
The resurgence of parallel

programming languages

Jamie Hanlon &

Simon McIntosh-Smith

University of Bristol

Microelectronics Research Group

hanlon@cs.bris.ac.uk

1 © Simon McIntosh-Smith, Jamie Hanlon

mailto:simonm@cs.bris.ac.uk

The Microelectronics Research

Group at the University of Bristol

www.cs.bris.ac.uk/Research/Micro

2 © Simon McIntosh-Smith, Jamie Hanlon

http://www.cs.bris.ac.uk/Research/Micro

The team

3 © Simon McIntosh-Smith, Jamie Hanlon

Simon McIntosh-Smith

Head of Group

Prof David May Prof Dhiraj Pradhan

Dr Jose

Nunez-Yanez

Dr Kerstin Eder Dr Simon Hollis Dr Dinesh

Pamunuwa

7 tenured staff, 6 research assistants, 16 PhD students

Group expertise

4 © Simon McIntosh-Smith, Jamie Hanlon

Energy Aware COmputing (EACO):
• Multi-core and many-core computer architectures

• Inmos, XMOS, ClearSpeed, Pixelfusion, …

• Algorithms for heterogeneous architectures (GPUs, OpenCL)

• Electronic and Optical Network on Chip (NoC)

• Reconfigurable architectures (FPGA)

• Design verification (formal and simulation-based), formal

specification and analysis

• Silicon process variation

• Fault tolerant design (hardware and software)

• Design methodologies, modelling & simulation of MNT based

structures and systems

Overview

• Parallelism in computing

• Overview and discussion of current

parallel languages

• Chapel (HPC)

• OpenCL (desktop/embedded)

• Moving forward

• Heterogeneous System Architecture

• Research into general purpose highly parallel

architectures

5 © Simon McIntosh-Smith, Jamie Hanlon

Didn’t parallel computing

use to be a niche?

6 © Simon McIntosh-Smith, Jamie Hanlon

A long history in HPC…

7 © Simon McIntosh-Smith, Jamie Hanlon

But now parallelism is mainstream

8

Quad-core ARM Cortex A9 CPU

Quad-core SGX543MP4+ Imagination GPU

© Simon McIntosh-Smith, Jamie Hanlon

HPC stronger than ever

9

• 705,024 SPARC64 processor cores delivering 10.51

petaflops (10 quadrillion calculations per second)

• No GPUs or accelerators

• 9.9 MW

© Simon McIntosh-Smith, Jamie Hanlon

2nd fastest computer in the world

10 © Simon McIntosh-Smith, Jamie Hanlon

• Tianhe-1A in Tianjin, China

• 2.6 petaflops

• 14,336 Intel 2.93 GHz CPUs (57,334 cores)

• 7,168 NVIDIA Tesla M2050 GPUs (100,000 cores)

• 4 MW power consumption

Big computing is mainstream too

11

http://www.nytimes.com/2006/06/14/technology/14search.html

Report: Google Uses About 900,000 Servers (Aug 1st 2011)

http://www.datacenterknowledge.com/archives/2011/08/01/

report-google-uses-about-900000-servers/

© Simon McIntosh-Smith, Jamie Hanlon

http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/

A renaissance in parallel programming

12

CSP

• Erlang

• Occam-pi

• XC

GPGPU

• OpenCL

• CUDA

• HMPP

• OpenACC

Message-passing

• MPI

© Simon McIntosh-Smith, Jamie Hanlon

Multi-threaded

• OpenMP

• Cilk

• Go

Object-orientated

• C++ AMP

• CHARM++

PGAS

• Co-array Fortran

• Chapel

• Unified Parallel C

• X10

Chapel

13 © Simon McIntosh-Smith, Jamie Hanlon

Chapel

• Cray development funded by DARPA as

part of HPCS program

• Partitioned global address space (PGAS)

language

• Central abstraction is a global array

partitioned across a system

• Programmer control of locality by allowing

explicit affinity of both tasks and data to

locales

14 © Simon McIntosh-Smith, Jamie Hanlon

Arrays and distribution

15 © Simon McIntosh-Smith, Jamie Hanlon

• Several array types

• Can be distributed with a domain map

• Standard maps and can be user-defined

• Computation can remain the same

regardless of a specific distribution

Chapel’s data parallelism

• Zippered forall:

• loop body sees ith element from each iteration

• Works over:

• distributed arrays

• arrays with different distributions

• user-defined iterators – A,B,C could be trees

or graphs

16 © Simon McIntosh-Smith, Jamie Hanlon

forall (a, b, c) in (A, B, C) do

 a = b + alpha * c

MPI+OpenMP

17 © Simon McIntosh-Smith, Jamie Hanlon

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

 0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

 sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

 (%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

Composition in Chapel

18 © Simon McIntosh-Smith, Jamie Hanlon

cobegin {

 forall (a, b, c) in (A, B, C) do

 a = b + alpha * c;

 forall (d, e, f) in (D, E, F) do

 d = e + beta * f;

}

forall a in A {

 if a == 0 then

 begin a = f(a)

 else

 a = g(a)

}

• Data parallelism

• Task parallelism nested in data parallelism

Issues with Chapel

• HPC-orientated: not suitable for general

programming, e.g. embedded platforms

• Locales support only a single level

hierarchy

• No load balancing/dynamic resource

management

• Too high level? Is it a good abstraction of

a parallel machine?

 19 © Simon McIntosh-Smith, Jamie Hanlon

OpenCL
(Open Computing Language)

20 © Simon McIntosh-Smith, Jamie Hanlon

OpenCL

GMCH = graphics memory control hub

 ICH = Input/output control hub

21 © Simon McIntosh-Smith, Jamie Hanlon

• Open standard for portable, parallel programming of

heterogeneous systems

• Lets programmers write a single portable program that uses

all resources in the heterogeneous platform

GMCH GPU

ICH

CPU
CPU

DRA
M

A modern system includes:

–One or more CPUs

–One or more GPUs

–DSP processors

–…other devices?

OpenCL platform model

• One Host + one or more Compute Devices

• Each Compute Device is composed of one or more Compute Units

• Each Compute Unit is further divided into one or more Processing

Elements
22 © Simon McIntosh-Smith, Jamie Hanlon

The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each point

in a problem domain (index space).

• E.g., process a 1024 x 1024 image with one kernel invocation

per pixel or 1024 x 1024 = 1,048,576 kernel executions

void

trad_mul(const int n,

 const float *a,

 const float *b,

 float *c) {

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

 }

Traditional loops

kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c) {

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data parallel OpenCL

23 © Simon McIntosh-Smith, Jamie Hanlon

OpenCL memory model

• Private Memory

• Per Work-Item

• Local Memory

• Shared within a Work-Group

• Global / Constant

Memories

• Visible to all Work-Groups

• Host Memory

• On the CPU

Work-Group

Work-Item

Compute Device

Work-Item

Work-Group

Host

Private
Memory

Private
Memory

Local Memory Local Memory

Global Memory & Constant Memory

Host Memory

Memory management is explicit
You must move data from host global local and back

Work-Item Work-Item

Private
Memory

Private
Memory

24 © Simon McIntosh-Smith, Jamie Hanlon

Issues with OpenCL

• It does not compose

• Disjoint memory address spaces (local/global)

• Barriers

• It provides no resource management

• Kernels are a statically allocated resource

25 © Simon McIntosh-Smith, Jamie Hanlon

Heterogeneous System

Architecture (HSA)

26 © Simon McIntosh-Smith, Jamie Hanlon

HSA overview

• Announced recently by AMD as new open
architecture specification
• HSAIL virtual ISA
• HSA memory model

• HSA dispatch

• Provides an optimised platform architecture
for OpenCL

• Already being adopted by other vendors
starting with ARM

27 © Simon McIntosh-Smith, Jamie Hanlon

HSA features: simplifying programming

• Integration of CPU and GPU in silicon

• Unified memory controller

• Unified address space for CPU and GPU

• Potentially even GPU context switching!

• HSA programming model introduces

PGAS-style distributed arrays

• Memory hierarchy abstraction to address

function composition

• First class barrier objects

 28 © Simon McIntosh-Smith, Jamie Hanlon

HSA Intermediate Layer (HSAIL)

• Virtual ISA for parallel programs

• Similar idea to LLVM IR - a good target for

compilers

• Finalised to specific ISA by a JIT compiler

• Features:
• Explicitly parallel

• Support for exceptions, virtual functions and other high-level

features

• Syscall methods (I/O, printf etc.)

• Debugging support

29 © Simon McIntosh-Smith, Jamie Hanlon

HSA memory model

• Compatible with C++11, Java and .NET

memory models

• Relaxed consistency

30 © Simon McIntosh-Smith, Jamie Hanlon

HSA dispatch

• HSA designed to enable heterogeneous

task queuing

• A work queue per core

• Distribution of work into queues

• Load balancing by work stealing

31 © Simon McIntosh-Smith, Jamie Hanlon

Research into highly

parallel & general purpose

architectures

32 © Simon McIntosh-Smith, Jamie Hanlon

Composability

33 © Simon McIntosh-Smith, Jamie Hanlon

Need for general

purpose parallel

processors

Must support many

algorithms, even within

a single application

Task farms, pipeline,

data parallelism, …

A scalable architecture

• 1 - 1000 of cores per chip

• Potentially millions of cores in a system

• Regular tiled implementation on chips, modules

and boards

34 © Simon McIntosh-Smith, Jamie Hanlon

Interconnect performance

• Must provide low latency, high throughput

communication

• This must scale well with the number of

processors

• Clos & hypercube networks provide these

properties but it is assumed they are

prohibitively difficult to build

• Low dimensional meshes seem to be the convention

• Potential in new technology: 3D stacking, silicon

substrates, optical interconnections, …

35 © Simon McIntosh-Smith, Jamie Hanlon

Summary

• Parallel languages are going through a renaissance

• Not just for the niche high-end any more

• No silver bullets, lots of “wheel reinventing”

• In HPC, GPUs being adopted quickly at the high-end

• In embedded computing, OpenCL gaining ground

• Movement towards high level general purpose models
of parallelism

36 © Simon McIntosh-Smith, Jamie Hanlon

www.cs.bris.ac.uk/Research/Micro

37 © Simon McIntosh-Smith, Jamie Hanlon

