Repair and Prediction (under Inconsistency) in Large Biological Networks with Answer Set Programming

Martin Gebser¹ Carito Guziolowski² Mihail Ivanchev¹ Torsten Schaub¹ Anne Siegel² Sven Thiele¹ Philippe Veber³

> ¹Institute for Informatics, University of Potsdam ²INRIA/Irisa, Rennes ³Institut Cochin, Paris

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Molecular Biology

- Repositories of biochemical reactions and genetic regulations
 - Often established experimentally
- High-throughput methods for collecting experimental profiles
 - Often incompatible with biological knowledge

Molecular Biology

- Repositories of biochemical reactions and genetic regulations
 - Often established experimentally
- High-throughput methods for collecting experimental profiles
 - Often incompatible with biological knowledge
- Incompatibilities due to unreliable data or missing reactions
 - It is still a common practice to shift the task of making biological sense out of experimental profiles on human experts!

Molecular Biology

- Repositories of biochemical reactions and genetic regulations
 - Often established experimentally
- High-throughput methods for collecting experimental profiles
 - Often incompatible with biological knowledge
- Incompatibilities due to unreliable data or missing reactions
 - It is still a common practice to shift the task of making biological sense out of experimental profiles on human experts!

Qualitative Approach

- Represent regulatory networks by influence graphs
- Represent experimental profiles by observed variations

Molecular Biology

- Repositories of biochemical reactions and genetic regulations
 - Often established experimentally
- High-throughput methods for collecting experimental profiles
 - Often incompatible with biological knowledge
- Incompatibilities due to unreliable data or missing reactions
 - It is still a common practice to shift the task of making biological sense out of experimental profiles on human experts!

Qualitative Approach

- Represent regulatory networks by influence graphs
- Represent experimental profiles by observed variations
- An experimental profile is consistent with a regulatory network iff each observed variation can be explained by some influence
 - Inconsistencies point to unreliable data or missing reactions!

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Influence Graphs

Vertices: genes, metabolites, proteins

Edges: regulations

activation

— inhibition

Example:

Observations

Labels: variations found in genetic profiles

- increase
- decrease

Examples:

Note: Observations and regulation labelings can be partial

Local Consistency:

A variation is consistent **iff** it is explained by some influence

Local Consistency:

A variation is consistent **iff** it is explained by some influence

Global Consistency:

Local Consistency:

A variation is consistent **iff** it is explained by some influence

Global Consistency:

Local Consistency:

A variation is consistent **iff** it is explained by some influence

Global Consistency:

Local Consistency:

• A variation is consistent **iff** it is explained by some influence

Global Consistency:

Local Consistency:

• A variation is consistent **iff** it is explained by some influence

Global Consistency:

SCCs and Ordinary Differential Equations (ODEs)

SCCs model a rather general class of ODEs.

Theorem (Siegel et al, Biosystems)

Given a differential dynamics $\frac{dX}{dt} = F(X)$ s.t.:

Regulations with constant sign

 $rac{\partial F_i}{\partial X_i}$ has a constant sign in phase space

■ Self-degradation

$$\exists C > 0 \ \frac{\partial F_i}{\partial X_i} < -C$$

■ Genes expressed when absent

$$F(X_i = 0, X) > 0$$

Then, the SCC holds between any two steady states

A partially labeled influence graph may admit several solutions.

Example:

A partially labeled influence graph may admit several solutions.

Example:

A partially labeled influence graph may admit several solutions.

Example:

Predicted Variations:

A partially labeled influence graph may admit several solutions.

Example:

Predicted Variations:

A partially labeled influence graph may admit several solutions.

Example:

Predicted Variations:

A partially labeled influence graph may admit several solutions.

Example:

Predicted Variations:

 $\left[\mathsf{E}\right]$

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

■ ASP allows for solving all search problems in NP (and NP^{NP}) in a uniform way (being more compact than SAT)

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

- ASP allows for solving all search problems in NP (and NP^{NP}) in a uniform way (being more compact than SAT)
- The versatility of ASP is reflected by the ASP solver clasp, winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11
 - http://potassco.sourceforge.net

- ASP is an approach to declarative problem solving, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

- ASP allows for solving all search problems in NP (and NP^{NP}) in a uniform way (being more compact than SAT)
- The versatility of ASP is reflected by the ASP solver clasp, winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11
 - http://potassco.sourceforge.net
- ASP embraces many emerging application areas

Overview on Answer Set Programming

A logic program is a set of rules

$$a \leftarrow b_1, \ldots, b_m, not \ c_{m+1}, \ldots, not \ c_n.$$

- It is used to specify sets of (ground) atoms, its answer sets
- An answer set
 - satisfies each of the rules
 - satisfies the stability criterion
 - which implies derivability of its atoms
- Particular cases

Facts e.g.: a. Integrity rules e.g.:
$$\leftarrow b, not \ c.$$
 Choice rules e.g.: $1\{a_1, a_2\}1 \leftarrow b, not \ c.$ (used as shorthands)

Influence Graphs and Variations

Vertices: vertex(i).

Edges: edge(j, i).

— observedE(j, i, +1).

— observedE(j, i, -1).

Variations:

- observedV(i, +1).
- observedV(i, -1).

Influence Graphs and Variations

```
Vertices: vertex(i).
```

- Edges: edge(j, i).
- observedE(j, i, +1).
- observedE(j, i, -1).

Variations:

- observedV(i, +1).
- observedV(i, -1).

Example:

```
\label{eq:vertex} \begin{split} \textit{vertex}(A). & \dots & \textit{vertex}(E). \\ \textit{edge}(A,B). & \textit{edge}(A,D). & \dots & \textit{edge}(D,C). & \textit{edge}(D,E). \\ \textit{observedE}(A,B,+1). & \textit{observedE}(A,D,-1). & \dots \\ \textit{observedE}(D,C,+1). & \textit{observedE}(D,E,+1). \\ \textit{observedV}(B,-1). & \textit{observedV}(C,+1). & \textit{observedV}(E,-1). \end{split}
```

Edge Labels:

$$1\{labelE(J, I, +1), labelE(J, I, -1)\}1 \leftarrow edge(J, I).$$

$$labelE(J, I, S) \leftarrow observedE(J, I, S).$$

$$\begin{aligned} 1\{labelV(I,+1), labelV(I,-1)\}1 \leftarrow \textit{vertex}(I). \\ labelV(I,S) \leftarrow \textit{observed}V(I,S). \end{aligned}$$

Edge Labels:

$$1\{labelE(J,I,+1), labelE(J,I,-1)\}1 \leftarrow edge(J,I).$$

$$labelE(J,I,S) \leftarrow observedE(J,I,S).$$

$$\begin{aligned} 1\{labelV(I,+1), labelV(I,-1)\}1 \leftarrow \textit{vertex}(I). \\ labelV(I,S) \leftarrow \textit{observed}V(I,S). \end{aligned}$$

Edge Labels:

$$1\{labelE(J,I,+1), labelE(J,I,-1)\}1 \leftarrow edge(J,I).$$

$$labelE(J,I,S) \leftarrow observedE(J,I,S).$$

$$\begin{aligned} 1\{labelV(I,+1), labelV(I,-1)\}1 \leftarrow \textit{vertex}(I). \\ labelV(I,S) \leftarrow \textit{observed}V(I,S). \end{aligned}$$

Edge Labels:

$$1\{labelE(J,I,+1), labelE(J,I,-1)\}1 \leftarrow edge(J,I).$$

$$labelE(J,I,S) \leftarrow observedE(J,I,S).$$

$$\begin{aligned} 1\{labelV(I,+1), labelV(I,-1)\}1 \leftarrow \textit{vertex}(I). \\ labelV(I,S) \leftarrow \textit{observed}V(I,S). \end{aligned}$$

Generating Total Labelings

Edge Labels:

$$1\{labelE(J,I,+1), labelE(J,I,-1)\}1 \leftarrow edge(J,I).$$

$$labelE(J,I,S) \leftarrow observedE(J,I,S).$$

Vertex Labels:

$$\begin{aligned} 1\{labelV(I,+1), labelV(I,-1)\}1 \leftarrow \textit{vertex}(I). \\ labelV(I,S) \leftarrow \textit{observed}V(I,S). \end{aligned}$$

Testing Total Labelings

Influences:

$$receive(I, S*T) \leftarrow labelE(J, I, S), labelV(J, T).$$

Sign Consistency:

 \leftarrow labelV(I, S), not receive(I, S).

Testing Total Labelings

Influences:

$$receive(I, S*T) \leftarrow labelE(J, I, S), labelV(J, T).$$

Sign Consistency:

 \leftarrow labelV(I, S), not receive(I, S).

Testing Total Labelings

Influences:

$$receive(I, S*T) \leftarrow labelE(J, I, S), labelV(J, T).$$

Sign Consistency:

 \leftarrow labelV(I, S), not receive(I, S).

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Motivation

Observation: Regulatory networks and experimental profiles are

often inconsistent with each other!

Question: How to predict unobserved variations in this case?

Motivation

Observation: Regulatory networks and experimental profiles are

often inconsistent with each other!

Question: How to predict unobserved variations in this case?

Idea:

Repair inconsistencies

Predict from repaired networks and/or profiles

Repairing Networks and/or Profiles

Network Repair:

Adding edges completes an incomplete network (w.r.t. profiles) Flipping edge labels curates an improper network Making vertices input indicates incompleteness or oscillations

Profile Repair:

Flipping vertex labels indicates aberrant experimental data

 $rep(add_e(U, V)) \leftarrow vertex(U), vertex(V), U \neq V, not \ edge(U, V).$

 $rep(add_e(U, V)) \leftarrow vertex(U), vertex(V), U \neq V, not \ edge(U, V).$

 $rep(add_e(U, V)) \leftarrow vertex(U), vertex(V), U \neq V, not \ edge(U, V).$

 $rep(add_e(U, V)) \leftarrow vertex(U), vertex(V), U \neq V, not \ edge(U, V).$

 $rep(add_e(U, V)) \leftarrow vertex(U), vertex(V), U \neq V, not \ edge(U, V).$

Repair Operations Flipping Vertex Labels

 $rep(flip_v(V, S)) \leftarrow observedV(V, S).$

Repair Operations Flipping Vertex Labels

 $rep(flip_v(V,S)) \leftarrow observedV(V,S).$

Repair Operations Flipping Vertex Labels

 $rep(flip_v(V,S)) \leftarrow observedV(V,S).$

Repair Operations Making Vertices Input

 $rep(inp_v(V)) \leftarrow vertex(V), not input(V).$

Repair Operations Making Vertices Input

 $rep(inp_v(V)) \leftarrow vertex(V), not input(V).$

Repair Operations Making Vertices Input

 $rep(inp_v(V)) \leftarrow vertex(V), not input(V).$

Generating Total Labelings under Repair

Applying Repair Operations:

```
0{app(R)}1 \leftarrow rep(R).
```

Generating Edge Labelings:

```
\begin{split} &1\{labelE(U,V,+1),labelE(U,V,-1)\}1 \leftarrow edge(U,V).\\ &1\{labelE(U,V,+1),labelE(U,V,-1)\}1 \leftarrow app(add\_e(U,V)).\\ &labelE(U,V,S) \leftarrow observedE(U,V,S), not\ app(flip\_e(U,V,S)).\\ &labelE(U,V,-S) \leftarrow app(flip\_e(U,V,S)). \end{split}
```

Generating Vertex Labelings:

```
\begin{aligned} &1\{labelV(V,+1),labelV(V,-1)\}1 \leftarrow vertex(V). \\ &labelV(V,S) \leftarrow observedV(V,S), not\ app(flip\_v(V,S)). \\ &labelV(V,-S) \leftarrow app(flip\_v(V,S)). \end{aligned}
```

Generating Total Labelings under Repair

Applying Repair Operations:

```
0{app(R)}1 \leftarrow rep(R).
```

Generating Edge Labelings:

```
\begin{split} &1\{labelE(U,V,+1),labelE(U,V,-1)\}1 \leftarrow edge(U,V).\\ &1\{labelE(U,V,+1),labelE(U,V,-1)\}1 \leftarrow app(add\_e(U,V)).\\ &labelE(U,V,S) \leftarrow observedE(U,V,S), not\ app(flip\_e(U,V,S)).\\ &labelE(U,V,-S) \leftarrow app(flip\_e(U,V,S)). \end{split}
```

Generating Vertex Labelings:

```
1\{labelV(V,+1), labelV(V,-1)\}1 \leftarrow vertex(V).
labelV(V,S) \leftarrow observedV(V,S), not \ app(flip\_v(V,S)).
labelV(V,-S) \leftarrow app(flip\_v(V,S)).
```

Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:

```
receive(I, S * T) \leftarrow labelE(J, I, S), labelV(J, T).
 \leftarrow labelV(I, S), not \ receive(I, S),
 not \ input(V), not \ app(inp_v(V)).
```

Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:

```
receive(I, S * T) \leftarrow labelE(J, I, S), labelV(J, T).
\leftarrow labelV(I, S), not \ receive(I, S),
not \ input(V), not \ app(inp\_v(V)).
```

Testing Total Labelings under Repair

Enforcing Sign Consistency Constraints:

```
receive(I, S*T) \leftarrow labelE(J, I, S), labelV(J, T).
\leftarrow labelV(I, S), not \ receive(I, S),
not \ input(V), not \ app(inp\_v(V)).
```

Minimal Repair

Goal:

Minimal change of networks/profiles (re)establishing consistency

Implementation (cardinality minimality):

 $\#minimize\{app(R) : rep(R)\}.$

(see paper for subset minimality)

Predicting under Repair

Two Phase Approach:

- Compute minimal number of required repair operations
- 2 Intersect consistent labelings under minimal repair
 - Cautious reasoning (supported by answer set solver clasp)

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Predicting Variations under Inconsistency

- Transcriptional network of Escherichia coli, obtained from RegulonDB by Gama-Castro et al. [2008], consisting of
 - 5150 interactions between 1914 genes
- Two datasets
 - Exponential-Stationary growth shift by Bradley et al. [2007]
 - Heatshock by Allen et al. [2003]
- The data of both experiments is highly noisy and inconsistent with the (well-curated) RegulonDB model

Predicting Variations under Inconsistency

- Transcriptional network of Escherichia coli, obtained from RegulonDB by Gama-Castro et al. [2008], consisting of
 - 5150 interactions between 1914 genes
- Two datasets
 - Exponential-Stationary growth shift by Bradley et al. [2007]
 - Heatshock by Allen et al. [2003]
- The data of both experiments is highly noisy and inconsistent with the (well-curated) RegulonDB model
- For enabling prediction rate and accuracy assessment, we randomly select samples of significantly expressed genes (3%,6%,9%,12%,15% of the whole data, 200 samples each) and use them for testing both our repair modes and prediction

		Expone	ntial-St	ationar	y		H	leatsho	ck	
Repair	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%

'e': flipping edge labels 'i': making vertices input 'v': flipping vertex labels

					Expone	ntial-St	tationary	/		H	leatsho	ck	
	R	epai	r	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%
	е			6.58	8.44	11.60	14.88	26.20	25.54	42.76	50.46	69.23	84.77
İ		i		2.18	2.15	2.21	2.23	2.21	2.10	2.13	2.13	2.05	2.08
İ			v	1.41	1.40	1.40	1.41	1.37	1.41	1.47	1.42	1.37	1.39
Ì	е	i		73.16	202.66	392.97	518.50	574.85	120.91	374.69	553.00	593.20	595.99
	е		v	28.53	85.17	189.27	327.98	470.48	67.92	236.05	465.92	579.88	596.17
7		i	v	2.09	2.14	2.45	3.08	6.06	2.27	4.94	60.63	257.68	418.93
	е	i	V	133.84	391.60	538.93	593.33	600.00	232.29	542.48	593.88	600.00	600.00

'e': flipping edge labels 'i': making vertices input 'v': flipping vertex labels

					Expone	ential-St	tationary	/		H	leatsho	ck	
	F	Repa	ir	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%
	е			6.58	8.44	11.60	14.88	26.20	25.54	42.76	50.46	69.23	84.77
		i		2.18	2.15	2.21	2.23	2.21	2.10	2.13	2.13	2.05	2.08
_			v	1.41	1.40	1.40	1.41	1.37	1.41	1.47	1.42	1.37	1.39
-=	е	i		73.16	202.66	392.97	518.50	574.85	120.91	374.69	553.00	593.20	595.99
pa	е		v	28.53	85.17	189.27	327.98	470.48	67.92	236.05	465.92	579.88	596.17
er		i	v	2.09	2.14	2.45	3.08	6.06	2.27	4.94	60.63	257.68	418.93
$\overset{\sim}{\simeq}$	е	i	V	133.84	391.60	538.93	593.33	600.00	232.29	542.48	593.88	600.00	600.00
_				13.27	12.19	14.76	15.34	25.90	25.77	37.18	29.09	36.23	41.88
n	е												
		İ		6.18	5.26	4.77	4.60	4.42	6.57	5.93	5.17	4.86	4.54
Ţ			v	4.64	4.45	4.39	4.40	4.30	4.86	5.06	5.34	5.42	5.52
.≌	е	i		35.25	97.66	293.80	456.55	550.33	85.47	293.28	524.19	591.81	594.74
redictio	е		v	14.35	26.17	90.17	200.25	363.36	23.32	111.99	338.95	545.56	591.23
re		i	v	6.43	5.75	6.27	6.69	8.61	6.91	6.63	30.33	176.14	371.95
Д	е	i	V	42.51	248.30	468.71	579.58	_	101.82	466.91	585.64	_	

'e': flipping edge labels

'i': making vertices input

'v': flipping vertex labels

					•								
					Expone	ntial-St	ationary	/		H	Heatsho	ck	
	F	Repa	ir	%	6%	9%	12%	15%	3%	6%	9%	12%	15%
	е	•	0.	6.58	8.44	11.60	14.88	26.20	25.54	42.76	50.46	69.23	84.77
		X		2.18	2.15	2.21	2.23	2.21	2.10	2.13	2.13	2.05	2.08
		`	v	1.41	1.40	1.40	1.41	1.37	1.41	1.47	1.42	1.37	1.39
·=	е	i		73.16	202.66	392.97	518.50	574.85	120.91	374.69	553.00	593.20	595.99
20.	de		v	28.53	85.17	189.27	327.98	470.48	67.92	236.05	465.92	579.88	596.17
eb		i	v	2.09	2.14	2.45	3.08	6.06	2.27	4.94	60.63	257.68	418.93
Ř	е	i	V	133.84	391.60	538.93	593.33	600.00	232.29	542.48	593.88	600.00	600.00
_	e			13.27	12.19	14.76	15.34	25.90	25.77	37.18	29.09	36.23	41.88
$\overline{}$	-			6.18	5.26	4.77	4.60			5.93		4.86	4.54
.≌													- 1
+			V	4.64	4.45	4.39	4.40			5.06		5.42	5.52
.≌	е	i		35.25	97.66	293.80	456.55	550.33	85.47	293.28	524.19	591.81	594.74
þ	е		v	14.35	26.17	90.17	200.25	363.36	23.32	111.99	338.95	545.56	591.23
rediction		i	v	6.43	5.75	6.27	6.69	8.61	6.91	6.63	30.33	176.14	371.95
Д	е	i	V	42.51	248.30	468.71	579.58	_	101.82	466.91	585.64	_	_

'e': flipping edge labels

'i': making vertices input

'v': flipping vertex labels

	Exponential-Sta	ationary		Hea	atshock	
Repair	3% 6% 9%	12% 15%	3%	6%	9% 12% 15	;%

'e': flipping edge labels 'i': making vertices input 'v': flipping vertex labels

			E	xpone	ntial-S	tation	ary		Н	eatsho	ck	
Re	paii	r	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%
е			15.00	18.51	20.93	22.79	23.94	15.47	19.54	21.87	23.17	24.78
	i		15.00	18.51	20.93	22.79	23.93	15.48	19.62	21.89	23.20	24.80
		v	14.90	18.37	20.86	22.73	23.77	15.32	19.59	21.37	22.13	23.79
е	i		14.92	18.61	20.55	21.96	22.80	15.37	19.62	22.83	23.44	24.05
e		v	14.89	18.33	21.07	22.52	23.74	15.33	19.21	21.00	22.65	24.90
	i	v	14.89	18.33	20.79	22.59	23.66	15.41	19.47	21.36	21.81	23.55
е	i	V	14.58	19.00	20.29	21.13	_	15.01	19.11	22.52	_	_

Rate

'e': flipping edge labels 'i': making vertices input 'v': flipping vertex labels

				E	xpone	ntial-S	tation	ary		H	eatsho	ck	
	F	Repai	r	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%
1	е			15.00	18.51	20.93	22.79	23.94	15.47	19.54	21.87	23.17	24.78
		i		15.00	18.51	20.93	22.79	23.93	15.48	19.62	21.89	23.20	24.80
			v	14.90	18.37	20.86	22.73	23.77	15.32	19.59	21.37	22.13	23.79
	е	i		14.92	18.61	20.55	21.96	22.80	15.37	19.62	22.83	23.44	24.05
Ð	е		v	14.89	18.33	21.07	22.52	23.74	15.33	19.21	21.00	22.65	24.90
ate		i	v	14.89	18.33	20.79	22.59	23.66	15.41	19.47	21.36	21.81	23.55
2	е	i	V	14.58	19.00	20.29	21.13	_	15.01	19.11	22.52		
. 1	е			90.93	91.98	92.42	92.70	92.81	91.87	92.93	92.92	92.83	92.71
\sim		i		90.93	91.98	92.42	92.70	92.81	91.93	92.90	92.94	92.87	92.76
ccuracy			v	90.99	92.05	92.44	92.73	92.89	92.29	93.27	93.88	94.27	94.36
=	е	i		91.09	91.90	92.57	93.03	93.19	91.99	92.49	91.16	93.62	94.44
\Box	е		v	90.99	92.03	92.50	92.82	92.94	92.30	93.37	93.66	94.36	94.35
\mathbf{c}		i	v	90.99	92.03	92.42	92.71	92.87	92.24	93.34	93.90	94.26	94.38
ď	е	i	V	91.35	92.29	92.52	93.04	_	92.26	93.04	91.78	_	_

'e': flipping edge labels 'i': making vertices input

'v': flipping vertex labels

			E	xpone	ntial-S	tation	ary	Heatshock						
R	epai	r	3%	6%	9%	12%	15%	3%	6%	9%	12%	15%		
e			15 00	18 51	20 93	22 79	23.94	15 47	19 54	21 87	23 17	24 78		
	i						23.93							
		v	14.90	18.37	20.86	22.73	23.77	15.32	19.59	21.37	22.13	23.79		
е	i		14.92	18.61	20.55	21.96	22.80	15.37	19.62	22.83	23.44	24.05		
e		V	14.89	18.33	21.07	22.52	23.74	15.33	19.21	21.00	22.65	24.90		
	i	V	14.89	18.33	20.79	22.59	23.66	15.41	19.47	21.36	21.81	23.55		
е	i	٧	14.58	19.00	20.29	21.13	_	15.01	19.11	22.52	_	_		
е			90.93	91.98	92.42	92.70	92.81	91.87	92.93	92.92	92.83	92.71		
	i		90.93	91.98	92.42	92.70	92.81	91.93	92.90	92.94	92.87	92.76		
		V	90.99	92.05	92.44	92.73	92.89	92.29	93.27	93.88	94.27	94(36)		
е	i		91.09	91.90	92.57	93.03	93.19	91.99	92.49	91.16	93.62	94,44		
е		V	90.99	92.03	92.50	92.82	92.94	92.30	93.37	93.66	94.30	94.35		

'e': flipping edge labels

'i': making vertices input

91.35 92.29 92.52 93.04

90.99 92.03 92.42 92.71 92.87 92.24 93.34 93.90

92.26 93.04 91

'v': lipping Vertex labels

Accuracy F

Outline

- 1 Motivation
- 2 Sign Consistency Model
- 3 Basic Implementation
- 4 Repair and Prediction
- 5 Experiments
- 6 Summary

Summary

- We introduced repair-based reasoning techniques for computing minimal modifications of
 - biological networks and
 - experimental profiles

in order to make them mutually consistent.

- Using Answer Set Programming, we demonstrated on real data that predictions after repair are
 - feasible and
 - highly accurate.
- Answer Set Programming provided a
 - declarative.
 - succinct, and
 - highly efficient

solution to a knowledge-intense yet error-prone application.