The Road from Peta to ExaFlop

Andreas Bechtolsheim

June 23, 2009

Changes in the Computer Business

- Virtualization Consolidates Enterprise Datacenters
 - Reduces the number of servers required in Enterprise
- Cloud Computing Outsources Applications
 Further reduces size of the traditional Enterprise server market
- High Performance Computing Gaining Share
 - Open ended demand for more performance, does not virtualize
- Moore's Law Benefits HPC Market
 - Go Faster, Faster

High-speed Fabrics Everywhere

10 GigE and Infiniband shipping in volume

HPC, Database and Storage Clusters

Outstanding scaling for wide range of applications

Predictable roadmaps to 100 Gbps and beyond

Top 500 List Observations

- It took II years to get from I TF to I PF
- Performance doubled approximately every year
- Assuming the trend continues, I EF by 2020
- Question can this be achieved?
- Moore's law predicts 2X Transistors every 2 years
- Need to double every year to achieve EF in 2020

Challenges

- Semiconductor Roadmap
- Packaging Technology
- Power and Cooling
- Local Interconnect
- External Interconnect
- Storage System
- Software Scalability
- Exploiting Parallelism

The Basic Math:"More than Moore"

Aggregate Performance = N * C * F * I

١	1	Number of Modules	20% / Y	Budget, Power
(()	Cores per Module	40% / Y	Technology, Power
F	Η	Frequency	5% / Y	Technology, Power
	-	Instruction Efficiency	I 5% / Y	Architecture, Power
		TOTAL	100% / Y	

Must increase system size, cores per module, and Instruction Efficiency to double every year

Year	2010	2020	Ratio
Clock Rate	2.5 GHz	4 GHz	5%/Y
FLOPS/Clock	4	16	4X
FLOPS/Core	10 GF	64 GF	6.4X
Cores/Module	16	160	10X
FLOPS/Module	160 GF	10 TF	64X
Mem Bandwidth	30 GB/s	2 TB/s	64X
M Bandwidth/F	0.2 B/F	0.2 B/F	=
IO Bandwidth	3 GB/s	192 GB/s	64X
IO Bandwidth/F	0.02 B/F	0.02 B/F	=
Power / Module	250W	500W	2X
Power Efficiency	0.6 GF/W	20 GF/W	32X

Year	2010	2020	Ratio
FLOPS/Module	160 GF	10 TF	64X
Modules/System	16,000	100,000	6X
FLOPS/System	2.5 PF	1 EF	320X
Cores/Module	16	160	10X
Cores/System	256,000	16M	64X
Memory/Module	30 GB/s	2 TB/s	64X
Memory/System	0.2 B/F	0.2 B/F	=
IO Bandwidth	3 GB/s	192 GB/s	64X
IO Bandwidth/F	0.02 B/F	0.02 B/F	=
Power / Module	250W	500W	2X
Power / System	4 MW	50 MW	12X

The Biggest Challenge: Memory Bandwidth

- Memory bandwidth must grow with throughput
- 2020 CPU needs > 64X the memory bandwidth
- Traditional Package I/O pins are basically fixed
- Electrical signaling hitting speed limits
- How to scale memory bandwidth?
- Solution: Multi-Chip 3D Packaging

Benefits of MCM Packaging

- Enables much higher memory bandwidth
- More channels, wider interfaces, faster I/O
- Greatly reduces memory I/O power
- Memory signals are local to MCM
- Reduces system size and power

MCM Enables Fabric I/O Integration

- 2010: I*4X QDR (32 Gbps / direction)
- 2020: 6*12X XDR (1.72 Tbps / direction)
- Mesh or Higher Radix Fabric Topologies
- I2X Copper for Module-Module Traces
- I2X Optical for Board-Board, Rack-Rack
- Very high message rates (Several Billion/sec)
- Support for global memory addressing

Benefits of integrating Router with CPU

- Best way to get highest message rate
- Match Injection and Link Bandwidth
- No congestion on receive
- Avoids intermediate bus conversions
- Eliminates half of the I/O pins and power
- Lowest cost and lowest power design
- Separate router chips are I/O Bound

What is the Best Fabric for Exascale?

- Optimal solution depends on economics
 - Cost of NIC, Router, Optical Interconnect
- Combination of mesh and tree look promising
 - Good global and local bandwidth
- Higher radix meshes significantly reduce hop-count
 - Pure 3D Torus for Exascale system is too large
- Robust Dynamic Routing desirable
 - Needed for load balancing and to recover from hardware failures

Next Challenge: Power

- Power Efficiency is critical
- Design for greatest power efficiency
- Clock frequency versus power
- Minimize interface and I/O power
- Optimize CapEx and OpEx

Power Efficiency Strategy

- Reduce I/O power as much as possible
 - Requires MCM packaging, lower voltage interface levels
 - Saves more than 50% compared to power today
- Minimize Leakage Current
 - Lower temperature/liquid cooling helps
 - Optimize transistor designs and materials
- Simplify CPU Architecture
 - Lower memory latency simplifies pipelines
 - Integrate NIC and I/O subsystems
- Most savings from better packaging

Liquid Cooling is Essential

Reduces Power

- Reduces power required to drive I/O
- Reduces leakage currents
- Avoids wasting power on moving air
- Increases Rack Density
 - Reduces Number of Racks
 - Reduces Weight and Structural Costs
 - Reduces Cabling
- Improves Heat Removal per Socket
 - Liquid Cooling required to increase system density
 - Physics of air cooling are not changing
 - Liquid Cooling with Microchannels look promising

Packaging Technology Summary

• Main new development is Multi-Chip Modules

- Many more signals available on-module than off-module
- Increases memory bandwidth while reducing power
- Decouples memory bandwidth from I/O Pins
- Fabric Interface
 - Integrated NIC reduces power and improves performance
 - Integrated Router supports Mesh and Fat-Tree topologies
 - SERDES support copper and optical (fiber) interfaces
- Power and Cooling
 - 480VAC to each Rack
 - Liquid Cooling to reduce power and increase density
 - Dramatic Increase in Throughput (and power) per rack

ExaScale Storage

• Storage Bandwidth Requirements

- 0.1 GB/s per TF
- 100 GB/sec per PF
- 100 TB/sec per EF
- Forget Hard Disks
 - Disks are not going any faster
 - Useful as a tape replacement
 - At 100 MB/sec per disk, 100 TB/sec would require 1M disks
- Solid State Storage
 - Arriving just in time
 - Rapid Performance Improvements
 - Rapid Cost-reduction expected

Solid State Storage Summary

- Density Doubling Each Year
- Cost Falling by 50% Per Year
- Access times improving quickly
- Throughput improving quickly
- Phase-Change Technology looks promising
- Interface moving from SATA to PCI Express
- Multi-GB/sec per PCI Controller
- 100 TB/sec suddenly looks possible

Scaling to ExaScale: CPU Throughput

- Three Dimensions of Scalability
 - Frequency, Cores, FLOPS/Core
- Increasing Frequency is most difficult
 - Expect modest increases going forward
 - Problem is power consumption per core
- Increasing the Number of Cores per Chip
 - Proportional to Technology Improvements
 - Moore's Law predicts doubling every 2 years
- Increasing FLOPS per Core
 - Increase instruction set parallelism
 - More Functional Units and SIMD instructions

GF/Core	10	16	32	64
I PF	100K	64K	32K	I6K
I0 PF	IM	640K	320K	160K
100 PF	IOM	6.4M	3.2M	I.6M
1000 PF	100M	64M	32M	I6M

GF/W	0.64	3	10	20
I PF	I.5M	300K	100K	50K
I0 PF	I5M	3M	IM	500K
100 PF	150M	30M	I0M	5M
1000 PF	1500M	300M	100M	50M

	1	1	1	1
GF/M	160	640	2500	10000
I PF	6.4K	I.6K	400	100
I0 PF	64K	I6K	4K	IK
100 PF	640K	160K	40K	I 0K
1000 PF	6.4M	I.6M	400K	100K

Technology Summary

- Moore's Law will continue for at least 10 Years
 - Transistors will double approximately every 2 year
 - Not enough to double performance every year
 - "More than Moore" required for 1 EF by 2020
- Frequency Gains are very difficult
 - Power increases super-linear with clock rate
 - Must exploit parallelism with more cores
- Need to increase FLOPS/Core
 - Predictable way to increase performance
 - Mul-add, multiple FPUs, SIMD extensions
- Need to increase memory and I/O bandwidth
 - Need to scale with throughput
 - Need a factor of 64X by 2020

The Software Challenge

• The limits of application parallelism

- Instruction set parallelism
- Number of cores per CPU Module
- Number of CPU modules per system
- Need to exploit parallelism at all levels
 - Quality of compiler code generation
 - Functional parallelism within node (SMP Threads)
 - Data parallelism across nodes (MPI Tasks)
- Ultimate question is application parallelism
 - Will require re-architecting of applications
 - Not all applications will scale to Exaflop size
- RAS Related Challenges
 - MTBI declines with system size
 - Needs high-speed checkpoint restart

System Conclusions

- Expect Throughput to Double every year
 - Combination of Moore's law and efficiency gains
 - First 1 EF System likely by 2020
 - Smallest Top 500 System likely 10 PF in 2020
- PetaFlop Systems will be very small and affordable
 - One PetaFlop per rack by 2016
 - Personal PetaFlop computer by 2020
- Greatly Broadens the HPC market
 - HPC market growth will continue for a long time
 - Big opportunity for small, medium, and large systems
- HPC is a major driver to advance server technology
 - CPUs, Memory, Fabric, Storage, Software
 - Ripple-down effect from the largest to the smallest systems