
Multicore/Manycore: What Can We
Expect from the Software?Expect from the Software?

Kathy Yelick

National Energy Research Supercomputing Center
Lawrence Berkeley National Laboratory andLawrence Berkeley National Laboratory and

EECS Department, University of California, Berkeley

Berkeley ParLab

This has Also Impacted
HPC System ConcurrencyHPC System Concurrency

Sum of the # of cores in top 15 systems (from top500.org)

Exponential wave of increasing concurrency for forseeable future!

Berkeley ParLab

Exponential wave of increasing concurrency for forseeable future!
1M cores sooner than you think!

1

DRAM component density is only
doubling every 3 yearsdoubling every 3 years

Berkeley ParLab

Source: IBM

Is MPI the Answer?

• We can run 1 MPI process per core
– This works now (for CMPs) and will work for a whileThis works now (for CMPs) and will work for a while

• How long will it continue working?
– 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

• What is the problem?
– Latency: some copying required by semantics

S h i ti tifi ti i d b ti– Synchronization: notification required by semantics
– Memory utilization: partitioning requires some replication

• How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

– Memory bandwidth: extra state means extra bandwidth
– Weak scaling: success model for the “cluster era;” will not be g ;

for the many core era -- not enough memory per core
– Heterogeneity: Is “core” really the right term or will these be

a sea of functional units: MPI per CUDA thread-block?

Berkeley ParLab

a sea of functional units: MPI per CUDA thread block?

What about Mixed MPI and Threads?

• Threads: OpenMP, PThreads, TBB, …p , , ,
– Will this work for 4-8 cores? Probably. More?

• What is the problem?What is the problem?
– OpenMP leads programmers into Amdahl’s Law

traptrap
• Alternating serial and parallel code
• Doesn’t encourage thinking in parallel (unlike MPI)

– No direct control over locality
• Memory affinity key on multiple sockets. Soon on-chip?
• Can get this with extra help, static threads + pinning

– Two programming models per application

Berkeley ParLab

PGAS Languages + Autotuning for
Manycore/MulticoreDMA Manycore/Multicore

• PGAS languages are a good fit to multicore
– Global address space implemented as reads/writes

DMA

p p
– Also may be exploited for processor with explicit local store rather

than cache, e.g., Cell, GPUs,…
• Open question in architecture• Open question in architecture

– Hardware managed caches vs local stores (or hybrid)
– Cache coherence shared memory vs. global addresssing
– UPC demonstrate that the partitioned address space with DMA

operations is useable (although not “high level”)

Shared

l: m: Private on-chip

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip
Shared

Berkeley ParLab

off-chip
DRAM

8 Things Software Should Do

(And some encouraging evidence that it can)(g g)

Berkeley ParLab6

#1) Software Needs to Avoid
Unnecessary Bandwidth UseUnnecessary Bandwidth Use

Nearest-neighbor 7point stencil on a 3D array

+Z
y-1

x 1

z+1

x+1
x,y,z

Use Autotuning!
Write code generators and let

3D Grid

+Y
+X

7-point nearest neightbors

y+1
x-1

z-1

g
computers do tuning

Berkeley ParLab 7

#2) Software Needs to Address
Little’s LawLittle s Law

Little’s Law: required concurrency = bandwidth * latency
#outstanding_memory_fetches = bandwidth* latency

Single vs. Dual Core Performance
(wallclock time)

4000

2500

3000

3500

4000

NERSC application
benchmarks
Shalf et al

1000

1500

2000
XT3 SC
XT3 DC

Shalf et al

0

500

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

E i t R i fi d b fExperiment: Running on a fixed number of cores
1 core per socket vs 2 cores per socket

Only 10% performance drop from sharing (halving) bandwidth

Berkeley ParLab

7 Point Stencil Revisited

• Cell and GTX280 are notable for both performance and
energy efficiency

Berkeley ParLab 9

Joint work with Kaushik Datta, Jonathan Carter,
Shoaib Kamil, Lenny Oliker, John Shalf, and Sam
Williams

Why is the STI Cell So Efficient?
Cell STRIAD (64KB concurrency)

25 000

30.000

10.000

15.000

20.000

25.000

0.000

5.000

16 32 64 128 256 512 1024 2048

stanza size

• Unit stride access is as important as cache utilization on

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

Unit stride access is as important as cache utilization on
processors that rely on hardware prefetch
– Tiling in unit stride direction is counter-productive: improves reuse, but

kills prefetch effectivenesskills prefetch effectiveness
• Software controlled memory gives programmers more control

– Spend bandwidth on what you use; bulk moves (DMA) hide latency

Berkeley ParLab

p y ; () y

Joint work with Shoaib Kamil, Lenny Oliker, John
Shalf, Kaushik Datta

#3) Use Novel Hardware Features Through
Code Generators (Autotuning)Code Ge e ato s (utotu g)

Intel Clovertown AMD Opteron LBMHD is not always bandwidth
limited: used SIMD, etc.

Sun Niagara2 (Huron) IBM Cell Blade* +SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA
Joint work with Sam
Williams Lenny Oliker John

Berkeley ParLab

Williams, Lenny Oliker, John
Shalf, and Jonathan Carter

#4) Software Should Avoid
Unnecessary Global SynchronizationUnnecessary Global Synchronization

PLASMA on shared memory UPC on partitioned memory
UPC vs.

ScaLAPACK

y UPC on partitioned memory

60

80

s

ScaLAPACK
UPC

0

20

40

G
Fl

op
s

0
2x4 pr oc gr i d 4x4 pr oc gr i d

UPC LU factorization code adds cooperative (non-(
preemptive) threads for latency hiding
– New problem in partitioned memory: allocator deadlock
– Can run on of memory locally due tounlucky execution order

Berkeley ParLab 12
PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands

#5) Software Should Avoid Unnecessary Point-
to-Point Communicationto Point Communication

message id data payload
two-sided message

network

host
CPU

Pay only for

8 b te Ro ndtrip Latenc

address data payload
one-sided put message interface

memory

Pay only for
what you need

8-byte Roundtrip Latency

22.1

24.2

20

25

MPI ping-pong
GASNet put+sync

Flood Bandwidth for 4KB messages

702 714231

763
223

90%

100% MPI
GASNet

14.6

18.5

13.5

17.8

15

20

en
cy

(u
se

c)

420

190

702

152

750

231 679

60%

70%

80%

W
 p

ea
k

6.6

9.6

6.6

4 5

9.5
8.3

10

R
ou

nd
tr

ip
La

te

547

420

252

750

30%

40%

50%

Pe
rc

en
t H

4.5

0

5

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R

0%

10%

20%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Berkeley ParLab

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed p y p

Joint work with Berkeley UPC Group

#6) Alas, Software Needs to Deal with
FaultsFaults

• Fault resilience introduces inhomogeneity in
execution rates (error correction is not instantaneous)execution rates (error correction is not instantaneous)

Berkeley ParLab

Slide source: John Shalf

#7) Software should make use of
Good AlgorithmsGood Algorithms

•Algorithmic gains in last decade have
far outstripped Moore’s Lawfar outstripped Moore s Law

–Adaptive meshes
rather than uniform

–Sparse matrices
rather than dense

–Reformulation ofReformulation of
problem back to basics

•Example of canonical “Poisson” problem on n points:
–Dense LU: most general, but O(n3) flops on O(n2) data
Multigrid: fastest/smallest O(n) flops on O(n) data

Berkeley ParLab

–Multigrid: fastest/smallest, O(n) flops on O(n) data

Performance results: John Bell et al

#8) Algorithm Developers should Avoid
Communication not FlopsCommunication, not Flops

• Consider Sparse Iterative Methods
N t i hb i ti h• Nearest neighbor communication on a mesh

• Dominated by time to read matrix (edges) from DRAM
• And (small) communication and global synchronization () g y

events at each step
– Can we lower data movement costs?

• Take k steps “at once” with one matrix read• Take k steps at once with one matrix read
from DRAM and one communication phase
– Parallel implementation
O(log p) messages vs O(k log p)• O(log p) messages vs. O(k log p)
– Serial implementation

• O(1) moves of data moves vs. O(k)
• Performance of Akx operation relative to Ax and upper boun• Performance of Akx operation relative to Ax and upper boun

– Runs up to 5x faster on SMP

Joint work with Jim Demmel

Berkeley ParLab

Joint work with Jim Demmel,
Mark Hoemman, Marghoob
Mohiyuddin

But the Numerics have to Change!

Need to collaborate

Berkeley ParLab

Work by Jim Demmel and Mark Hoemman

8 Rules for Software (and Algorithms and
Applications)Applications)

1) Don’t waste memory bandwidth1) Don t waste memory bandwidth
2) Remember Little's Law
3) U l h d f t3) Use novel hardware features
4) Avoid global synchronization
5) Avoid point-to-point synchronization
6) Deal with faults throughout software6) Deal with faults throughout software
7) Choose efficient algorithms
8) R thi k l ith t id d t t8) Rethink algorithms to avoid data movement

Berkeley ParLab 18

Conclusions

• Enable programmers to getEnable programmers to get
performance

E f t f f– Expose features for performance
– Don’t hide them

• Go Green
Enable energy-efficient computers and– Enable energy-efficient computers and
software

W k ith t ft• Work with experts on software,
algorithms, applications

Berkeley ParLab 19

Software Issues at Scale

• Power concerns will dominates all others;
– Concurrency is the most significant knob we have: lower

clock, increase parallelism
– Power density and facility energyPower density and facility energy

• Summary Issues for Software
– 1EF system: Billion-way concurrency, O(1K) cores per chip
– 1 PF system: millions of threads and O(1K) cores per chip
– The memory capacity/core ratio may drop significantly

Faults will become more prevalent– Faults will become more prevalent
– Flops are cheap relative to data movement

Berkeley ParLab

How to Waste an Exascale Machine

• Ignore Little’s Law (waste bandwidth)
• Over-synchronize (unnecessary barriers)
• Over-synchronize communication (two-sidedOver synchronize communication (two sided

vs. one-sided)
• Waste bandwidth: ignore locality• Waste bandwidth: ignore locality
• Use algorithms that minimize flops rather

th d t tthan data movement
• Add a high-overhead runtime system when

you don’t need it

Berkeley ParLab 21

To Virtualize or Not

• The fundamental question facing in parallel
i d l iprogramming models is:

What should be virtualized?
• Hardware has finite resources• Hardware has finite resources

– Processor count is finite
– Registers count is finiteg
– Fast local memory (cache and DRAM) size is finite
– Links in network topology are generally < n2

Does the programming model (lang age+libraries)• Does the programming model (language+libraries)
expose this or hide it?
– E.g., one thread per core, or many?g , p , y

• Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

• But one thread is better for deep memory hierarchies

Berkeley ParLab

p y

• How to get the most out of your machine?

Reasons to Virtualize

Si li it f P• Simplicity for Programmer
• Potential to hide problems:p

– load imbalance in hardware, e.g., jitter
faults– faults

– wierd memory structures (local stores)
• Effective use of system resources

– in a space-shared environmentin a space shared environment
– multiple jobs sharing resources

Berkeley ParLab

Virtualization of Processors

• A parallel computation is p p
defined by its task graph

• Many possible graphs,
depending on how much
parallelism is exposed

f• Where does the mapping of the
graph to a particular number of
processors happen?processors happen?
– The compiler: auto parallelization,

NESL, ZPL
– The runtime system : Cilk,

Charm++ (sometimes), OpenMP,
X10

Berkeley ParLab

X10
– The programmer: MPI, UPC

Irregular vs. Regular Parallelism

• Computations with known task graphs can be p g p
mapped to resources in an offline manner (before
computation starts)
– Regular graph: By a compiler (static) or runtime (semi-static)
– Irregular graphs: By a DAG scheduler
– No need for online scheduling– No need for online scheduling

• If graphs are not known ahead of time (structure,
task costs, communication costs), then dynamictask costs, communication costs), then dynamic
scheduling is needed
– Task stealing / task sharing
– Demonstrated on shared memory

• Conclusion: If your task graph is dynamic, the
ti d t b b t h t if it t ti ?

Berkeley ParLab

runtime needs to be, but what if it static?

Load Balancing with Localityg y

• Locality is important:
When memory hierarchies are deep– When memory hierarchies are deep

– When computational intensity is low (expensive move cost cannot be
amortized)

M t (ll?) f l l f l lit i t t• Most (all?) successful examples of locality-important
applications/machines use static scheduling
– Unless they have a irregular/dynamic task graph so it is impossible

• Two extremes are well-studied
– Dynamic parallelism without locality

Static parallelism (with threads = processors) with locality– Static parallelism (with threads = processors) with locality
• Dynamic scheduling (task stealing) with locality control can cause

problems
– Locality control can cause non-optimal task schedule, which can blow

up memory use (breadth vs. depth first traversal)
– Can run out of memory locally when you don’t globally

Berkeley ParLab

New World Order

• Goal: performance through parallelism
• Power is overriding hardware concern:

– Power density limits clock speedPower density limits clock speed
– Handheld devices limited by battery life

HPC t b >100 MW i 10– HPC systems may be >100 MW in 10 years
• Performance is now a software concern

– Not just in HPC
• How can we lose performance and• How can we lose performance and

therefore lose the case for parallelism?

Berkeley ParLab 27

