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This has Also Impacted
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DRAM component density is only

Evolution of memory density
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Is MPI the Answer?

e We can run 1 MPI process per core
— This works now (for CMPs) and will work for a while

« How long will it continue working?
— 4 -8 cores? Probably. 128 - 1024 cores? Probably not.

« What is the problem?
— Latency: some copying required by semantics
— Synchronization: notification required by semantics

— Memory utilization: partitioning requires some replication

« How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: Is “core” really the right term or will these be
a sea of functional units: MPI per CUDA thread-block?

. | 1% -
5 S / !\j 1\ A
/,ﬂgrw-,\ rececer| |
4 s \ W ERSC _}\
S, W .
Berkeley ParLab H




What about Mixed MPI and Threads?

 Threads: OpenMP, PThreads, TBB, ...
—Will this work for 4-8 cores? Probably. More?

 What is the problem?

—OpenMP leads programmers into Amdahl’s Law
trap
» Alternating serial and parallel code
 Doesn’t encourage thinking in parallel (unlike MPI)

—No direct control over locality
« Memory affinity key on multiple sockets. Soon on-chip?
« Can get this with extra help, static threads + pinning

—Two programming models per application
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« PGAS languages are a good fit to multicore
— Global address space implemented as reads/writes
— Also may be exploited for processor with explicit local store rather
than cache, e.g., Cell, GPUs,...
« Open question in architecture
— Hardware managed caches vs local stores (or hybrid)
— Cache coherence shared memory vs. global addresssing

— UPC demonstrate that the partitioned address space with DMA
operations is useable (although not “high level”)
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8 Things Software Should Do

(And some encouraging evidence that it can)
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Nearest-neighbor 7point stencil on a 3D array

Use Autotuning!
Write code generators and let
computers do tuning
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#2) Software Needs to Address
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Little’s Law: required concurrency = bandwidth * latency
#outstanding_memory_fetches = bandwidth* latency

Single vs. Dual Core Performance
(wallclock time)
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Experiment: Running on a fixed number of cores
1 core per socket vs 2 cores per socket
Only 10% performance drop from sharing (halving) bandwidth
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7 Point Stencil Revisited
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e Cell and GTX280 are notable for both performance and
energy efficiency

& Joint work with Kaushik Datta, Jonathan Carter, N
/\_f\ Shoaib Kamil, Lenny Oliker, John Shalf, and Sam ,,,,_,}l A
g\ Williams A/= s c) -—\l

Berkeley ParLab 9




Why Is the STI Cell So Efficient?

STriad Bandwidth
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« Unit stride access Is as important as cache utilization on

processors that rely on hardware prefetch
— Tiling in unit stride direction is counter-productive: improves reuse, but

kills prefetch effectiveness

« Software controlled memory gives programmers more control
— Spend bandwidth on what you use; bulk moves (DMA) hide latency
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#3) Use Novel Hardware Features Through
Code Generators (Autotuning)
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#4) Software Should Avoid
Unnecessary Global Synchronization
UPC on partitioned memory

PLASMA on shared memory
Cholesky —— octa-socket, dual-core Opteron ]
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UPC LU factorization code adds cooperative (non-

preemptive) threads for latency hiding
— New problem in partitioned memory: allocator deadlock

— Can run on of memory locally due tounlucky execution order
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#5) Software Should Avoid Unnecessary Point-
to-Point Communication

two-sided message

message id data payload —>
one-sided put message
address data payload —>
8-byte Roundtrip Latency
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#6) Alas, Software Needs to Deal with

Faults

e Fault resilience introduces inhomogeneity in
execution rates (error correction is not instantaneous)
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#7) Software should make use of
Good Algorithms

*Algorithmic gains in last decade have

far outstripped Moore’s Law
—Adaptive meshes

Problem Solution Time -- Combustion

rather than uniform

F[— Non-Adaptive, Compressible
e Cray XT4
— Cray XT4 ideal scaling

—Sparse matrices
rather than dense
—Reformulation of
problem back to basics
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Example of canonical “Poisson” problem on n points:
—Dense LU: most general, but O(n3) flops on O(n?) data
—Multigrid: fastest/smallest, O(n) flops on O(n) data
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#8) Algorithm Developers should Avoid
Communication, not Flops

 Consider Sparse Iterative Methods
* Nearest neighbor communication on a mesh
« Dominated by time to read matrix (edges) from DRAM

 And (small) communication and global synchronization
events at each step C

— Can we lower data movement costs?
« Take k steps “at once” with one matrix read
from DRAM and one communication phase

— Parallel implementation
 O(log p) messages vs. O(k log p)

— Serial implementation
 O(1) moves of data moves vs. O(k)
« Performance of Akx operation relative to Ax and upper boun

— Runs up to 5x faster on SMP

Joint work with Jim Demmel,
Mark Hoemman, Marghoob

Mohiyuddin
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But the Numerics have to Change!

Residuals from GMRES(restart), cond = 1e10, n = 1e4

0? ©  Monomial(25)
2 Newton(25)
<& Chebyshev(25)
v  Standard(25)
Standard(infty)

Need to collaborate

Log base 10 of 2-norm relative residual error

| | 1 | 1 | 1 | | |
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Work by Jim Demmel and Mark Hoemman Oy ‘.ﬁ|
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8 Rules for Software (and Algorithms and

Annlication<)
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1) Don’t waste memory bandwidth

2) Remember Little's Law

3) Use novel hardware features

4) Avoid global synchronization

5) Avoid point-to-point synchronization

6) Deal with faults throughout software

7) Choose efficient algorithms

8) Rethink algorithms to avoid data movement
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Conclusions

 Enable programmers to get
performance
— Expose features for performance
— Don’t hide them

e Go Green
— Enable energy-efficient computers and
software
 Work with experts on software,
algorithms, applications
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Software Issues at Scale

e Power concerns will dominates all others:

— Concurrency is the most significant knob we have: lower
clock, increase parallelism

— Power density and facility energy

e Summary Issues for Software
— 1EF system: Billion-way concurrency, O(1K) cores per chip
— 1 PF system: millions of threads and O(1K) cores per chip
— The memory capacity/core ratio may drop significantly
— Faults will become more prevalent
— Flops are cheap relative to data movement
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How to Waste an Exascale Machine

* Ignore Little’s Law (waste bandwidth)
 Over-synchronize (unnecessary barriers)

 Over-synchronize communication (two-sided
VS. one-sided)

 Waste bandwidth: ignore locality

e Use algorithms that minimize flops rather
than data movement

 Add a high-overhead runtime system when
you don’t need it
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To Virtualize or Not

 The fundamental question facing in parallel
programming models is:

What should be virtualized?

« Hardware has finite resources
— Processor count is finite
— Registers count is finite
— Fast local memory (cache and DRAM) size is finite
— Links in network topology are generally < n?

expose this or hide it?

— E.g., one thread per core, or many?

* Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

» But one thread is better for deep memory hierarchies
™\ ° /How to get the most out of your machine? "
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Reasons to Virtualize

o Simplicity for Programmer
 Potential to hide problems:
—load imbalance in hardware, e.g., jitter
— faults
—wierd memory structures (local stores)
o Effective use of system resources
—In a space-shared environment
— multiple jobs sharing resources
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Virtualization of Processors

e A parallel computation is
defined by its task graph

« Many possible graphs,
depending on how much
parallelism is exposed

« Where does the mapping of the
graph to a particular number of
processors happen?

— The compiler: auto parallelization,
NESL, ZPL

— The runtime system : Cilk,
Charm++ (sometimes), OpenMP,
X10

— The programmer: MPI, UP(:,’,’,,}|
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Irregular vs. Regular Parallelism

« Computations with known task graphs can be
mapped to resources in an offline manner (before
computation starts)

— Regular graph: By a compiler (static) or runtime (semi-static)
— Irregular graphs: By a DAG scheduler
— No need for online scheduling

o If graphs are not known ahead of time (structure,
task costs, communication costs), then dynamic
scheduling is needed

— Task stealing / task sharing
— Demonstrated on shared memory

e Conclusion: If your task graph is dynamic, the

runtime needs to be, but what if it static? .
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Load Balancing with Locality

Locality is important:
— When memory hierarchies are deep

— When computational intensity is low (expensive move cost cannot be
amortized)

Most (all?) successful examples of locality-important
applications/machines use static scheduling

— Unless they have airregular/dynamic task graph so it is impossible

Two extremes are well-studied
— Dynamic parallelism without locality

I~ Y N

with locality

o~

— Static parallelism (with threads = processors
Dynamic scheduling (task stealing) with locality control can cause
problems

— Locality control can cause non-optimal task schedule, which can blow
up memory use (breadth vs. depth first traversal)

— Can run out of memory locally when you don’t globally
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New World Order

o Goal: performance through parallelism

 Power is overriding hardware concern:
— Power density limits clock speed
— Handheld devices limited by battery life
— HPC systems may be >100 MW in 10 years

e Performance is now a software concern
— Not just in HPC

« How can we lose performance and
therefore lose the case for parallelism?
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