KHRCONOS

GROUP

O

Open 2.0: Unlocking the power
of your heterogeneous platform

Tim Mattson
Intel Labs

Industry Standards for Programming
Heterogeneous Platforms

CPUs

Multiple cores driving Emerging
performance increases Intersection

& a

GPUs

Increasingly general purpose
data-parallel computing

OpenCL
Multi-processor Graphics APIs
programming - Heterogen_eous and Shading
e.g. OpenMP Computing Languages

OpenCL — Open Computing Language
Open, royalty-free standard for portable, parallel programming of
heterogeneous combinations of CPUs, GPUs, and other processors

2

KHROONQ S

OpenCL as Parallel Compute

Foundation

el % (@eopcL AMDD

OpenCL

C++ AMP OpenCL HLM WebCL Aparapi
Shevlin §++ syn.tlax JavaScript binding Java language
Park Ct°’“'?‘ er to OpenCL for extensions for
Uses Clang EXIeNsIONs ;nitiation of OpenCL parallelism
and LLVM C kernels

OpenCL

intel. M

UNIVERSITY

River Trail PyOpenCL Harlan

Language Python wrapper High level
extensions to around language for

JavaScript OpenCL GPU
programming

-

OpenCL provides vendor
optimized,
cross-platform, cross-vendor
access to heterogeneous compute
resources

© Copyright Khronos Group 2013 - Page 3

Announcing at SC13
OpenCL 2.0 released!

OpenCL 2.0
Significant enhancements to memory and
SEES | execution models to expose emerging
& f‘ hardware capabilities and provide
increased flexibility, functionality and
OpenCL performance to developers

SPIR 1.2 ... to be released soon!

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-
level languages

KHROONQ S

© Copyright Khronos Group 2013 - Page 4

Announcing at SC13

4 OpenCL 2.0 released!

OpenCL 2.0
) Significant enhancements to memory and
“Ef\? . execution models to expose emerging

hardware capabilities and provide
increased flexibility, functionality and
\\ performance to developers

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-
level languages

KHROONQ S

© Copyright Khronos Group 2013 - Page 5

KHROONQ S

Goals

 Ease of Use

e Performance Improvements

- Enable New Programming Patterns

» Well-defined Execution & Memory Model
« Improve OpenCL / OpenGL sharing

© Copyright Khronos Group 2013 - Page 6

OpenCL 1.X memory Regions

Global Mem_objs
allocated on host
and explicitly moved
between regions.

Consistency at
explicit sync points
Mem_objs as
contiguous blocks
... pointer based
data structures
between
host/device not
supported.

| Global Memory

OpenCL Memory Regions
7
Compute unit N e 0
%
evice f*?&.@
te unit 7 Compute unit N | S
Compute Device
Compute unit 7 Compute unit N
Private Private Private Private
memory 7 memory M memory 1 memory M
| PET | PE 1 | PEM_|
A o N n
A J v
Local Local
memory 1 memory N
v Y
Global/Constant Memory Cache
Constant Memory

Host Memory

Host

OpenCL 2.0: coarse grained SVM

Memory consistency at

y Regions + Buffer-based SVM

7
synchronization points RS
Compute unit N %, .
Host needs to use sync - SR Vo,
API to update data Compute unit N |
— clEnqueueSVMMap Device
— clEnqueueSVMUnmap ute unit 7 Compute unit N
vate Private Private Private
Memory COnS|Stency at nory 1 memory M memory 1 memory M
granularity of a buffer E 1 PE1 | | PEM |
Allows sharing of pointers ! 1 () 1
between host and OpenCL | &, e
deV|Ce Global/Constant Memory Cache
A required feature in
OpenCL 2.0 Global Memory
—=<=__ —=__ HostMemory ——
— T~
Host buffer-based SVM

OpenCL 2.0: fine grained/System SVM

OpenCL Memory Regions + system SVM

Host and device can
update data in
buffer concurrently

Memory
consistency using
C11 atomics and
synchronization
operations

An optional feature
in OpenCL 2.0

H

v

7
Q* ﬁ
Compute unit N %,
fo@
bvice)
e unit 7 Compute unit N |
Compute Device
Compute unit 7 Compute unit N
Private Private Private Private
memory 1 memory M memory 1 memory M
- w I] l
PE 1 PE M PE 1 PEM

A
v

Local
memory N

L

Global/Constant Memory Cache

)

Host

Global/Constant/SVM Memory

Host Memory

Time

o

Ideal

Nested Parallelism

Consider an algorithm as a task
graph where the task structure is
determined at runtime based on the
input data.

Nested Parallelism

and overhead resulting
inT,,>> Ty

Ideal OpenCL 1.X
‘ B ‘_ Sy T T T }
| I :
I With OpenCL 1.X only
‘ ‘ : \r:\" ‘ | the host can submit
I kernels for execution.
I
T e
11 AEER
o : ;\'4\) I So after each task ends,
o ‘ ‘ | FETRTREY I it must copy data back
Ef i : Ly 111 TP T 46 the host so the host
a BEERE I f——d’r"” : knows which kernels to
1 by : submit in the next
Ty [\:j\‘> ‘ I phase.
l l
[
I f-/llﬂ/ 1 This requires extra code
I 1 | i
1 (the red dotted lines)
| J\I"l\> I
: |
: |
' |
' |
I

OpenCL 2.0

Sttt nliieiedit il il 1 c
I 2
[+ =
1 o £ | T
=]
w P e - === == - - - 1
= == l
©
© ! T
A .l o e T
— -1 — s — i _
5 2L I S W S Y SN SO i N
e
il ke e e ol el Al i
g WL L

Ideal
|
|
[|

o

_ I .-
)
_ “II —-I
—— 5
Q
Q| S ut
2 - NV, W 74
N [s g
c | T — '
S =) I 12 8
O— IIIIIIIIIIIIIII Bt
! v 5 €
o |2
| — _ 3 Dvg
R EIgEs
IIIIII — (U O
& nw.ea
” _ ““I IIIII d
mX_ R |
a -l g
O — --= E_
TS5 _ T - |/ ﬂll!/ °
2, e ———
S — IIIIII — —_— m d ~ IL
% o 0 o -
O |
z '—l . £2 E
IIIII ar H
|||||||| o0 _
Mtlmo =
| -
— eesssssss B B BN — t -
) o S
d . - Ilth
o T S oLV o
_ — OLn_Iu.eru i
- - x
o E— N mT i
_ mmm_ T PR 98250 T
Zo0al &

Nested Parallelism

« Use clang Blocks to describe kernel to queue

kernel void my func(global int *a, global int *Db)
{

void (“my block A) (void) =
A
{
size t id = get global id(0);
b[id] += a[id];
};

enqueue kernel (get default queue(),
CLK_ENQUEUE_FLAGS_WAI T KERNEL,
ndrange 1D(..),
my block A);

KHROONQ S

:

Generic Address Space

e OpenCL 2.0 no longer
requires an address space
qualifier for arguments to
a function that are a
pointer to a type

— Except for kernel
functions

e Generic address space
assumed if no address
space is specified

e Makes it really easy to
write functions without
having to worry about
which address space
arguments point to

void
my func (int *ptr,

{

}

foo(ptr, ..):

kernel void
foo(global int *g ptr,
local int *1 ptr,

{

my func(g ptr,
my func(l ptr,

)

) s
) g

)

Other OpenCL 2.0 Features

« What made it in

— Memory model based on C’11 ... includes atomics, and memory
orders

— Pipe memory objects to support pipeline algorithms.
— Flexible work-group sizes

— Expanded set of work-group functions (collective operations across
work-items in a single work-group).
— broadcast, reduction, vote (any & all), prefix sum

— ... and much more

« But we still lack ...
— Support for a C++ kernel programming language.

— Ability to write a wide range of algorithms that require concurrency
guarantees (e.g. try writing a spin lock in OpenCL).

Announcing at SC13

OpenCL 2.0
| Significant enhancements to memory and
SEE | ~execution models to expose emerging
:’ ?‘ /" hardware capabilities and provide
increased flexibility, functionality and
OpenCL performance to developers
4 SPIR 1.2 ... to be released soon! A

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-

_ level languages W

KHROONQ S

© Copyright Khronos Group 2013 - Page 17

KHROONQ S

SPIR Market Goals

- Standard Portable Intermediate Representation

« Enhance ISV experience
- Avoid IP exposure: Don’t ship source
- Manage device/driver/vendor proliferation
- Avoid market lag

o Support 3 party compilers
- Just need new front end
- Long term: C++, domain specific, ...

 User choice
- Retarget a shipped application to new devices, new vendors

Opportunity to unleash industry innovation:
Domain Specific Languages, C++ Compilers

© Copyright Khronos Group 2013 - Page 18

KHROONQ S

Non-SPIR Source Compilation Flow

OpenCL C
Kernel
Source

OpenCL Host
> Library :>

 Supports only OpenCL C

« ISV ships their kernel source
- Exposes IP

© Copyright Khronos Group 2013 - Page 19

SPIR Binary compilation flow

OpenCL C OpenCL Vendor
Kernel Host Library specific
Source

binary

Platform specific
container

/e Vendor
'_ specific
binary

OpenCL

Host Library

« ISV ships vendor-specific binary
- Proliferation: devices, driver revisions, vendors
- Market-lagging: target shipped products

KHROONQ S

© Copyright Khronos Group 2013 - Page 20

KHRCON QS

SPIR flow

OpenCL C
Kernel
Source

OpenCL

Host Library :>

Standard

Platform specific

container
(0
.| standard

OpenCL

Host Library

« ISV ships kernels in SPIR form
« Customer runs application on

platform of their choice

© Copyright Khronos Group 2013 - Page 21

http://www.amd.com/

Sample SPIR Consumption Flow

Standard

Device
specific
binary

KHROONQ S

—>

clCreateProgramWithBinary

|

clBuildProgram(“ -x spir -spir-std=1.2"....)

© Copyright Khronos Group 2013 - Page 22

Sample SPIR flow: Room for optimizations

clBuildProgram(“ -x spir -spir-std=1.0"....)

Standard

> SPIR Verifier

Standard LLVM optimizations

— LLVM
IR

Custom optimizations

cl_program E.g. Dead code elimination

Materialization
(Convert to device specific
IR)

ABI fixup, triple, vectorize, — Target
custom optimizations IR

Device
executable JIT

KHROONQ S

© Copyright Khronos Group 2013 - Page 23

KHROONQ S

OpenCL SPIR Status

« OpenCL 1.2 Extension standardizes an API for reading SPIR files
- cl_khr_spir

- Final specification ... to be released soon!

- Supports newer OpenCL 1.2 features
- MSAA, Depth, depth stencil images

« Pushing patches into open source Clang to GENERATE SPIR...
- Clang 3.2 trunk will be able to generate SPIR
- 32-bit separate from 64-bit, Little endian only
- Many low level changes: e.g. encode kernel arg info
e Using LLVM 3.2 to CONSUME SPIR
- Generate optimized LLVM IR
- Convert to target IR and JIT to executable

© Copyright Khronos Group 2013 - Page 24

Summary

* OpenCL is evolving rapidly to match HW innovation in
heterogeneous platforms.

« We are announcing at SC13:
— OpenCL 2.0
— SPIR (Standard Portable Intermediate Representation).

* You can learn more at our web site:
www.khronos.org/opencl/

25

http://www.khronos.org/opencl/

Visit us on the SC13 exhibit floor

<3

£ XILINX NVIDIA.

?___;=_ _=® LLLLL OGRAMMABLE.. Booth 613
= == = at Alpha Data
— —— 7 — Booth 4237)
Booths 126, 2713 /]
INSTRUMENTS
Booth 3725
~“Ef\
AMDCT e
Booth 1113 OpenCL NOERYA\.
Booth 4137
i JO O V4
FUjiTSU

Booth 2718

NEC GMdD
Booth 3109 ARM Booths 2501, 2701

Booth 3141
26

