Multicore/Manycore: What Can We
Expect from the Software?

Kathy Yelick

National Energy Research Supercomputing Center
Lawrence Berkeley National Laboratory and
EECS Department, University of California, Berkeley

~

rreererr

'Il\f!;- .

||||

Berkeley ParLab

This has Also Impacted

HDCC Qhyv/eta
Do O

m (CNnnNnelirraone\y/
YyoLTIII LUIILUIICIIUVY

Sum of the # of cores in top 15 systems (from top500.0rQ)

350000

300000
z15»00(:"?!
100000
S0000
7EIFEETEETIERFEISSESEEESE2EEE
3335338558525 28318583358335%85352133:3
Exponential wave of increasing concurrency for forseeable future!
JIMIN 1M cores sooner than you think! f—“\l A
/___ & ! ERSC . I

DRAM component density is only

Evolution of memory density

10000 2 il
| , u 4Mb
E 1000 .«-jjr'ﬁ* 2XI3yrs 16Mb
L 9,
£ 10 — e
= , x 128Mb
=) 4X/3yrs
| - 0512Mb
1 4+ T T I U ! ﬂ 1Gb
1985 1900 1995 2000 2005 2010 2015 | ogp
Year mass production starts 4Gh

(0 9] /“F"‘& Source: IBM

Is MPI the Answer?

e We can run 1 MPI process per core
— This works now (for CMPs) and will work for a while

« How long will it continue working?
— 4 -8 cores? Probably. 128 - 1024 cores? Probably not.

« What is the problem?
— Latency: some copying required by semantics
— Synchronization: notification required by semantics

— Memory utilization: partitioning requires some replication

« How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: Is “core” really the right term or will these be
a sea of functional units: MPI per CUDA thread-block?

. | 1% -
5 S / !\j 1\ A
/,ﬂgrw-,\ rececer| |
4 s \ W ERSC _}\
S, W .
Berkeley ParLab H

What about Mixed MPI and Threads?

 Threads: OpenMP, PThreads, TBB, ...
—Will this work for 4-8 cores? Probably. More?

 What is the problem?

—OpenMP leads programmers into Amdahl’s Law
trap
» Alternating serial and parallel code
 Doesn’t encourage thinking in parallel (unlike MPI)

—No direct control over locality
« Memory affinity key on multiple sockets. Soon on-chip?
« Can get this with extra help, static threads + pinning

—Two programming models per application

& / i\j-ll :
R .

H R /srﬁ-n-p.\ L UL
4 5 WERScCE

Berkeley ParLab

/PGﬁ_anguages+A to t ning for
n

DMA Manycore/Multi

C')

ol 1 o

« PGAS languages are a good fit to multicore
— Global address space implemented as reads/writes
— Also may be exploited for processor with explicit local store rather
than cache, e.g., Cell, GPUs,...
« Open question in architecture
— Hardware managed caches vs local stores (or hybrid)
— Cache coherence shared memory vs. global addresssing

— UPC demonstrate that the partitioned address space with DMA
operations is useable (although not “high level”)

| m- e e e Private on-chip
_ Shared
X / partitioned
y: 0 on-chip
o Shared
NN - E 1 off-chip f\|
- il——-ll"_ h DRAM ol E.irrrrr Ilh

(3 %
H H:
3 il
i858, Berkeley ParLab

8 Things Software Should Do

(And some encouraging evidence that it can)

U T UltraSparc T2+ T5140 | 2.2

cils/s

te

G

A I 0.6
2+ = = — =~ 0.4 -

Nearest-neighbor 7point stencil on a 3D array

Use Autotuning!
Write code generators and let
computers do tuning

Xeon X5550
(Victoria Falls) 2.0 (Nehalem)

- Reference (cache) Implementation

— -.-- 0.0

1 2 4 8 16 1 2 4 8
Fully Threaded Cores Fully Threaded Cores

7

#2) Software Needs to Address

| |'H'|a | Ay
Lieés Law

Little’s Law: required concurrency = bandwidth * latency
#outstanding_memory_fetches = bandwidth* latency

Single vs. Dual Core Performance
(wallclock time)
4000
NERSC application
benchmarks
Shalf et al
2000 OXT3 SC
B XT3 DC
1500
1000
500
Nl b= B
CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus
application code

Experiment: Running on a fixed number of cores
1 core per socket vs 2 cores per socket
Only 10% performance drop from sharing (halving) bandwidth

\ /\f\
4

~

rreererr

Wersc i

.'EI |

7 Point Stencil Revisited

5.0 — 7pt Performance 11.0 — 7pt Power Efficiency —
4.5 - 10.0 -
4.0 i 3 9.0 N
@35 X 8.0
m m 7-0
= 3.0 ~
g 25 - g OO
e 2. —
2 2.0 1 g >0 i
n o 4.0
O 1.5+ 1 [» 3.0 il
1.0 © 1o
0.5 1.0
0.0 1 = 0.0 []
c © c a w] o © c o k)] o
s 5 2 9 § & 8 & 5 2 3% % &
© o) o S u- 0 > T O S c - 3 4
S © ¢ @0 & - kK < O g ¢ @ =
Z ©§ 2 © §5 @3 O ® 5 2 © 5 T O
m o > .8)] = S (@) 5 _8 8
O m 2 O mo &
> >

e Cell and GTX280 are notable for both performance and
energy efficiency

& Joint work with Kaushik Datta, Jonathan Carter, N
/_f\ Shoaib Kamil, Lenny Oliker, John Shalf, and Sam ,,,,_,}l A
g\ Williams A/= s c) -—\l

Berkeley ParLab 9

Why Is the STI Cell So Efficient?

STriad Bandwidth

a5 o
-
f_,-"'
-
3 - /
= T I I —
3 A
e ___f
-
! ~
.—"--
|
a -
|_'h N 1
16 37 B4 128 256 EI1F 1K 7 4k il 16

Stanza Length (words)

Cell STRIAD (64KB concurrency)

30.000
25.000 —&—% s i i e P
20.000 g—5— & & & —a—&— 48
15.000
10.000
5.000
0.000

16 32 64 128 256 512 1024 2048

stanza size

1 SPE -#-2 SPEs 3 SPEs 4 SPEs
—=5 SPEs 6 SPEs ——7 SPEs 8 SPEs

« Unit stride access Is as important as cache utilization on

processors that rely on hardware prefetch
— Tiling in unit stride direction is counter-productive: improves reuse, but

kills prefetch effectiveness

« Software controlled memory gives programmers more control
— Spend bandwidth on what you use; bulk moves (DMA) hide latency

o ,
Berkeley ParlLab

//’“m\\ Joint work with Shoaib Kamil, Lenny Oliker, John

Shalf, Kaushik Datta

' A
ulks ri,r_1'>r| 1l
W ERSC \

#3) Use Novel Hardware Features Through
Code Generators (Autotuning)

Intel Clovertown AMD Opteron : .
18.0 P LBMHD is not always bandwidth
160 limited: used SIMD, etc.
14.0 14.0 Top 40% at T= 40k
12.0 12.0
..310.0 2100
é 8.0 s.' 8.0
6.0 5.0
4.0 4.0 | |
‘eRRNEEEN -
0.0
1 2 4 8 1 2 4 8 0.0 1 2 4 1 2 4
643 12873 6443 128~3
«._Sun Niagara2 (Huron) IBM Cell Blade +SIMDization
60 160] +SW Prefetching
14.0 14.0 +Unrolling
12:0 12:0 +Vectorization
gro0 00 +Padding
% 80 % =0]
__ Naive+NUMA
6.0 — 6.0
Joint work with Sam
40 0 _’: i Williams, Lenny Oliker, John
2.0 2.0 H Shalf, and Jonathan Carter _~
0.0 L1 |=| j = ’:I ? 00 L1 T e freeeee I}I}
1 2 4 8 1 2 4 8 1 2 4 8 16 1 2 4 8 16 A |

#4) Software Should Avoid
Unnecessary Global Synchronization
UPC on partitioned memory

PLASMA on shared memory
Cholesky —— octa-socket, dual-core Opteron]
[—Piasmas acmisias || UPC vs.
iy O S S S Scal APACK
—LAPACK & ACML BLAS : :
500 ; ‘ - 1 ; . 80 B ScalL APACK
|l mupPc
0 40t
g 60 -
(&} L
30 é_)
20} 8 40
ol
00 20i00 3dOO 40i00 5000 GdOO 70i00 BOIOO 9000 10000 0

1
problem size

UPC LU factorization code adds cooperative (non-

preemptive) threads for latency hiding
— New problem in partitioned memory: allocator deadlock

— Can run on of memory locally due tounlucky execution order

A
ulks rr/rj'}l m
W ERSC ‘—\

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands 12

|\f’.
I\
Berkeley ParLab

#5) Software Should Avoid Unnecessary Point-
to-Point Communication

two-sided message

message id data payload —>
one-sided put message
address data payload —>
8-byte Roundtrip Latency
. 242
@ MPI ping-pong 21
nl_ B GASNet puttsync
- 185
Sl 146
=) 95
E 66 66
ms i
0 T T
Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

host
CPU
network Pay only for
interface what you need
memory
Flood Bandwidth for 4KB messages
100% B MPI
80% | 21 679 714
0% 1 190
o 152
© 60%
=
T 5% 420 750
§40% 547
& 30%
20% -
10%

Han3/Alpha

Eland/IA64

Myrinet/x86

IB/G5 IB/Opteron SPIFed

N \
i] W
Berkeley ParLab

Joint work with Berkeley UPC Group

]
A
receeee| |y
rr B
W ERSC

#6) Alas, Software Needs to Deal with

Faults

e Fault resilience introduces inhomogeneity in
execution rates (error correction is not instantaneous)

225 I | T T | T |
B — Jaguar/Catamount XT4 | |
— Jaguar/Catamount XT3
%\ 200 I — Franklin/CNL XT4 B
=
o n i
Q
Q
w2
~ 175§

L A B

Runtime

1 I 1 | 1 I 1 I
0 2000 4000 6000 000
Processor Number

~

Slide source: John Shalf e (rrreee

||||

Berkeley ParLab

#7) Software should make use of
Good Algorithms

*Algorithmic gains in last decade have

far outstripped Moore’s Law
—Adaptive meshes

Problem Solution Time -- Combustion

rather than uniform

F[— Non-Adaptive, Compressible
e Cray XT4
— Cray XT4 ideal scaling

—Sparse matrices
rather than dense
—Reformulation of
problem back to basics

-

0.01F

Normalize Problem Solution Time

0.001 —
16 A 256 1024 4096

Number of Processors

Example of canonical “Poisson” problem on n points:
—Dense LU: most general, but O(n3) flops on O(n?) data
—Multigrid: fastest/smallest, O(n) flops on O(n) data

INZ
i -] -'II \
’ Berkeley ParLab

~

rreererr
Performance results: John Bell et al WERScln

.'EI |

#8) Algorithm Developers should Avoid
Communication, not Flops

 Consider Sparse Iterative Methods
* Nearest neighbor communication on a mesh
« Dominated by time to read matrix (edges) from DRAM

 And (small) communication and global synchronization
events at each step C

— Can we lower data movement costs?
« Take k steps “at once” with one matrix read
from DRAM and one communication phase

— Parallel implementation
 O(log p) messages vs. O(k log p)

— Serial implementation
 O(1) moves of data moves vs. O(k)
« Performance of Akx operation relative to Ax and upper boun

— Runs up to 5x faster on SMP

Joint work with Jim Demmel,
Mark Hoemman, Marghoob

Mohiyuddin

Performance (GFlop/s)
r - @ ®

INZIN

& = Ny
£ TR
% ' ! Wh)
g 565 o
Berkeley ParLab

But the Numerics have to Change!

Residuals from GMRES(restart), cond = 1e10, n = 1e4

0? © Monomial(25)
2 Newton(25)
<& Chebyshev(25)
v Standard(25)
Standard(infty)

Need to collaborate

Log base 10 of 2-norm relative residual error

| | 1 | 1 | 1 | | |
100 200 300 400 500 600 700 800 900 1000
Iteration count

Work by Jim Demmel and Mark Hoemman Oy ‘.ﬁ|

\ W ERSC

Berkeley ParLab

8 Rules for Software (and Algorithms and

Annlication<)
Y 4 \PPIIUMLIVI I\Jl

1) Don’t waste memory bandwidth

2) Remember Little's Law

3) Use novel hardware features

4) Avoid global synchronization

5) Avoid point-to-point synchronization

6) Deal with faults throughout software

7) Choose efficient algorithms

8) Rethink algorithms to avoid data movement

Hol oM e o o o o o o o ||
" A°H /‘fm\ rFr L
5 W ERSC \
R e W)

g /5105 el BERKELEY LAB :

18

Conclusions

 Enable programmers to get
performance
— Expose features for performance
— Don’t hide them

e Go Green
— Enable energy-efficient computers and
software
 Work with experts on software,
algorithms, applications

! i
__,v—. = ,;7 R / | I'.
H =R /’fﬁ'ﬁ\ . L&
R | W ERSC
L.

19

Software Issues at Scale

e Power concerns will dominates all others:

— Concurrency is the most significant knob we have: lower
clock, increase parallelism

— Power density and facility energy

e Summary Issues for Software
— 1EF system: Billion-way concurrency, O(1K) cores per chip
— 1 PF system: millions of threads and O(1K) cores per chip
— The memory capacity/core ratio may drop significantly
— Faults will become more prevalent
— Flops are cheap relative to data movement

]

' A
ulks r;—_rr\rrl 1l
W ERSC \

How to Waste an Exascale Machine

* Ignore Little’s Law (waste bandwidth)
 Over-synchronize (unnecessary barriers)

 Over-synchronize communication (two-sided
VS. one-sided)

 Waste bandwidth: ignore locality

e Use algorithms that minimize flops rather
than data movement

 Add a high-overhead runtime system when
you don’t need it

T WA s N L rrereef]
G) A\ WERSC I \
RGN AN

g /5105 el RKELEY LAB :

21

To Virtualize or Not

 The fundamental question facing in parallel
programming models is:

What should be virtualized?

« Hardware has finite resources
— Processor count is finite
— Registers count is finite
— Fast local memory (cache and DRAM) size is finite
— Links in network topology are generally < n?

expose this or hide it?

— E.g., one thread per core, or many?

* Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

» But one thread is better for deep memory hierarchies
™\ ° /How to get the most out of your machine? "
. A= sc il

« . \

< 7 /,rrm\ I

E4 . I \

"\;f»{ v / \
Berkeley ParLab i

Reasons to Virtualize

o Simplicity for Programmer
 Potential to hide problems:
—load imbalance in hardware, e.g., jitter
— faults
—wierd memory structures (local stores)
o Effective use of system resources
—In a space-shared environment
— multiple jobs sharing resources

(PP C AL i
c;o' TN | |
P N, \
A 575 |
H o S —_—
" AnH /’Fﬁ'ﬁ\
R il
) \;4’ Sy AN
o 1568 ol

Virtualization of Processors

e A parallel computation is
defined by its task graph

« Many possible graphs,
depending on how much
parallelism is exposed

« Where does the mapping of the
graph to a particular number of
processors happen?

— The compiler: auto parallelization,
NESL, ZPL

— The runtime system : Cilk,
Charm++ (sometimes), OpenMP,
X10

— The programmer: MPI, UP(:,’,’,,}|

o ERSC

o |
A I
4 I__.‘ _|l AV
vl
Berkeley ParL > [N == <= Los

Irregular vs. Regular Parallelism

« Computations with known task graphs can be
mapped to resources in an offline manner (before
computation starts)

— Regular graph: By a compiler (static) or runtime (semi-static)
— Irregular graphs: By a DAG scheduler
— No need for online scheduling

o If graphs are not known ahead of time (structure,
task costs, communication costs), then dynamic
scheduling is needed

— Task stealing / task sharing
— Demonstrated on shared memory

e Conclusion: If your task graph is dynamic, the

runtime needs to be, but what if it static? .

PP C ALy
3 TRon
S
& %
i =G m— X
& R /Srﬁ_r\
z 8 2H | \
£ | \
k) i h |

AN
i858, Berkeley ParLab

Load Balancing with Locality

Locality is important:
— When memory hierarchies are deep

— When computational intensity is low (expensive move cost cannot be
amortized)

Most (all?) successful examples of locality-important
applications/machines use static scheduling

— Unless they have airregular/dynamic task graph so it is impossible

Two extremes are well-studied
— Dynamic parallelism without locality

I~ Y N

with locality

o~

— Static parallelism (with threads = processors
Dynamic scheduling (task stealing) with locality control can cause
problems

— Locality control can cause non-optimal task schedule, which can blow
up memory use (breadth vs. depth first traversal)

— Can run out of memory locally when you don’t globally

FCAL if 2
-== / i\j Il
fi /STF-H-IF-\ ik rrefFeer
: N ERSC
1868 3

A
||||
Berkeley ParLab \

) —

]

New World Order

o Goal: performance through parallelism

 Power is overriding hardware concern:
— Power density limits clock speed
— Handheld devices limited by battery life
— HPC systems may be >100 MW in 10 years

e Performance is now a software concern
— Not just in HPC

« How can we lose performance and
therefore lose the case for parallelism?

(PP C AL i
G e R] \
A LSRN, 1
A 575 |
H o HtH —_—
g AnH —iil ;
% "& Sl Y —
o 1568 ol

27

