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Industry Standards for Programming
Heterogeneous Platforms

CPUs

Multiple cores driving Emerging
performance increases Intersection

& a

GPUs

Increasingly general purpose
data-parallel computing

OpenCL
Multi-processor Graphics APIs
programming - Heterogen_eous and Shading
e.g. OpenMP Computing Languages

OpenCL — Open Computing Language
Open, royalty-free standard for portable, parallel programming of
heterogeneous combinations of CPUs, GPUs, and other processors
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OpenCL as Parallel Compute

Foundation

el % (@eopcL AMDD

OpenCL

C++ AMP OpenCL HLM  WebCL Aparapi
Shevlin §++ syn.tlax JavaScript binding Java language
Park Ct°’“'?‘ er to OpenCL for extensions for
Uses Clang EXIeNsIONs ;nitiation of OpenCL parallelism
and LLVM C kernels

OpenCL

intel. M

UNIVERSITY

River Trail PyOpenCL Harlan

Language Python wrapper  High level
extensions to around language for

JavaScript OpenCL GPU
programming

-

OpenCL provides vendor
optimized,
cross-platform, cross-vendor
access to heterogeneous compute
resources
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Announcing at SC13
OpenCL 2.0 released!

OpenCL 2.0
Significant enhancements to memory and
SEES | execution models to expose emerging
& f‘ hardware capabilities and provide
increased flexibility, functionality and
OpenCL performance to developers

SPIR 1.2 ... to be released soon!

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-
level languages

KHROONQ S
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Announcing at SC13

4 OpenCL 2.0 released!

OpenCL 2.0
) Significant enhancements to memory and
“Ef\? . execution models to expose emerging

hardware capabilities and provide
increased flexibility, functionality and
\\ performance to developers

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-
level languages
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Goals

 Ease of Use

e Performance Improvements

- Enable New Programming Patterns

» Well-defined Execution & Memory Model
« Improve OpenCL / OpenGL sharing
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OpenCL 1.X memory Regions

Global Mem_objs
allocated on host
and explicitly moved
between regions.

Consistency at
explicit sync points
Mem_objs as
contiguous blocks
... pointer based
data structures
between
host/device not
supported.
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OpenCL 2.0: coarse grained SVM

Memory consistency at

y Regions + Buffer-based SVM
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OpenCL 2.0: fine grained/System SVM

OpenCL Memory Regions + system SVM

Host and device can
update data in
buffer concurrently

Memory
consistency using
C11 atomics and
synchronization
operations

An optional feature
in OpenCL 2.0
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Ideal

Nested Parallelism

Consider an algorithm as a task
graph where the task structure is
determined at runtime based on the
input data.



Nested Parallelism

and overhead resulting
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OpenCL 2.0
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Nested Parallelism

« Use clang Blocks to describe kernel to queue

kernel void my func(global int *a, global int *Db)
{

void (“my block A) (void) =
A
{
size t id = get global id(0);
b[id] += a[id];
};

enqueue kernel (get default queue(),
CLK_ENQUEUE_FLAGS_WAI T KERNEL,
ndrange 1D(..),
my block A);

KHROONQ S
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Generic Address Space

e OpenCL 2.0 no longer
requires an address space
qualifier for arguments to
a function that are a
pointer to a type

— Except for kernel
functions

e Generic address space
assumed if no address
space is specified

e Makes it really easy to
write functions without
having to worry about
which address space
arguments point to

void
my func (int *ptr,

{

}

foo(ptr, ..):

kernel void
foo(global int *g ptr,
local int *1 ptr,

{

my func(g ptr,
my func(l ptr,

)

) s
) g

)



Other OpenCL 2.0 Features

« What made it in

— Memory model based on C’11 ... includes atomics, and memory
orders

— Pipe memory objects to support pipeline algorithms.
— Flexible work-group sizes

— Expanded set of work-group functions (collective operations across
work-items in a single work-group).
— broadcast, reduction, vote (any & all), prefix sum

— ... and much more

« But we still lack ...
— Support for a C++ kernel programming language.

— Ability to write a wide range of algorithms that require concurrency
guarantees (e.g. try writing a spin lock in OpenCL).



Announcing at SC13

OpenCL 2.0
| Significant enhancements to memory and
SEE | ~execution models to expose emerging
:’ ?‘ /" hardware capabilities and provide
increased flexibility, functionality and
OpenCL performance to developers
4 SPIR 1.2 ... to be released soon! A

SPIR (Standard Parallel Intermediate Representation)
Exploring LLVM-based, low-level Intermediate Representation
for IP Protection and as target back-end for alternative high-

\_ level languages W
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SPIR Market Goals

- Standard Portable Intermediate Representation

« Enhance ISV experience
- Avoid IP exposure: Don’t ship source
- Manage device/driver/vendor proliferation
- Avoid market lag

o Support 3 party compilers
- Just need new front end
- Long term: C++, domain specific, ...

 User choice
- Retarget a shipped application to new devices, new vendors

Opportunity to unleash industry innovation:
Domain Specific Languages, C++ Compilers ....
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Non-SPIR Source Compilation Flow

OpenCL C
Kernel
Source

OpenCL Host
> Library :>

 Supports only OpenCL C

« ISV ships their kernel source
- Exposes IP
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SPIR Binary compilation flow

OpenCL C OpenCL Vendor
Kernel Host Library specific
Source

binary

Platform specific
container

/e Vendor
'\_ specific
binary

OpenCL

Host Library

« ISV ships vendor-specific binary
- Proliferation: devices, driver revisions, vendors
- Market-lagging: target shipped products

KHROONQ S
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SPIR flow

OpenCL C
Kernel
Source

OpenCL

Host Library :>

Standard

Platform specific

container
( 0
.| standard

OpenCL

Host Library

« ISV ships kernels in SPIR form
« Customer runs application on

platform of their choice
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http://www.amd.com/

Sample SPIR Consumption Flow

Standard

Device
specific
binary

KHROONQ S

—>

clCreateProgramWithBinary

|

clBuildProgram( “ -x spir -spir-std=1.2"....)
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Sample SPIR flow: Room for optimizations

clBuildProgram( “ -x spir -spir-std=1.0"....)

Standard

> SPIR Verifier

Standard LLVM optimizations

— LLVM
IR

Custom optimizations

cl_program E.g. Dead code elimination

Materialization
(Convert to device specific
IR)

ABI fixup, triple, vectorize, — Target
custom optimizations IR

Device
executable JIT

KHROONQ S
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OpenCL SPIR Status

« OpenCL 1.2 Extension standardizes an API for reading SPIR files
- cl_khr_spir

- Final specification ... to be released soon!

- Supports newer OpenCL 1.2 features
- MSAA, Depth, depth stencil images

« Pushing patches into open source Clang to GENERATE SPIR...
- Clang 3.2 trunk will be able to generate SPIR
- 32-bit separate from 64-bit, Little endian only
- Many low level changes: e.g. encode kernel arg info
e Using LLVM 3.2 to CONSUME SPIR
- Generate optimized LLVM IR
- Convert to target IR and JIT to executable
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Summary

* OpenCL is evolving rapidly to match HW innovation in
heterogeneous platforms.

« We are announcing at SC13:
— OpenCL 2.0
— SPIR (Standard Portable Intermediate Representation).

* You can learn more at our web site:
www.khronos.org/opencl/
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Visit us on the SC13 exhibit floor
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