
International Supercomputing Conference 2009

Implementation of a Lattice-Boltzmann-Method
for Numerical Fluid Mechanics Using the nVidia g

CUDA Technology

E. Riegel, T. Indinger, N.A. Adams

Technische Universität München
Institute of Aerodynamicsy

23.06.2009

aer 1

Outline

• The Lattice Boltzmann Method (LBM)

S li htLB CUDA t• SunlightLB CUDA port

• Activities

• Performance evaluation

• LBultra, LBM reimplementation with focus on CUDA

• Activities• Activities

• Performance evaluation

• Physical Validation

aer 2

Outline

• LBultra, outlook on ongoing work

• Adaptive mesh refinement• Adaptive mesh refinement

• Expected Performance

• Conclusions

aer 3

Lattice-Boltzmann-Method - Discretisation
C t ti l fl id h i l ith f i ibl fl (M < 0 3)• Computational fluid mechanics algorithm for incompressible flows (M < 0.3)

• Spatial discretization by partitioning computational space into cubes

• Discrete molecular flows (D3Q15, D3Q19, ..)

• Flow state representation by a discrete distribution function mapping of
density onto the discrete molecular flow vectors

D3Q15

aer 4

Lattice-Boltzmann-Method - Process
P ti t t f di t ib ti f ti d it t i l th i• Propagation step transfers distribution function density entries along their
molecular velocities to adjacent nodes

• Collision step calculates the collision of distribution function density entries
arriving from adjacent nodes in the middle of current node

• Propagation step of the next time step

aer 5

LBM i f tl ll l l ith h d b d

LBM – Why CUDA implementation?
• LBM is a perfectly parallel algorithm, each node can be processed

independently

 Very suitable for CUDA’s highly parallel execution modely g y

• LBM allows efficient domain decomposition because of weak sub domain
coupling

Low level of simulation-data exchange between sub domain processors

Very suitable for distribution among multiple CUDA devices (multi GPU)

aer 6

S li htLB

SunlightLB CUDA port - Activities
• SunlightLB

• open-source LBM D3Q15

• traditional CPU implementation in C programming languagetraditional CPU implementation in C programming language

• http://sunlightlb.sourceforge.net/

• Porting procedure

• focusing on core simulation steps

• adaptation of SunlightLB’s CPU algorithms to CUDA’s highly parallel execution
model

• writing of glue code for data exchange between HOST and GPU devicewriting of glue code for data exchange between HOST and GPU device

• Expected performance increasep p
• GPU: GeForce 8800GTS (~450 GigaFLOPs)

• CPU: Core2Duo 3.7 GHz (OC) (~30 GigaFLOPs)

aer 7

• expected speed-up: ~15x

B h k

SunlightLB CUDA port – Performance analysis
• Benchmark run

• Domain size: 64x64x64 Voxels

• Obstacle: Sphere in the middle with radius 16 voxelsObstacle: Sphere in the middle with radius 16 voxels

• CPU performance: 9.0 MVPS (millions of voxels per second)

• GPU performance: 13.4 MVPS

• Resulting speed-up: 1.5x

• Expected speed up missed by a factor of 10
• porting made LBM algorithm kernel highly parallel good

• porting did not take into account CUDA memory access patterns bad• porting did not take into account CUDA memory access patterns bad

• bad GPU memory access patterns can cause a performance dropdown of up to a
factor of 32

 simple porting of algorithms is not sufficient for high GPU performance,
deeper optimization on GPU architecture is necessary

aer 8

deeper optimization on GPU architecture is necessary

C l t l i l t ti f LBM lti hit t i l ti

LBultra - Activities
• Completely new implementation of a LBM multi-architecture simulation

software

• written in C++ to benefit from Object-Oriented (OO) technologyj () gy

• consists of a framework and pluggable LBM kernels

• any LBM kernel can be implemented and optimized independently
• D3Q15 fixed refinement CUDA kernel

• D3Q15 fixed refinement CPU multi core kernel

• supports domain decomposition by gluing kernels together

• static objects can be placed into computational space

• kernels are enclosed by a shell of boundary data specification structures

aer 9

St t i t b tt CUDA LBM k l

LBultra - Activities
• Strategies to a better new CUDA LBM kernel:

• more attention on memory access patterns

• algorithmic reduction of data transfers by joined propagation and collision phase• algorithmic reduction of data transfers by joined propagation and collision phase

• using shared GPU memory for explicit data caching

• New CPU LBM kernel:

• has been derived from the GPU kernel by “porting back”

• offers high parallelism as well -> can utilize multi core CPUs

• also profits from algorithmic improvements in CUDA kernel

• Expected performance increase:
• GPU: nVIDIA Tesla C1060 (~933 GigaFLOPs)• GPU: nVIDIA Tesla C1060 (~933 GigaFLOPs)

• CPU: AMD Phenom X4 2.6Ghz (~41 GigaFLOPs)

• Expected Speed-up: ~23x

aer 10

B h k

LBultra - performance
• Benchmark run

• Domain size: 384x384x384 voxels

• Obstacle: Sphere in the middle with radius 64 voxelsObstacle: Sphere in the middle with radius 64 voxels

• CPU performance: 8.42 MVPS

• GPU performance: 78.0 MVPS

• 3 x GPU performance: 191 MVPS

• Resulted speed-up for one GPU: 9,3x

• Performance analysis:
• performance much better but still not optimalperformance much better, but still not optimal

• reason: bad memory access pattern in “collection” of distribution function entries
for propagation step

• further optimization of LBM algorithms for CUDA architecture should yield in higher
performance

• domain linkage GPU algorithm not optimal yet, without domain linkage GPU

aer 11

performance is around 110 MVPS

LBultra - validation
V lid ti i• Validation scenario:

• common test case of a flow around a sphere
• testing Re-Range from Re=2.46 to Re=1280
• inflow: homogenous velocity, equal to average velocity in adjacent plane
• other: zero normal velocity gradient
• flow acceleration by a volumetric acceleration
• computation of approx. 10000 time steps to enable convergence
• cD measurement and averaging for 1000 further time steps
• graphical comparison with data from other numerical simulations and

experiments

aer 12

LBultra - validation
R lt• Results:

-> Excellent agreement with reference data.

aer 13

LBultra – outlook on ongoing work
E h t f d ti h fi t bilit t CPU d CUDA• Enhancement of adaptive mesh refinement capability to CPU and CUDA
kernels

• Node resolution is location dependent

• resolution is selected by the fluid or geometry requirement at any location

• improves computation time and data efficiency by not wasting resources for
locations were nothing is happeninglocations were nothing is happening

• Data and computation time amount depends by (n³) from the node resolution!!!

aer 14

LBultra – outlook on ongoing work
CPU k l l d bl f i l th d d t ti ith l l• CPU kernel already capable of single threaded computations with local
mesh refinement

• expected multi core CPU (~41 GigaFLOPs) performance : ~10 MVPS

• CUDA kernel is currently under development

• not usable yet, but first computation stages already working

• new block-based LBM algorithm is expected to work better on GPU architectures

t d CUDA i l GPU (933 Gi FLOP) f 400 MVPS• expected CUDA single GPU (~933 GigaFLOPs) performance: ~400 MVPS

aer 15

Conclusions
L tti B lt M th d i ll it d f i l t ti ith CUDA• Lattice-Boltzmann-Method is well suited for implementation with CUDA

• high computational performance achievable

• valid simulation resultsvalid simulation results

• C-like CUDA language encourages porting of existing software to CUDA

• efficient CUDA software rather requires a new implementation with special q p p
optimizations than a simple port

• CUDA hardware has some important advantages in compare to traditional
CPU architectureCPU architecture

• 8x to 20x faster (depends on algorithm and optimization effort)

• 6x more favorable price

• consumes 7x to 19x less space (nVIDIA Tesla S1070 4xGPU, 1HE)

• consumes 4x less electrical power

 Additional effort leads to considerable gain

aer 16

Acknowledgements

The authors are especially grateful to nVIDIA who
supported this work by providing GTX 280 for initialsupported this work by providing GTX 280 for initial
testing and implementation and Tesla C1060
hardware for the final validation runs.hardware for the final validation runs.

aer 17

Thank you very much for your attention!

aer 18

aer 19

Lattice-Boltzmann-Method – boundary data setup
• Static obstacle geometry is considered by “reflection” of distribution function• Static obstacle geometry is considered by reflection of distribution function

density entries along molecular velocities passing an obstacles outline

• Distribution functions of in- and outflows is calculated using given g g
macroscopic velocity, density and stresses

aer 20

