

Data Processing in the Cloud at Yahoo!

Sanjay Radia

Chief Architect, Hadoop/Grid

Sradia@yahoo-inc.com

Cloud Computing & Data Infrastructure

Yahoo Inc.

- What are clouds and their benefits
- Clouds at Yahoo
- Hadoop

Types of Cloud Services

Two kinds of cloud services:

- Horizontal ("Platform") Cloud Services
 - Functionality enabling tenants to build applications or new services on top of the cloud
- Functional Cloud Services
 - Functionality that is useful in and of itself to tenants. E.g., various SaaS instances, such as Saleforce.com; Google Analytics and Yahoo!'s IndexTools; Yahoo! properties aimed at end-users and small businesses, e.g., flickr, Groups, Mail, News, Shopping
 - Could be built on top of horizontal cloud services or from scratch
 - Yahoo! has been offering these for a long while (e.g., Mail for SMB, Groups, Flickr, BOSS, Ad exchanges)

Y

Cloud Characteristics

- Elastic, horizontal, capacity
 - Grow and shrink as needed
 - Large scale possible
- Utility pay-per-usage, often no long term commitment needed
- Multi-tenant
- Availability, operations management, and connectivity built in
 - Customer focuses on his problem not IT management
- Private/Public
 - Private (within an organization): e.g. Yahoo!, Google
 - Public: e.g. EC2, ElasticMapReduce App Engine
- Different abstraction levels
 - EC2 provides "bare" machines (VMs)
 - Higher level: Hadoop (Yahoo), ElasticMapReduce, App Engine

Benefits of utility cloud computing

- Business agility, business innovation, technical innovation
 - Key computations solved in days and not months
 - Try out new ideas
 - Projects move from research to production in days
 - Easy to learn, even our rocket scientists use it!
- Scale, performance, availability
 - More robust, more global, more complete, better growth, for a given budget
- Cost
 - Lower cost infrastructure is shared
- Major factors
 - You don't need to find new hardware to experiment
 - You can work with all your data!
 - No need for R&D to do IT (it just works)
 - Focus on the problem not IT

Y

Yahoo!'s Unique Cloud: Unprecedented Scale

Massive user base and engagement

- 500M+ unique users per month
- Hundreds of petabyte of storage
- Hundreds of billions of objects
- Hundred of thousands of requests/sec

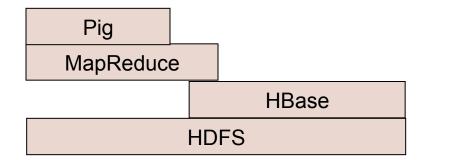
Global

- Tens of globally distributed data centers
- Serving each region at low latencies

Challenging Users

- Rapidly extracting value from voluminous data
- Downtime is not an option (outages cost \$millions)
- Variable usage patterns

- Open Source
 - Hadoop, PIG, Xen, ...
- High performance
 - Throughput
 - Latency
- Multi-data center
 - N-way replication
 - Consistency/availability tradeoffs
 - BCP
- Supporting technologies used at Yahoo!
- Flat, flexible infrastructure



Hadoop: A Key Cloud Technology

- A framework for storing & processing Petabyte of data using commodity hardware and storage
- Storage: HDFS, HBase
- Processing: MapReduce, Pig
- Distributed coordination: Zookeeper

ZooKeeper

Hadoop Characteristics

- Commodity HW + Horizontal scaling
 - Add inexpensive servers with JBODS
 - Storage servers and their disks are *not* assumed to be highly reliable and available
- Use replication across servers to deal with unreliable storage/servers
- Metadata-data separation simple design
 - Storage scales horizontally
 - Metadata scales vertically (today)
- Slightly Restricted file semantics
 - Focus is mostly sequential access
 - Single writers
 - No file locking features
- Support for moving computation close to data
 - i.e. servers have 2 purposes: data storage and computation
- MapReduce Data processing framework

Simplicity of design

why a small team could build such a large system in the first place

A growing user base - "powered by"

Year: 2007

YAHOO!

Year: 2008

Year: 2009

My Yahoo!

Hadoop is critical to Yahoo's business

Massive Hadoop-Based Application @ Yahoo!

	2008	2009
Webmap	~70 hours runtime ~300 TB shuffling ~200 TB output	~73 hours runtime ~490 TB shuffling ~280 TB output +55% hardware
Terasort	209 seconds 1 Terabyte sorted 900 nodes	62 seconds 1 Terabyte, 1500 nodes 16.25 hours 1 Petabyte, 3700 nodes
Largest cluster	2000 nodes •6PB raw disk •16TB of RAM •16K CPUs	4000 nodes •16PB raw disk •64TB of RAM •32K CPUs •(40% faster CPUs too)

Hadoop Applications: Search Assist™

- » Database for Search Assist™ is built using Hadoop.
 - » 3 years of log-data
 - » 20-steps of map-reduce

	Before Hadoop	After Hadoop
Time	26 days	20 minutes
Language	C++	Python
Development Time	2-3 weeks	2-3 days

Collaborations around the globe

- M45 Yahoo!'s supercomputing cluster
 - Carnegie Mellon University
 - The University of California at Berkeley
 - Cornell University
 - The University of Massachusetts at Amherst joined
- Partners in India
 - Computational Research Laboratories (CRL), India's Tata Group
 - Universities IIT, IISc, IIIT-H, PSG
- Open Cirrus[™] cloud computing research & education
 - The University of Illinois at Urbana-Champaign
 - Infocomm Development Authority (IDA) in Singapore
 - The Karlsruhe Institute of Technology (KIT) in Germany
 - HP, Intel
 - The Russian Academy of Sciences, Electronics & Telecomm.
 - Malaysian Institute of Microelectronic Systems

- Main Web sites
 - http://hadoop.apache.org/core/
 - http://wiki.apache.org/hadoop/
 - http://wiki.apache.org/hadoop/ GettingStartedWithHadoop
 - http://wiki.apache.org/hadoop/HadoopMapReduce

THANKS

Sanjay Radia

sradia@yahoo-inc.com

Cloud Computing & Data Infrastructure
Yahoo!

