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The Problem

Molecular Biology
m Repositories of biochemical reactions and genetic regulations
m Often established experimentally
m High-throughput methods for collecting experimental profiles
m Often incompatible with biological knowledge
m Incompatibilities due to unreliable data or missing reactions
m [t is still a common practice to shift the task of making
biological sense out of experimental profiles on human experts!
Qualitative Approach

m Represent regulatory networks by influence graphs
m Represent experimental profiles by observed variations

m An experimental profile is consistent with a regulatory network
iff each observed variation can be explained by some influence

m Inconsistencies point to unreliable data or missing reactions!
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Sign Consistency Model



Influence Graphs
Vertices: genes, metabolites, proteins

Edges: regulations
— activation

— inhibition

Example:



Observations

Labels: variations found in genetic profiles
® increase

® decrease

Examples:

Note: Observations and regulation labelings can be partial
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Sign Consistency Constraints (SCCs)

Local Consistency:

m A variation is consistent iff it is explained by some influence

©e® 0 060 06

Global Consistency:

m A (partially) labeled influence graph is consistent iff
there is a total labeling such that every variation is explained
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SCCs and Ordinary Differential Equations (ODEs)

SCCs model a rather general class of ODEs.

Theorem (Siegel et al, Biosystems)
Given a differential dynamics %X % = F(X) st

m Regulations with constant sign
8F,

has a constant sign in phase space
[ Self—degradat/on

F
3C>08’<

oX; -C

m Genes expressed when absent
F(Xi=0,X)>0

Then, the SCC holds between any two steady states
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Predicting Variations

under Consistency

A partially labeled influence graph may admit several solutions.

Example:

Predicted Variations:

-~ 9000
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Answer Set Programming (ASP)
in a Nutshell


http://potassco.sourceforge.net

Answer Set Programming (ASP)
in a Nutshell

m ASP is an approach to declarative problem solving, combining

® a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning


http://potassco.sourceforge.net

Answer Set Programming (ASP)
in a Nutshell

m ASP is an approach to declarative problem solving, combining

® a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

m ASP allows for solving all search problems in NP (and NPNP)
in a uniform way (being more compact than SAT)


http://potassco.sourceforge.net

Answer Set Programming (ASP)
in a Nutshell

m ASP is an approach to declarative problem solving, combining

® a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
m ASP allows for solving all search problems in NP (and NPNP)
in a uniform way (being more compact than SAT)

m The versatility of ASP is reflected by the ASP solver clasp,
winning first places at ASP’07/09/11, PB'09/11, and
SAT'09/11

m http://potassco.sourceforge.net


http://potassco.sourceforge.net

Answer Set Programming (ASP)
in a Nutshell

m ASP is an approach to declarative problem solving, combining

® a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

m ASP allows for solving all search problems in NP (and NPNP)
in a uniform way (being more compact than SAT)

m The versatility of ASP is reflected by the ASP solver clasp,
winning first places at ASP’07/09/11, PB'09/11, and
SAT'09/11

m http://potassco.sourceforge.net

m ASP embraces many emerging application areas


http://potassco.sourceforge.net

Overview on Answer Set Programming

m A logic program is a set of rules
a< bi,...,bm,not cpi1,...,N0t Cp.

m It is used to specify sets of (ground) atoms, its answer sets
m An answer set

m satisfies each of the rules
m satisfies the stability criterion
m which implies derivability of its atoms

m Particular cases

Facts e.g. a.
Integrity rules eg. < b, not c.
Choice rules e.g. 1{a1,a2}1 < b, not c.

(used as shorthands)



Influence Graphs and Variations

Vertices: vertex(i).
Edges: edge(j, i).

— observedE(j,i,+1).
— observedE(j,i,—1).

Variations:
© observedV(i,+1).
® observedV (i, —1).



Influence Graphs and Variations

Vertices: vertex(i).
Edges: edge(j, i).
observedE(j, i,+1).
— observedE(j, i, —1).
Variations:
observedV/(i,+1).
® observedV(i,—1).

Example:

vertex(A). ... vertex(E).

edge(A,B). edge(A,D).

edge(D, C

).
observedE(A,B,+1). observedE(A,D, —1).
observedE(D, C,+1). observedE (D, E,+1).

observedV (B, —1). observedV(C,+1). observedV(E,—1).

edge(D, E).



Generating Total Labelings

Edge Labels:
1{labelE(J,1,+1), labelE(J, ], —1)}1 < edge(J, ).
labelE(J, 1, S) < observedE(J, 1, S).
Vertex Labels:
1{labelV(I,+1), labelV(I,—1)}1 < vertex(/).
labelV/(1,S) < observedV/(I,S).
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receive(l,S*T) < labelE(J,1,S), labelV(J, T).

Sign Consistency:
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Motivation

Observation: Regulatory networks and experimental profiles are
often inconsistent with each other!

Question: How to predict unobserved variations in this case?

Idea:

Repair inconsistencies
Predict from repaired networks and/or profiles



Repairing Networks and /or Profiles

Network Repair:

Adding edges completes an incomplete network (w.r.t. profiles)
Flipping edge labels curates an improper network
Making vertices input indicates incompleteness or oscillations

Profile Repair:

Flipping vertex labels indicates aberrant experimental data



Repair Operations
Adding Edges

rep(add_e(U, V)) < vertex(U), vertex(V), U # V, not edge(U, V).
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Generating Total Labelings under Repair

Applying Repair Operations:
0{app(R)}1 < rep(R).

Generating Edge Labelings:
1{labelE(U, V,+1), labelE(U, V,—1)}1 < edge(U, V).
1{labelE(U, V,+1), labelE(U, V,—1)}1 < app(add_e(U, V)).
labelE(U, V,S) < observedE(U, V, S), not app(flip-e(U, V, S)).
labelE(U, V,—S) < app(flip-e(U, V, S)).

Generating Vertex Labelings:
1{labelV(V,+1), labelV(V,—1)}1 < vertex(V).

labelV(V,S) < observedV (V,S), not app(flip_v(V,S)).
labelV(V,—S) < app(flip_v(V,S)).



Generating Total Labelings under Repair

Applying Repair Operations:
0{app(R)}1 < rep(R).

Generating Edge Labelings:
1{labelE(U, V,+1), labelE(U, V,—1)}1 < edge(U, V).
1{labelE(U, V,+1), labelE(U, V,—1)}1 < app(add_e(U, V)).
labelE(U, V,S) < observedE(U, V, S), not app(flip-e(U, V, S)).
labelE(U, V,—S) < app(flip-e(U, V, S)).

Generating Vertex Labelings:
1{labelV(V,+1), labelV(V,—1)}1 « vertex(V).

labelV(V,S) < observedV (V. S), not app(flip_-v(V,5)).
labelV(V,—=S) < app(flip-v(V,S)).



Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:
receive(l,S*T) < labelE(J,1,S), labelV(J, T).
< labelV(1,S), not receive(l, S),
not input(V'), not app(inp_v(V)).



Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:
receive(l,S*T) < labelE(J,1,S), labelV(J, T).
<« labelV(1,S), not receive(l,S),
not input(V'), not app(inp_v(V)).



Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:
receive(l,S*T) < labelE(J,1,S), labelV(J, T).
< labelV(1,S), not receive(l, S),
not input(V'), not app(inp_v(V)).

Minimal Repair
Goal:
Minimal change of networks/profiles
(re)establishing consistency

Implementation (cardinality minimality):
#minimize{app(R) : rep(R)}.

(see paper for subset minimality)



Predicting under Repair

Two Phase Approach:
Compute minimal number of required repair operations

Intersect consistent labelings under minimal repair
m Cautious reasoning (supported by answer set solver clasp)
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Experiments



Predicting Variations

under Inconsistency

m Transcriptional network of Escherichia coli, obtained from
RegulonDB by Gama-Castro et al. [2008], consisting of

m 5150 interactions between 1914 genes
m Two datasets
m Exponential-Stationary growth shift by Bradley et al. [2007]
m Heatshock by Allen et al. [2003]
m The data of both experiments is highly noisy and inconsistent
with the (well-curated) RegulonDB model



Predicting Variations

under Inconsistency

Transcriptional network of Escherichia coli, obtained from
RegulonDB by Gama-Castro et al. [2008], consisting of

m 5150 interactions between 1914 genes
Two datasets

m Exponential-Stationary growth shift by Bradley et al. [2007]

m Heatshock by Allen et al. [2003]
The data of both experiments is highly noisy and inconsistent
with the (well-curated) RegulonDB model
For enabling prediction rate and accuracy assessment,
we randomly select samples of significantly expressed genes
(3%,6%,9%,12%,15% of the whole data, 200 samples each)
and use them for testing both our repair modes and prediction
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Repair

Repair and Prediction Times

Exponential-Stationary Heatshock
Repair 3% | 6% | 9% | 12% | 15% || 3% | 6% | 9% | 12% | 15%
6.58| 8.44| 11.60| 14.88| 26.20|| 25.54| 42.76| 50.46| 69.23| 84.77
i 2.18| 2.15| 2.21| 2.23| 2.21|| 2.10| 2.13| 2.13] 2.05| 2.08
Y 1.41] 1.40| 1.40 1.41 1.37|| 1.41| 147 1.42 1.37 1.39
i 73.16[202.66(392.97| 518.50| 574.85|(120.91[374.69/553.00{ 593.20| 595.99
v || 28.53| 85.17(189.27|327.98| 470.48|| 67.92[236.051465.92|579.88| 596.17
i v 2.09| 2.14| 2.45| 3.08| 6.06|| 2.27| 4.94| 60.63|257.68|418.93
i v |[133.84[391.60[538.93|593.33|600.00([232.29(542.48/593.88| 600.00| 600.00

: flipping edge labels

i': making vertices input

‘v': flipping vertex labels




Prediction Repair

Repair and Prediction Times

Repair

Exponential-Stationary
3% | 6% | 9% | 12% | 15%

Heatshock
3% | 6% | 9% | 12% | 15%

6.58
2.18
1.41

8.44
2.15
1.40

11.60
2.21
1.40

14.88
2.23
1.41

26.20
2.21
1.37

25.54
2.10
1.41

42.76
2.13
1.47

50.46
2.13
1.42

69.23
2.05
1.37

84.77
2.08
1.39

73.16
28.53
2.09

202.66
85.17
2.14

392.97
189.27
2.45

518.50
327.98
3.08

574.85
470.48
6.06

120.91
67.92
2.27

374.69
236.05
4.94

553.00
465.92
60.63

593.20
579.88
257.68

595.99
596.17
418.93

133.84

391.60

538.93

593.33

600.00

232.29

542.48

593.88

600.00

600.00

13.27
6.18
4.64

12.19
5.26
4.45

14.76
4.77
4.39

15.34
4.60
4.40

25.90
4.42
4.30

25.77
6.57
4.86

37.18
5.93
5.06

29.09
5.17
5.34

36.23
4.86
5.42

41.88
454
5.52

35.25
14.35
6.43

97.66
26.17
5.75

293.80
90.17
6.27

456.55
200.25
6.69

550.33
363.36
8.61

85.47
23.32
6.91

293.28
111.99
6.63

524.19
338.95
30.33

591.81
545.56
176.14

594.74
591.23
371.95

42.51

248.30

468.71

579.58

101.82

466.91

585.64

e": flipping edge labels

i': making vertices input

‘v': flipping vertex labels
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Prediction Rate and Accuracy in Percent

Exponential-Stationary Heatshock
Repair 3%| 6%| 9%| 12%| 15%| 3%| 6%| 9%| 12%| 15%

‘e": flipping edge labels ‘i": making vertices input ‘v': flipping vertex labels



Prediction Rate and Accuracy in Percent

Exponential-Stationary Heatshock
Repair 3%| 6%| 9%| 12%| 15%| 3%| 6%| 9%| 12%]| 15%
e 15.00|18.51|20.93|22.79|23.94(|15.47|19.54|21.87|23.17|24.78

i 15.00{18.51{20.93|22.79|23.93||15.48|19.62|21.89|23.20|24.80
v |/14.90(18.37{20.86|22.73|23.77||15.32|19.59(21.37|22.13|23.79

e i 14.92|18.61|20.55|21.96|22.80(|15.37|19.62|22.83|23.44|24.05

B e v |/14.89(18.33|21.07|22.52|23.74||15.33|19.21|21.00|22.65|24.90
5] i v |[14.89|18.33|20.79(22.59|23.66((15.41|19.47|21.36|21.81|23.55

(Y | e i v |1458]19.00/20.29/21.13] —||15.01|19.11|22.52| —| —

‘e": flipping edge labels ‘i": making vertices input ‘v': flipping vertex labels
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Prediction Rate and Accuracy in Percent

Repair

Exponential-Stationary
3%| 6%| 9%| 12%| 15%

Heatshock

3%| 6%| 9%| 12%| 15%

15.00
15.00
14.90

18.51
18.51
18.37

20.93
20.93
20.86

22.79
22.79
22.73

23.94
23.93
23.77

15.47
15.48
15.32

19.54
19.62
19.59

21.87
21.89
21.37

23.17
23.20
22.13

24.78
24.80
23.79

14.92
14.89
14.89

18.61
18.33
18.33

20.55
21.07
20.79

21.96
22.52
22.59

22.80
23.74
23.66

15.37
15.33
15.41

19.62
19.21
19.47

22.83
21.00
21.36

23.44
22.65
21.81

24.05
24.90
23.55

14.58

19.00

20.29

21.13

15.01

19.11

22.52

90.93
90.93
90.99

91.98
91.98
92.05

92.42
92.42
92.44

92.70
92.70
92.73

92.81
92.81
92.89

91.87
91.93
92.29

92.93
92.90
93.27

92.92
92.94
93.88

92.83
92.87
94.27

92.71
92.76
94.36

91.09
90.99
90.99

91.90
92.03
92.03

92.57
92.50
92.42

93.03
92.82
92.71

93.19
92.94
92.87

91.99
92.30
92.24

92.49
93.37
93.34

91.16
93.66
93.90

93.62
94.36
94.26

94.44
94.35
94.38

91.35

92.29

92.52

93.04

92.26

93.04

91.78

: flipping edge labels

e
1

making vertices

input

‘v': flipping vertex labels
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Summary

m We introduced repair-based reasoning techniques
for computing minimal modifications of

m biological networks and
m experimental profiles
in order to make them mutually consistent.
m Using Answer Set Programming, we demonstrated on
real data that predictions after repair are
m feasible and
m highly accurate.
m Answer Set Programming provided a

m declarative,
m succinct, and
m highly efficient

solution to a knowledge-intense yet error-prone application.
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