", VectorSize ); 

      fclose( outFile ); 

    } 

    return 1; 

  } 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) { 

    b[j] = 2.0; 

    c[j] = 0.0; 

  } 

 

  scalar = 3.0; 

 

#ifdef _OPENMP 

#pragma omp parallel for 

#endif 

  for (j=0; j<VectorSize; j++) 

    a[j] = b[j]+scalar*c[j]; 

 

  HPCC_free(c); 

  HPCC_free(b); 

  HPCC_free(a); 

 

  return 0; 

} 



Composition in Chapel 
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cobegin { 

  forall (a, b, c) in (A, B, C) do 

    a = b + alpha * c; 

   forall (d, e, f) in (D, E, F) do 

    d = e + beta * f; 

} 

forall a in A { 

  if a == 0 then 

    begin a = f(a) 

  else 

    a = g(a) 

} 

• Data parallelism 

 

 

 

• Task parallelism nested in data parallelism 

 



Issues with Chapel 

• HPC-orientated: not suitable for general 

programming, e.g. embedded platforms 

• Locales support only a single level 

hierarchy 

• No load balancing/dynamic resource 

management 

• Too high level? Is it a good abstraction of 

a parallel machine? 
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OpenCL 
(Open Computing Language) 
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OpenCL 

GMCH = graphics memory control hub 

 ICH = Input/output control hub 
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• Open standard for portable, parallel programming of 

heterogeneous systems 

• Lets programmers write a single portable program that uses 

all resources in the heterogeneous platform 

GMCH GPU 

ICH 

CPU 
CPU 

DRA
M 

A modern system includes: 

–One or more CPUs 

–One or more GPUs 

–DSP processors 

–…other devices? 



OpenCL platform model 

• One Host + one or more Compute Devices 

• Each Compute Device is composed of one or more Compute Units 

• Each Compute Unit is further divided into one or more Processing 

Elements 
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The BIG idea behind OpenCL 
• Replace loops with functions (a kernel) executing at each point 

in a problem domain (index space). 

• E.g., process a 1024 x 1024 image with one kernel invocation  

per pixel or 1024 x 1024 = 1,048,576 kernel executions 

void 

trad_mul(const int n,  

         const float *a,  

         const float *b,  

         float *c) { 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] * b[i];

 } 

Traditional loops 

kernel void 

dp_mul(global const float *a,  

       global const float *b,  

       global float *c) { 

  int id = get_global_id(0); 

 

  c[id] = a[id] * b[id]; 

  

} // execute over “n” work-items 

Data parallel OpenCL 
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OpenCL memory model 

• Private Memory 

• Per Work-Item 

• Local Memory 

• Shared within a Work-Group   

• Global / Constant 

Memories 

• Visible to all Work-Groups 

• Host Memory 

• On the CPU 

Work-Group 

Work-Item 

Compute Device 

Work-Item 

Work-Group 

Host 

Private 
Memory 

Private 
Memory 

Local Memory Local Memory 

Global Memory & Constant Memory 

Host Memory 

Memory management is explicit  
You must move data from host  global  local and back 

Work-Item Work-Item 

Private 
Memory 

Private 
Memory 
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Issues with OpenCL 

• It does not compose 

• Disjoint memory address spaces (local/global) 

• Barriers 

 

•  It provides no resource management 

• Kernels are a statically allocated resource 
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Heterogeneous System 

Architecture (HSA) 
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HSA overview 

• Announced recently by AMD as new open 
architecture specification 
• HSAIL virtual ISA 
• HSA memory model 

• HSA dispatch 
 

• Provides an optimised platform architecture 
for OpenCL 

 

• Already being adopted by other vendors 
starting with ARM 
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HSA features: simplifying programming 

• Integration of CPU and GPU in silicon 

• Unified memory controller 

• Unified address space for CPU and GPU 

• Potentially even GPU context switching! 

• HSA programming model introduces 

PGAS-style distributed arrays 

• Memory hierarchy abstraction to address 

function composition 

• First class barrier objects 
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HSA Intermediate Layer (HSAIL) 

• Virtual ISA for parallel programs 

• Similar idea to LLVM IR - a good target for 

compilers 

• Finalised to specific ISA by a JIT compiler 

• Features: 
• Explicitly parallel 

• Support for exceptions, virtual functions and other high-level 

features 

• Syscall methods (I/O, printf etc.) 

• Debugging support 
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HSA memory model 

• Compatible with C++11, Java and .NET 

memory models 

• Relaxed consistency 
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HSA dispatch 

• HSA designed to enable heterogeneous 

task queuing 

• A work queue per core 

• Distribution of work into queues 

• Load balancing by work stealing 
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Research into highly 

parallel & general purpose 

architectures 
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Composability 
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Need for general 

purpose parallel 

processors 

 

Must support many 

algorithms, even within 

a single application 

 

Task farms, pipeline, 

data parallelism, … 

 



A scalable architecture 

• 1 - 1000 of cores per chip 

• Potentially millions of cores in a system 

• Regular tiled implementation on chips, modules 

and boards 
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Interconnect performance 

• Must provide low latency, high throughput 

communication 

• This must scale well with the number of 

processors 

• Clos & hypercube networks provide these 

properties but it is assumed they are 

prohibitively difficult to build 

• Low dimensional meshes seem to be the convention 

• Potential in new technology: 3D stacking, silicon 

substrates, optical interconnections, … 
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Summary 

• Parallel languages are going through a renaissance 

 

• Not just for the niche high-end any more 
 

• No silver bullets, lots of “wheel reinventing” 

 

• In HPC, GPUs being adopted quickly at the high-end 

 

• In embedded computing, OpenCL gaining ground 

 

• Movement towards high level general purpose models 
of parallelism 
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