
© Copyright Khronos Group 2013 - Page 1

Open 2.0: Unlocking the power
of your heterogeneous platform

Tim Mattson
Intel Labs

2 2

Industry Standards for Programming
Heterogeneous Platforms

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general purpose

data-parallel computing

Graphics APIs
and Shading
Languages

Multi-processor
programming –

e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of
heterogeneous combinations of CPUs, GPUs, and other processors

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of
heterogeneous combinations of CPUs, GPUs, and other processors

© Copyright Khronos Group 2013 - Page 3

OpenCL as Parallel Compute

Foundation

C++ syntax

& compiler

extensions

OpenCL HLM Aparapi

Java language

extensions for

parallelism

JavaScript binding

to OpenCL for

initiation of OpenCL

C kernels

WebCL River Trail

Language

extensions to

JavaScript

C++ AMP

Shevlin

Park

Uses Clang

and LLVM

PyOpenCL

Python wrapper

around

OpenCL

OpenCL provides vendor

optimized,

cross-platform, cross-vendor

access to heterogeneous compute

resources

Harlan

High level

language for

GPU

programming

© Copyright Khronos Group 2013 - Page 4

SPIR 1.2 … to be released soon!

Announcing at SC13

OpenCL 2.0

Significant enhancements to memory and

execution models to expose emerging

hardware capabilities and provide

increased flexibility, functionality and

performance to developers

SPIR (Standard Parallel Intermediate Representation)

Exploring LLVM-based, low-level Intermediate Representation

for IP Protection and as target back-end for alternative high-

level languages

OpenCL 2.0 released!

© Copyright Khronos Group 2013 - Page 5

SPIR 1.2 released!

Announcing at SC13

OpenCL 2.0

Significant enhancements to memory and

execution models to expose emerging

hardware capabilities and provide

increased flexibility, functionality and

performance to developers

SPIR (Standard Parallel Intermediate Representation)

Exploring LLVM-based, low-level Intermediate Representation

for IP Protection and as target back-end for alternative high-

level languages

OpenCL 2.0 released!

© Copyright Khronos Group 2013 - Page 6

Goals

• Ease of Use

• Performance Improvements

• Enable New Programming Patterns

• Well-defined Execution & Memory Model

• Improve OpenCL / OpenGL sharing

OpenCL 1.X memory Regions

• Global Mem_objs

allocated on host

and explicitly moved

between regions.

• Consistency at

explicit sync points

• Mem_objs as

contiguous blocks

… pointer based

data structures

between

host/device not

supported.

OpenCL 2.0: coarse grained SVM

• Memory consistency at

synchronization points

• Host needs to use sync

API to update data

– clEnqueueSVMMap

– clEnqueueSVMUnmap

• Memory consistency at

granularity of a buffer

• Allows sharing of pointers

between host and OpenCL

device

• A required feature in

OpenCL 2.0

OpenCL 2.0: fine grained/System SVM

• Host and device can

update data in

buffer concurrently

• Memory

consistency using

C11 atomics and

synchronization

operations

• An optional feature

in OpenCL 2.0

Nested Parallelism
T
im

e

Ideal

TId

Consider an algorithm as a task
graph where the task structure is
determined at runtime based on the
input data.

Nested Parallelism
T
im

e

Ideal OpenCL 1.X

T1.x

TId

With OpenCL 1.X only
the host can submit
kernels for execution.

So after each task ends,
it must copy data back
to the host so the host
knows which kernels to
submit in the next
phase.

This requires extra code
(the red dotted lines)
and overhead resulting
in T1.x >> TId

Nested Parallelism
T
im

e

Ideal OpenCL 1.X OpenCL 2.0

T1.x

T2.0

TId

OpenCL lets kernels submit
kernels for true nested
parallelism

Nested Parallelism
T
im

e

Ideal OpenCL 1.X OpenCL 2.0

T1.x

T2.0

TId

OpenCL lets kernels submit
kernels for true nested
parallelism

Nested parallelism is more
convenient for the
programmer and can lead
to much lower overhead,
so T2.0 ~ TId

kernel void my_func(global int *a, global int *b)

{

 …

 void (^my_block_A)(void) =

 ^{

 size_t id = get_global_id(0);

 b[id] += a[id];

 };

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 my_block_A);

}

• Use clang Blocks to describe kernel to queue

Nested Parallelism

Generic Address Space

• OpenCL 2.0 no longer

requires an address space

qualifier for arguments to

a function that are a

pointer to a type

– Except for kernel

functions

• Generic address space

assumed if no address

space is specified

• Makes it really easy to

write functions without

having to worry about

which address space

arguments point to

void

my_func (int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

kernel void

foo(global int *g_ptr,

 local int *l_ptr, …)

{

 …

 my_func(g_ptr, …);

 my_func(l_ptr, …);

}

Other OpenCL 2.0 Features

• What made it in

– Memory model based on C’11 … includes atomics, and memory

orders

– Pipe memory objects to support pipeline algorithms.

– Flexible work-group sizes

– Expanded set of work-group functions (collective operations across

work-items in a single work-group).

– broadcast, reduction, vote (any & all), prefix sum

– … and much more

• But we still lack …

– Support for a C++ kernel programming language.

– Ability to write a wide range of algorithms that require concurrency

guarantees (e.g. try writing a spin lock in OpenCL).

© Copyright Khronos Group 2013 - Page 17

SPIR 1.2 … to be released soon!

Announcing at SC13

OpenCL 2.0

Significant enhancements to memory and

execution models to expose emerging

hardware capabilities and provide

increased flexibility, functionality and

performance to developers

SPIR (Standard Parallel Intermediate Representation)

Exploring LLVM-based, low-level Intermediate Representation

for IP Protection and as target back-end for alternative high-

level languages

OpenCL 2.0 released!

© Copyright Khronos Group 2013 - Page 18

SPIR Market Goals

• Standard Portable Intermediate Representation

• Enhance ISV experience

- Avoid IP exposure: Don’t ship source

- Manage device/driver/vendor proliferation

- Avoid market lag

• Support 3rd party compilers

- Just need new front end

- Long term: C++, domain specific, …

• User choice

- Retarget a shipped application to new devices, new vendors

18

Opportunity to unleash industry innovation:

Domain Specific Languages, C++ Compilers ….

© Copyright Khronos Group 2013 - Page 19

User application

Non-SPIR Source Compilation Flow

• Supports only OpenCL C

• ISV ships their kernel source

- Exposes IP

19

Vendor specific

OpenCL C

Kernel

Source

OpenCL C

Kernel

Source

OpenCL Host

Library

OpenCL Host

Library

© Copyright Khronos Group 2013 - Page 20

Platform specific

container

SPIR Binary compilation flow

• ISV ships vendor-specific binary

- Proliferation: devices, driver revisions, vendors

- Market-lagging: target shipped products

Vendor specific

OpenCL C

Kernel

Source

OpenCL C

Kernel

Source

OpenCL

Host Library

OpenCL

Host Library

Vendor

specific

binary

Vendor

specific

binary

Vendor specific

Vendor

specific

binary

Vendor

specific

binary

OpenCL

Host Library

OpenCL

Host Library

© Copyright Khronos Group 2013 - Page 21

Platform specific

container

SPIR flow

• ISV ships kernels in SPIR form

• Customer runs application on platform of their choice

Vendor specific

OpenCL C

Kernel

Source

OpenCL C

Kernel

Source

OpenCL

Host Library

OpenCL

Host Library

Standard

Portable

Intermediate

Standard

Portable

Intermediate

Vendor specific

OpenCL

Host Library

OpenCL

Host Library

Standard

Portable

Intermediate

Standard

Portable

Intermediate

http://www.amd.com/

© Copyright Khronos Group 2013 - Page 22

Sample SPIR Consumption Flow

Standard

Portable

Intermediate

Standard

Portable

Intermediate

clBuildProgram(“ -x spir -spir-std=1.2”….)

Device

specific

binary

Device

specific

binary

clCreateProgramWithBinary

© Copyright Khronos Group 2013 - Page 23

cl_program

Sample SPIR flow: Room for optimizations

Standard

Portable

Intermediate

Standard

Portable

Intermediate

clBuildProgram(“ -x spir -spir-std=1.0”….)

SPIR Verifier SPIR Verifier

Standard LLVM optimizations Standard LLVM optimizations

Custom optimizations

E.g. Dead code elimination

Custom optimizations

E.g. Dead code elimination

Materialization

(Convert to device specific

IR)

Materialization

(Convert to device specific

IR)

LLVM

IR

Target

IR

ABI fixup, triple, vectorize,

custom optimizations

ABI fixup, triple, vectorize,

custom optimizations

JIT JIT

Device

executable

Device

executable

© Copyright Khronos Group 2013 - Page 24

OpenCL SPIR Status

• OpenCL 1.2 Extension standardizes an API for reading SPIR files

- cl_khr_spir

• Final specification … to be released soon!

- Supports newer OpenCL 1.2 features
- MSAA, Depth, depth stencil images

• Pushing patches into open source Clang to GENERATE SPIR…

- Clang 3.2 trunk will be able to generate SPIR
- 32-bit separate from 64-bit, Little endian only

- Many low level changes: e.g. encode kernel arg info

• Using LLVM 3.2 to CONSUME SPIR

- Generate optimized LLVM IR

- Convert to target IR and JIT to executable

Summary

• OpenCL is evolving rapidly to match HW innovation in

heterogeneous platforms.

• We are announcing at SC13:

– OpenCL 2.0

– SPIR (Standard Portable Intermediate Representation).

• You can learn more at our web site:

www.khronos.org/opencl/

25

http://www.khronos.org/opencl/

Visit us on the SC13 exhibit floor

at Alpha Data

Booth 4237

26

Booth
4332

Booth 1113

Booth 3141

Booth 2718

Booth 3109
Booths 2501, 2701

Booths 126, 2713

Booth 3725

Booth 4137

Booth 613

