
Multicore/Manycore:
What should we demand from the Hardware?What should we demand from the Hardware?

Yale Patt
The University of Texas at Austiny

ISC 2009
H b GHamburg, Germany

June 25, 2009

That depends!That depends!

• …on what we understand multi-core to be

• …and what we do differently moving forward

Even the announcement of this session:
More Moore or More Trouble

• Moore’s Law in the future will mean doubling
the number of cores on the chip.p
– I don’t think so.

• How will we effectively utilize a 10 million core• How will we effectively utilize a 10 million core
supercomputer?
– I hope that one was a typo.
– Do the math.

• Will the chip be homogenous or heterogenous?Will the chip be homogenous or heterogenous?
– That one’s easy: heterogeneous
– What I have been calling PentiumX/NiagaraY

The announcement of this session (continued):The announcement of this session (continued):

• Will there be a standard ISA, like x86 for example?
– Who cares?

• Are there any good tools for automatically
generating parallel programs?

Wh d it h t b t ti ?– Why does it have to be automatic?

What I want to do todayWhat I want to do today

• Given all the Multi-core hype
– Is it really the Holy Grail?

Will it cure cancer?– Will it cure cancer?

• BUT not without at least some legitimate concerng
– This session’s title: Multi-trouble

• What multi-core is and what it is not

• And where we go from here

More Moore or Multi troubleMore Moore or Multi-trouble

• Clearly more Moore
– Process technology will take us to 10 nanometersProcess technology will take us to 10 nanometers
– 3-D will increase the size of the chip

• But does it have to mean Multi-trouble?
N t if d t d h t h– Not if we understand how we got here

– Not if we refuse to buy into the Multi-nonsense
– Not if we change some things going forwardNot if we change some things going forward

The Compile time OutlineThe Compile-time Outline

• Multi-core: how we got here

• Mis-information

• Where do we go from here

OutlineOutline

• Multi-core: how we got here

• Mis-information

• Where we go from here

How we got here (Moore’s Law)How we got here (Moore s Law)

• The first microprocessor (Intel 4004), 1971
– 2300 transistors
– 106 KHz– 106 KHz

• The Pentium chip, 1992
– 3.1 million transistors
– 66 MHz

• Today
– more than one billion transistors

Frequencies in excess of 5 GHz– Frequencies in excess of 5 GHz

• Tomorrow ?

How have we used the available transistors?How have we used the available transistors?

Cache
ns

is
to

rs Microprocessor

er
 o

f T
ra

n
N

um
be

Time

Intel Pentium MIntel Pentium M

Intel Core 2 DuoIntel Core 2 Duo

• Penryn, 2007
• 45nm, 3MB L2

Wh M lti hi ?Why Multi-core chips?

• In the beginning: a better and better uniprocessor
– improving performance on the hard problems
– until it just got too hard…until it just got too hard

• Followed by: a uniprocessor with a bigger L2 cachey p gg
– forsaking further improvement on the “hard” problems
– poorly utilizing the chip area
– and blaming the processor for not delivering performance

• Today: dual core, quad core, octo core

• Tomorrow: ???

Why Multi core chips?Why Multi-core chips?

It i i th d i i h b tt i• It is easier than designing a much better uni-core

• It was embarrassing to continue making L2 bigger• It was embarrassing to continue making L2 bigger

• It was the next obvious stepp

So What’s the PointSo, What s the Point

Y M lti i lit• Yes, Multi-core is a reality

• No it wasn’t a technological solution to• No, it wasn’t a technological solution to
performance improvement

• Ergo, we do not have to accept it as is

• i.e., we can get it right the second time,
and that means:

What goes on the chip
What are the interfaces

OutlineOutline

• Multi-core: how we got here

• Mis-information, or more accurately: Multi-nonsense

• Where do we go from here

Multi nonsenseMulti-nonsense

• Multi-core was a solution to a performance problem
• Hardware works sequentially• Hardware works sequentially
• Make the hardware simple – thousands of cores

The Asymmetric Chip Multiprocessor (ACMP)The Asymmetric Chip Multiprocessor (ACMP)
Niagara

-like
Niagara

-like
L

Niagara
-like

Niagara
-like

Niagara
-like

Niagara
-like

L L

Niagara Niagara Niagara Niagara

core core

Niagara
-like
core

Niagara
-like
core

Large
core

core core

Niagara
-like
core

Niagara
-like
core

Niagara Niagara

core core

Niagara
-like
core

Niagara
-like
core

Niagara Niagara

Large
core

Large
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

Large
core

core core core core

ACMP Approach

core core core core

“Niagara” Approach“Tile-Large” Approach

Large core vs Small CoreLarge core vs. Small Core

Large
Core

Small
Core

• Out-of-order
Wid f t h 4 id

• In-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

• Narrow Fetch e.g. 2-wide
• Shallow pipeline

• Aggressive branch
predictor (e.g. hybrid)

• Many functional units

• Simple branch predictor
(e.g. Gshare)
F f i l i

y
• Trace cache
• Memory dependence

• Few functional units

y p
speculation

Throughput vs Serial PerformanceThroughput vs. Serial Performance

8
9

C
or

e Niagara
Til L

5
6
7

La
rg

e
C Tile-Large

ACMP

3
4
5

up
 v

s.
 1

1
2

Sp
ee

d

0
0 0.2 0.4 0.6 0.8 1

Degree of ParallelismDegree of Parallelism

Multi nonsenseMulti-nonsense

• Multi-core was a solution to a performance problem
• Hardware works sequentially
• Make the hardware simple – thousands of cores
• Do in parallel at a slower clock and save power
• ILP is dead

ILP is deadILP is dead

• We double the number of transistors on the chip
– Pentium M: 77 Million transistors (50M for the L2 cache)

2nd Generation: 140 Million (110M for the L2 cache)– 2nd Generation: 140 Million (110M for the L2 cache)
• We see 5% improvement in IPC
• Ergo: ILP is dead!• Ergo: ILP is dead!
• Perhaps we have blamed the wrong culprit.

• The EV4,5,6,7,8 data: from EV4 to EV8:
Performance improvement: 55X– Performance improvement: 55X

– Performance from frequency: 7X
– Ergo: 55/7 > 7 -- more than half due to microarchitectureg

Moore’s Law

• A law of physicsp y
• A law of process technology
• A law of microarchitectureA law of microarchitecture
• A law of psychology

Multi nonsenseMulti-nonsense

• Multi-core was a solution to a performance problem
• Hardware works sequentially
• Make the hardware simple – thousands of cores
• Do in parallel at a slower clock and save power
• ILP is dead
• Examine what is (rather than what can be)

Examine what is (rather than what can be)Examine what is (rather than what can be)

Should sample benchmarks drive future designs?

Another bridge over the East River?

Multi nonsenseMulti-nonsense

• Multi-core was a solution to a performance problem
• Hardware works sequentially• Hardware works sequentially
• Make the hardware simple – thousands of cores
• Do in parallel at a slower clock and save power• Do in parallel at a slower clock and save power
• ILP is dead
• Examine what is (rather than what can be)Examine what is (rather than what can be)
• Communication: off-chip hard, on-chip easy
• Abstraction is a pure goodp g
• Programmers are all dumb and need to be protected
• Thinking in parallel is hard

OutlineOutline

• Multi-core: how we got here

• Mis-information

• Where do we go from here

In the next few years:In the next few years:

• Process technology: 50 billion transistors
– Gelsinger says we are can go down to 10 nanometers

(I like to say 100 angstroms just to keep us focused)

• Dreamers will use whatever we come up with

• What should we put on the chip?
How should software interface to it?How should software interface to it?

How will we use 50 billion transistors?How will we use 50 billion transistors?

How have we used the transistors up to now?p

…and why haven’t we seeny
comparable benefit

In my opinion the reason is:In my opinion the reason is:

Our inability to effectively exploit:

Th f i hi h-- The transformation hierarchy
-- Parallel programming

Problem

Algorithm

Problem

Program

ISA (Instruction Set Arch)

Mi hit tMicroarchitecture

Circuits

Electrons

Up to nowUp to now

M i t i th tifi i l ll b t th l• Maintain the artificial walls between the layers

• Keep the abstraction layers securey
– Makes for a better comfort zone

• Until recently, improving the MicroarchitectureUntil recently, improving the Microarchitecture
– Pipelining, Branch Prediction, Speculative Execution

Out-of-order Execution, Caches, Trace Cache

• Lately, blindly doubling the number of cores

T d h t t i t• Today, we have too many transistors
– BANDWIDTH and POWER are blocking improvement
– We MUST change the paradigmWe MUST change the paradigm

We Must Break the Layers

• (We already have in limited cases)

• Pragmas in the Language

• The Refrigerator

• X + Superscalar

Th l ith th l th il• The algorithm, the language, the compiler,
& the microarchitecture all working together

IF b k th lIF we break the layers:

• Compiler Microarchitecture• Compiler, Microarchitecture
– Multiple levels of cache
– Block-structured ISA
– Part by compiler, part by uarch
– Fast track, slow track

• Algorithm, Compiler, Microarchitecture
X + l th R f i t– X + superscalar – the Refrigerator

– Niagara X / Pentium Y

• Microarchitecture, Circuits
– Verification Hooks
– Internal fault tolerance

Unfortunately:

• We train computer people to work within their layer• We train computer people to work within their layer

• Too few understand anything outside their layer

and, as to multiple cores:

• People think sequential

A l blAt least two problems

Conventional Wisdom Problem 1:
“Abstraction” is MisunderstoodAbstraction is Misunderstood

• Taxi to the airport
Th S h Chi (D d t di)• The Scheme Chip (Deeper understanding)

• Sorting (choices)
Mi ft d l (D d t di)• Microsoft developers (Deeper understanding)

Conventional Wisdom Problem 2:
Thinking in Parallel is Hard

• Perhaps: Thinking is Hardp g

How do we get people to believe:• How do we get people to believe:
Thinking in parallel is natural

How do we solve these two problems?How do we solve these two problems?

• FIRST, Do not accept the premise:
Parallel programming is hardParallel programming is hard

• SECOND, Do not accept the premise:
It is okay to know only one layery y y

Parallel Programming is Hard?Parallel Programming is Hard?

• What if we start teaching parallel thinking
i th fi t t f hin the first course to freshmen

F l• For example:
– Factorial

Parallel search– Parallel search
– Streaming

How do we solve these problems?How do we solve these problems?

• FIRST, Do not accept the premise:
Parallel programming is hardParallel programming is hard

• SECOND, Do not accept the premise:
It is okay to know only one layery y y

Students can understand more than one layerStudents can understand more than one layer

What if we get rid of “top down” FIRST• What if we get rid of “top-down” FIRST
– Students do not get it – they have no underpinnings
– Objects are too high a level of abstraction
– So, students end up memorizing
– Memorizing isn’t learning (and certainly not understanding)

• What if we START with “motivated” bottom up
– Students build on what they already know

M i i i l d ith l l i– Memorizing is replaced with real learning
– Continually raise the level of abstraction

• The student sees the layers from the start
– The student makes the connections

The student understands what is going on– The student understands what is going on

And, by the way
(since I can not resist):

• If students understand, they can fix their own bugs

• …and, there is no substitute for
Design it wrong,
Debug it yourself,
Fix it yourself,
AND see the working result.

and while I am at it:…and while I am at it:

• Students don’t need glitz

• Freshmen can handle serious meat

• Don’t be afraid to work them very, very hard
– Good students want to understand
– If they are learning, they will not complain
– Give them tedium and they will complain every time

• Students memorize for only ONE reason

We have an Education Problem

T t f i l d ’t t it

We have an Education Opportunity

• Too many computer professionals don’t get it.

• We can exploit all these transistorsp
– IF we can understand each other’s layer

• Thousands of cores hundreds of accelerators• Thousands of cores, hundreds of accelerators
– Ability to power on/off under program control

• Algorithms, Compiler, Microarchitecture, Circuits
all talking to each other …

• Harnessing 50 billion transistor chips

IF we understand:IF we understand:

• 50 billion transistors means we can have:
– A very large number of simple processors, AND
– A few large very heavyweight processors, AND
– Enough “refrigerators” for handling special tasks

• Some programmers can take advantage of all this

• Those who can’t need support

• We need software that can enable all of the above• We need software that can enable all of the above

that is:that is:

• IF we are willing to continue to pursue ILP

• IF we are willing to break the layers• IF we are willing to break the layers

• IF we are willing to embrace parallel programmingg p p g g

• IF we are willing to provide more than one interface

• IF we are willing to understand more than
l f th b t ti hi hour own layer of the abstraction hierarchy

so we really can talk to each other

Then maybe we can really harness the resources
of the multi-core and many-core chips

What should we demand from the Hardware?

It WILL BE a Multi core chipIt WILL BE a Multi-core chip

• But it will be a PentiumX/Niagara Y chip
• With multiple interfaces to the softwareWith multiple interfaces to the software
• It will tackle off-chip bandwidth
• It will tackle power consumption (ON/OFF switches)
• It will tackle soft errors (internal fault tolerance)
• It will tackle security

• And it WILL CONTAIN a few
heavyweight ILP processors
– With lots of Refrigerators
– And with the levels of transformation integrated

And with multiple interfaces– And with multiple interfaces

The Heavyweight Processor:The Heavyweight Processor:

• Compiler/Microarchitecture SymbiosisCompiler/Microarchitecture Symbiosis
– Multiple levels of cache
– Fast track / Slow track
– Part by compiler, part by microarchitecture
– Block-structured ISA

• Better Branch Prediction (e.g., indirect jumps)
• Ample sprinkling of Refrigerators
• SSMT (Also known as helper threads)
• Power Awareness (more than ON/OFF switches)
• Verification hooks (CAD a first class citizen)
• Internal Fault tolerance (for soft errors)
• Better security

The Heavyweight ILP Processor (continued):The Heavyweight ILP Processor (continued):

• And, very importantly: at least two interfaces
One for programmers who understand– One for programmers who understand

– One for programmers who don’t understand

• With layers of software for those who don’t.

Thank you!

