Parallel PDE-Constrained Optimization: Antenna Identification in Hyperthermia Cancer Treatment Planning

Olaf Schenk Computer Science Department, CS University of Basel, Switzerland

Joint work with:

A. Sameh, M. Manguoglu (Purdue University), F. Curtis (New York University), M. Christen, M.Sathe (University of Basel), A. Wächter (IBM Research Watson)

Overview

- Introduction Parallel Large-Scale Optimization
- Application: Hyperthermia Cancer Treatment Planning
- How to solve it?
 - Highly Parallel Framework
 - Interior-Point Method: IPOPT (with IBM Research Labs)
 - Parallel Linear Equation Solver: PSPIKE (with U Purdue)
 - Preconditioner: Bipartite Graph Matching, Graph Partitioning
- Results

June 23, 2009

Conclusion

Large-Scale Nonlinear Optimization: Projects at U Basel

EU Project (BMW, AutoForm Engineering, U Basel) SNF Project (ETH Zurich, U Basel, IBM Research, U Purdue)

SNF Project (Shell, U Basel)

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

s.t.
$$c(x) = 0$$
,

$$c(x): \mathbb{R}^n \to \mathbb{R}^r$$

s.t.
$$c(x) = 0$$
, $c(x) : \mathbb{R}^n \to \mathbb{R}^m$
 $d(x) \ge 0$, $d(x) : \mathbb{R}^n \to \mathbb{R}^q$

Nonlinear Optimization: Parallel Architectures

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$\mathbf{s.t.} \quad c(x) = 0$$

$$x \ge 0$$

- Distributed-Memory Cluster at U Basel
 - 64 nodes each with eight Intel Xeon cores
 - Distributed—memory platform with Infiniband interconnection
- IBM BlueGene/L
 - 06/2009: position 3 in TOP500
 - 294'912 cores with peak performance 825 Tflops
 - Our goal is to use 1'000 processors efficiently

Nonlinear Optimization: General methods

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$\mathbf{s.t.} \quad c(x) = 0$$

$$x \ge 0$$

Nonlinear Optimization	Small-Scale (10 ⁵ variables)	Large-Scale (10 ⁶ to 10 ⁹ variables)	
Multicores	- Simplex method (Linear Problems)	- Interior-point optimization	
(<16 cores)	- Randomized metaheuristics	+ Fast convergence	
	(Evolutionary Algorithms,	- Need derivate information	
	Simulated Annealing, Ant Colony) - Derivative-free optimization	(Jacobian, Hessian matrices)Matrices are indefinite and	
	- Interior-point optimization	highly ill-conditioned	
Manycores		- Interior-point optimization	
(~1'000 cores)		(will be addressed in this talk)	

Nonlinear Optimization: Interior-Point Methods

NLP Problem

Barrier Problem 🗸

$$\min_{x \in \mathbb{R}^n} \quad \varphi_{\mu}(x) := f(x) - \mu \sum_{i=1}^n \ln(x^{(i)})$$
s.t.
$$c(x) = 0$$

$$\mu \to 0$$

Optimality Conditions

$$\nabla \varphi_{\mu}(x) + \nabla c(x)\lambda = 0$$

$$c(x) = 0$$

$$(x > 0)$$

$$\mathcal{L}_{\mu}(x,\lambda) = \varphi_{\mu(x)} + c(x)^{T}\lambda$$

$$H_k \approx \nabla_{xx}^2 \mathcal{L}_{\mu}(x_k, \lambda_k)$$

 $\mathcal{L}_{\mu}(x, \lambda) = \varphi_{\mu(x)} + c(x)^T \lambda$

Newton's Method for the Search Direction

$$\begin{bmatrix} H_k & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \end{pmatrix} = -\begin{pmatrix} \nabla \varphi_{\mu}(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{pmatrix}$$

Parallel Nonlinear Optimization

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$\mathbf{s.t.} \quad c(x) = 0$$

$$x \ge 0$$

- Parallel components in large-scale interior-point optimization
 - +++ Computation of the objective function f(x)
 - +++ Generating the Hessian and Jacobian matrices
 - Taking sparsity of the matrices into account
 - - Distributed-memory sparse linear solver for Karush-Kuhn-Tucker systems
 - Hybrid solver, Graph Partitioning+ Bipartite Matching

APPLICATION

PDE-Constrained Optimization in Biomedical Hyperthermia Cancer Treatment Planning

Hyperthermia Cancer Treatment

- **Hyperthermia** refers to various techniques of heat application to (parts of) the body
- **Hyperthermia cancer treatment** is usually used as an adjunct to other therapies (radiotherapy, chemotherapy)
- Apply heat to the tumor (41-45°C)
- The problem is typically formulated as a PDE-constrained optimization problem.
- Inequality constraints: **State variables**: temperature distribution **T** Control variable: electromagnetic antennas u

Hyperthermia — Forward problem

Penne's "Bioheat equation"

$$\rho C_{\rm p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho_{\rm b} \omega_{\rm b} C_{\rm b} (T - T_{\rm b}) + \frac{\sigma}{2} ||\mathbf{E}||^2$$

© Olaf Schenk

Hyperthermia — Inverse PDE-Constrained Problem

Minimize objective function

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$\min \int_{\Omega_{\text{tumor}}} (T_{\text{ther}} - T)^2 \, \mathrm{d}x + \alpha |u|$$

subject to the Pennes' bioheat equation

$$\mathbf{s.t.} \quad c(x) = 0$$
$$x \ge 0$$

$$-\nabla \cdot (\kappa \nabla T) = -\rho \rho_{\rm b} \omega_{\rm b} C_{\rm b} (T - T_{\rm b}) + \frac{\sigma}{2} \left\| \sum_{i=1}^{n} u_{i} \mathbf{E}_{i} \right\|^{2} \text{ in } \Omega$$

$$T = q \quad \text{on } \partial \Omega$$

$$T_{\Omega \setminus \Omega_{\rm tumor}} < T_{\rm limit}, \qquad u_{\rm max} \ge u_{i} \ge u_{\rm min}$$

Optimization results from real hyperthermia patient data

Parallel Nonlinear Optimization: From small to large number of processors

- There is currently no state-of-the art interior-point optimization solver that scales up to more than 16 cores.
- Can we derive a **hybrid preconditioner** that scales better than sparse direct solvers and is also robust enough for interior-point optimization solvers?

Challenges in PDE-Constrained Optimization

Discretization

- → Stencil computation
- → Large number of constraints (10 to 100 millions)
- → 23 Control variables (antennas)

Nonlinear and nonconvex

Objective function, blood perfusion -> Nonconvex PDE

How to solve it?

- Highly scalable parallel framework
 - Interior-point optimizer: IPOPT (IBM Research, U Basel)
 - Linear equation solver: PSPIKE (U Basel, U Purdue)

Parallel Nonlinear Optimization: Main Ingredients

- NLP optimizer IPOPT (Wächter, S., IBM Research/U Basel):
 - Primal-dual interior-point solver (barrier method)
 - Line-Search algorithm for global convergence
 - Requires first and second derivatives of problem functions
 - Open-source C++, COIN-OR, > 5'000 academic + industrial users
- Linear equation solver PSPIKE (Sameh, S., U Purdue/U Basel)
 - Hybrid parallel preconditioner
 - Linear ordering, graph matching, partitioning
 - Factorization in diagonal + spike matrices
 - Direct and iterative solver interactions

Overview: Parallel Optimization Framework

PSPIKE: Parallel preconditioner for KKT systems

- Many applications often produce large sparse linear systems
- Banded (or banded with low-rank perturbations) structure is often obtained after reordering

After variants of bipartite graph reorderings

- Almost all ILU preconditioners depend on reordering strategies that minimize the fill-in and maximize accuracy in the incomplete factorization stage. We propose to:
 - extract a sparse banded matrix, via a series of reordering and graph-partitioning strategies, to be used as a preconditioner.
 - make use of a novel PSPIKE scheme that is ideally suited for banded systems that are sparse within the band.

Basic PSPIKE scheme for sparse KKT systems

- PARDISO is an efficient direct linear solver for sparse matrices that scales well up to 8 to 16 cores on one SMP node (S., Gärtner, part of Intel's MKL)
- **SPIKE** is a parallel banded system solver proposed by A. Sameh (78), recently revisited (Polizzi, Sameh, part of Intel's Experimental Software What.if.intel.com)
- PSPIKE (S., Manguoglu, Sameh, ISC09) is a highly parallel robust preconditioner for symmetric indefinite matrices

Computational Results

Parallel Architecture

- Distributed—memory platform with Infiniband interconnection
- 64 nodes.
- Each node is a dual quad-core Intel Hapertown processors (2,8 Ghz)

PSPIKE in mixed MPI-OpenMP mode

- MPI between nodes.
- OpenMP with the nodes
- All KKT matrices are scaled and ordered

PSPIKE – Scalability for one example matrix

Parallel Optimization – Timing results up to 512 cores

N	Threads	Nodes=1 (Direct)	Nodes=4 (Inexact)	Nodes=8 (Inexact)	Nodes=16 (Inexact)	Nodes=32 (Inexact)	Nodes=64 (Inexact)
75 ³	1	32'107 s. (1.0)	2'016 s. (15.9)	1'024 s. (31.1)	507 s. (63.2)	‡	‡
	4	10'033 s. (3.2)	786 s. (40.8)	262 s. (122.5)	163 s. (201.0)	‡	‡
	8	7'830 s. (4.1)	629 s. (51.0)	198 s. (162.1)	154 s. (208.2)	‡	‡
100 ³	1 4 8	‡ ‡ ‡	7'408 s. 2'314 s. 1'763 s.	3'899 s. 1'266 s. 993 s.	1'944 s. 664 s. 462 s.	934 s. 355 s. 351 s.	732 s. 345 s. 301 s.
150 ³	1 4 8	‡ ‡ ‡	60'861 s. 20'287 s. 14'490 s.	33'812 s. 10'821 s. 7'246 s.	17'796 s. 5'393 s. 4'138 s.	9'132 s. 4'072 s. 1'923 s.	6'066 s. 3'881 s. 1'596 s.

June 23, 2009

Conclusion

- Highly Scalable Parallel Optimization Framework
 - General NLP method for large-scale optimization
 - It needs derivative information (Hessian, Jacobian)
 - Graph orderings (e.g. graph partitioning, bipartite weighted matching) are very important for convergence in numerical optimization
 - All steps are now highly parallelizable
- Nonlinear, nonconvex, and inequality constraints
- Scalabilty with up to 512 cores for a biomedical PDE-constrained optimization.
- General parallel optimizer -> can be applied to other applications.

Acknowledgments

- Swiss National Science Foundation, "Large-scale PDE-constrained optimization in hyperthermia cancer treatment planning"
- IBM Faculty Award, "Simulation, Modeling, and Optimization in Hyperthermia Cancer Treatment Planning"

June 23, 2009

Q & A

Thank you for your attention!

Questions?