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Lattice-Boltzmann-Method - Discretisation
C t ti l fl id h i l ith f i ibl fl (M < 0 3)• Computational fluid mechanics algorithm for incompressible flows (M < 0.3)

• Spatial discretization by partitioning computational space into cubes

• Discrete molecular flows (D3Q15, D3Q19, ..)

• Flow state representation by a discrete distribution function mapping of 
density onto the discrete molecular flow vectors

D3Q15
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Lattice-Boltzmann-Method - Process
P ti t t f di t ib ti f ti d it t i l th i• Propagation step transfers distribution function density entries along their 
molecular velocities to adjacent nodes

• Collision step calculates the collision of distribution function density entries 
arriving from adjacent nodes in the middle of current node

• Propagation step of the next time step
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LBM i f tl ll l l ith h d b d

LBM – Why CUDA implementation?
• LBM is a perfectly parallel algorithm, each node can be processed 

independently

 Very suitable for CUDA’s highly parallel execution modely g y

• LBM allows efficient domain decomposition because of weak sub domain 
coupling

Low level of simulation-data exchange between sub domain processors

Very suitable for distribution among multiple CUDA devices (multi GPU)
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S li htLB

SunlightLB CUDA port - Activities
• SunlightLB

• open-source LBM D3Q15

• traditional CPU implementation in C programming languagetraditional CPU implementation in C programming language

• http://sunlightlb.sourceforge.net/

• Porting procedure

• focusing on core simulation steps 

• adaptation of SunlightLB’s CPU algorithms to CUDA’s highly parallel execution 
model

• writing of glue code for data exchange between HOST and GPU devicewriting of glue code for data exchange between HOST and GPU device

• Expected performance increasep p
• GPU: GeForce 8800GTS (~450 GigaFLOPs)

• CPU: Core2Duo 3.7 GHz (OC) (~30 GigaFLOPs)

aer 7

• expected speed-up: ~15x



B h k

SunlightLB CUDA port – Performance analysis
• Benchmark run

• Domain size: 64x64x64 Voxels

• Obstacle: Sphere in the middle with radius 16 voxelsObstacle: Sphere in the middle with radius 16 voxels

• CPU performance: 9.0 MVPS (millions of voxels per second)

• GPU performance: 13.4 MVPS

• Resulting speed-up: 1.5x

• Expected speed up missed by a factor of 10
• porting made LBM algorithm kernel highly parallel  good

• porting did not take into account CUDA memory access patterns  bad• porting did not take into account CUDA memory access patterns  bad

• bad GPU memory access patterns can cause a performance dropdown of up to a 
factor of 32

 simple porting of algorithms is not sufficient for high GPU performance, 
deeper optimization on GPU architecture is necessary
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C l t l i l t ti f LBM lti hit t i l ti

LBultra - Activities
• Completely new implementation of a LBM multi-architecture simulation 

software

• written in C++ to benefit from Object-Oriented (OO) technologyj ( ) gy

• consists of a framework and pluggable LBM kernels

• any LBM kernel can be implemented and optimized independently
• D3Q15 fixed refinement CUDA kernel

• D3Q15 fixed refinement CPU multi core kernel

• supports domain decomposition by gluing kernels together

• static objects can be placed into computational space

• kernels are enclosed by a shell of boundary data specification structures
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St t i t b tt CUDA LBM k l

LBultra - Activities
• Strategies to a better new CUDA LBM kernel:

• more attention on memory access patterns

• algorithmic reduction of data transfers by joined propagation and collision phase• algorithmic reduction of data transfers by joined propagation and collision phase

• using shared GPU memory for explicit data caching

• New CPU LBM kernel:

• has been derived from the GPU kernel by “porting back”

• offers high parallelism as well -> can utilize multi core CPUs

• also profits from algorithmic improvements in CUDA kernel

• Expected performance increase:
• GPU: nVIDIA Tesla C1060 (~933 GigaFLOPs)• GPU: nVIDIA Tesla C1060 (~933 GigaFLOPs)

• CPU: AMD Phenom X4 2.6Ghz (~41 GigaFLOPs)

• Expected Speed-up: ~23x
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B h k

LBultra - performance
• Benchmark run

• Domain size: 384x384x384 voxels

• Obstacle: Sphere in the middle with radius 64 voxelsObstacle: Sphere in the middle with radius 64 voxels

• CPU performance: 8.42 MVPS

• GPU performance: 78.0 MVPS

• 3 x GPU performance: 191 MVPS

• Resulted speed-up for one GPU: 9,3x

• Performance analysis:
• performance much better but still not optimalperformance much better, but still not optimal

• reason: bad memory access pattern in “collection” of distribution function entries 
for propagation step

• further optimization of LBM algorithms for CUDA architecture should yield in higher 
performance

• domain linkage GPU algorithm not optimal yet, without domain linkage GPU 

aer 11

performance is around 110 MVPS



LBultra - validation
V lid ti i• Validation scenario: 

• common test case of a flow around a sphere
• testing Re-Range from Re=2.46 to Re=1280
• inflow: homogenous velocity, equal to average velocity in adjacent plane
• other: zero normal velocity gradient
• flow acceleration by a volumetric acceleration
• computation of approx. 10000 time steps to enable convergence
• cD measurement and averaging for 1000 further time steps
• graphical comparison with data from other numerical simulations and 

experiments 
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LBultra - validation
R lt• Results: 

-> Excellent agreement with reference data.
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LBultra – outlook on ongoing work
E h t f d ti h fi t bilit t CPU d CUDA• Enhancement of adaptive mesh refinement capability to CPU and CUDA 
kernels

• Node resolution is location dependent

• resolution is selected by the fluid or geometry requirement at any location

• improves computation time and data efficiency by not wasting resources for 
locations were nothing is happeninglocations were nothing is happening

• Data and computation time amount depends by (n³) from the node resolution!!!
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LBultra – outlook on ongoing work
CPU k l l d bl f i l th d d t ti ith l l• CPU kernel already capable of single threaded computations with local 
mesh refinement

• expected multi core CPU (~41 GigaFLOPs) performance : ~10 MVPS

• CUDA kernel is currently under development

• not usable yet, but first computation stages already working

• new block-based LBM algorithm is expected to work better on GPU architectures

t d CUDA i l GPU ( 933 Gi FLOP ) f 400 MVPS• expected CUDA single GPU (~933 GigaFLOPs) performance: ~400 MVPS
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Conclusions
L tti B lt M th d i ll it d f i l t ti ith CUDA• Lattice-Boltzmann-Method is well suited for implementation with CUDA

• high computational performance achievable

• valid simulation resultsvalid simulation results

• C-like CUDA language encourages porting of existing software to CUDA

• efficient CUDA software rather requires a new implementation with special q p p
optimizations than a simple port

• CUDA hardware has some important advantages in compare to traditional 
CPU architectureCPU architecture 

• 8x to 20x faster (depends on algorithm and optimization effort)

• 6x more favorable price

• consumes 7x to 19x less space (nVIDIA Tesla S1070 4xGPU, 1HE)

• consumes 4x less electrical power

 Additional effort leads to considerable gain
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Lattice-Boltzmann-Method – boundary data setup
• Static obstacle geometry is considered by “reflection” of distribution function• Static obstacle geometry is considered by reflection  of distribution function 

density entries along molecular velocities passing an obstacles outline

• Distribution functions of in- and outflows is calculated using given g g
macroscopic velocity, density and stresses
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