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Regulation network inference

Buiding a regulation graph for a biological process
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Transcriptional regulation
A transcription factor is :

• a proteine, that binds to specific sequences of DNA adjacent
to the genes that they regulate

• controls the flow (activates and/or respress) this gene’s
transcription
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Cahier des charges

• learning cooperative regulation relations from gene expression
only

• no time series data available

• without any a priori assumption concerning the gene expression
distribution

• local approach (one network / gene)
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LICORN

LICORN (Elati et al., Bioinformatics 2007) follows these 3 steps:

1. Build a set of candidate co-regulators (predicate invention) for all
genes ;

2. Build a set of candidate regulation networks for each target gene
g ;

3. Select the best candidate network(s) for each gene g, and
assign a significance score to this (these) network(s)
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Co-regulators computation
• Goal: find all formulas of a language L that satisfy a constraint q

on a dataset r , Th(r ,L,q).

• r : discrete matrix r of m observations described
with n attributes A = g1,g2, . . . ,gn (n >> m)

L : language describing itemsets on A (2A).
q : constraint of interest, e.g. frequency of a pattern

p in r : p is frequent if freq(p) ≥ minsupp

• Extension of Apriori (Agrawal et al., 1994) for computing
frequent/closed itemsets from discrete data
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Cooperative regulation model

• potentially, several cooperative activators/repressors

• AND-agregation for activators/repressors + deterministic
function for computing target gene state given the aggregated
states of its activators/repressors.
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Generating candidate co-regulators for a target gene

Let C be a co-regulator and g be a target gene. Sx(C) and Sy (g)
denote their support for the values x , y ∈ {−1,1}.

Definition (Overlap constraint)
C in state x co-varies with g in state y , denoted cov(Sx(C),Sy (g)) if
and only if |Sy (g)∩Sx (C)|

|Sy (g)| ≥ minoverlap, a user-defined minimum overlap
threshold.
Best-first search for the k -best co-activators and repressors of g.
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Assessment of candidate networks
• Rank candidate networks ((A, I) pairs) wrt a local score (MAE)

• Select (n-)best network(s)

• Associate a statistical sigificance to those networks :
non-paramteric approach, permutation-based (Benjamini et al.,
2001).
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10-CV evaluation
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From local to global patterns

(Birmelé et al. BMC 2008)

Contributions to transcriptomic data analysis and gene regulation network inference 12 / 26



Inferring regulation networks from transcriptomic static data Finding dense regions in binary contexts

On-going work - Perspectives

• Combine local networks to build a gloabl regulation graph (ILP,
frequent graph mining, ...)

• Integrate other information sources (promoter sequence,
genomic alterations, miRNA, proteins, epigenetic, ...)

• More powerful evaluation for networks : select networks that are
supported by some domain model
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Context

• A bioinformatics task from gene expression dataset:

• Mining co-expressed genes (Sets of genes that are jointly
expressed) → discretisation + extraction of
frequent/closed/maximal itemsets (e.g. Apriori [Bor02]).
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The problem
• Effect of noise

• Shattering relevant itemsets into a small irrelevant itemsets
→ explosion in the number of resulting itemsets.

• Aim and intuition
• Mine efficiently a small number of maximal regions of 1,

potentially overlapping, and verifying density and minimal
support constraints.

• by combining data mining methods with graph algorithms.
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Related work
• Complete approaches

• Methods based on the level-wise principle [Man04, Bes05,
Bes06, Liu06, Che06]

• Handle anti-monotone constraints to prune the space
search

• Quasi-biclique methods [Uno08].

X Large number of itemsets extracted.
X Very expensive in execution time for dense data

• Non-complete approaches

• Bi-clustering methods [Pre06]

X Difficulty in the choice of parameters.

• Heuristic methods [Mou11]

X Still too many results and redundancy.
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HANCIM : Hybrid Approach for Noisy Contexts Itemset Mining

• Consists of two main steps:

• Identification of a seed pattern si
• Construction of a dense region (O,A) such that si ⊆ A

• Extracts the maximal regions M = (A,O) such that:

• Density : density(M) > δ

• Minimal support : |O|
|Ocontext | > σ.
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Seed patterns and the adaptative support

• Use all maximal frequent patterns of D as seeds [Mou11]
X A high redundancy in the obtained results.
X Quite expensive especially for dense contexts.

• Seed patterns should :

• be small enough to be easy to compute
• favour the extraction of diverse seeds (small overlap) to

avoid redundancy in the resulting regions
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Seed patterns and the adaptative support (ctd.)

• O set of observations, A set of attributes, two contexts on A and
O : D and Dcs (updated after each new seed is extracted)

while ∃ seed pattern si ⊆ Dcs do
Compute the region (O′,A′) ⊆ D such as (si ⊆ A′) and
( |O

′|
|O| > σ) and (density((O′,A′))≥ δ)

Updated Dcs: Dcs where all elements of (A′,O′) are set to zero
Support = Support×density(UpdatedDcs)

density(Dcs)
; Dcs = updated Dcs;

end
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Searching for dense regions

• Searching for a maximal dense region including a seed pattern si

• Based on graph algorithms: maximal flow/minimal cut.
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Searching for dense regions
Searching for the maximal dense region including a seed pattern si

• Construct the augmented and weighted bipartite graph
corresponding to si

• Compute a minimal st-cut : push-relabel [Che97]
⇒ a dense subgraph G0=(O0, si) where the observations O0 are
strongly linked to the attributes si
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Searching for dense regions
• Construct the augmented and weighted bipartite graph

corresponding to O0

• Compute a minimal st-cut
⇒ a dense subgraph G1=(O0,A1) where si ∈ A1 and each
attribute of A1 has a density greater than δ
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Experiments on gene expression datasets

• Detection of co-expression relationships between genes from
the Gasch dataset [Gas00]

• Expression measures of 2993 genes over 173
observations.

• Discretization model described by [Pre06].
• Parameters: σ=20% and δ=80%

• Running time :

• Bimax : calculation stoped after 1 week
• HANCIM : results obtained after 12 minutes.

• Comparison with 100 biclusters published by Bimax [Pre06].
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Experiments on real data

• Calculate the enrichment of extracted biclusters in Gene
Ontology terms (GO)[Che98].

• The 100-top biclusters extracted :

• Bimax : have p-values ranging between 3e−2 and 3e−4.
• HANCIM : have p-values less than e−5.

• The best annotated bicluster:

• Bimax : has a p-value equal to 3e−4.
• HANCIM : has a p-value equal to e−38.

< e−2 < e−3 < e−4 < e−5 < e−10 < e−20

HANCIM 94% 48% 28% 18% 7% 4%

BiMax 34% 5% 0% 0% 0% 0%
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Conclusion & Pespectives

• A new approach based on max. flow/min. cut algorithms for
mining patterns in noisy contexts.

• The results are very promising regarding:

• quality and size of the extracted patterns
• reasonable running time
• annotation quality of results

• Perspectives:

• Adapt weigth one of the bipartite graph to bias search
towards regions that take domaie knowledge into account

• Links with ’noisy closure’
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