Programming Cells

ATGCTTACCGGTACGTTTACGACTACGT AGCTAGCATGCTTACCGGTACGTTTACG

Andrew Phillips Biological Computation Group Microsoft Research

Image courtesy of James Brown, Haseloff Lab, University of Cambridge

Potential

Health

Program cells to control tumours

Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria

J. Christopher Anderson^{1,3}, Elizabeth J. Clarke³, Adam P. Arkin^{1,2*} and Christopher A. Voigt^{2,3}

ELSEVIER

Energy

Convert CO₂ into fuel

Produce vaccines

Production of the antimalarial drug precursor artemisinic acid in engineered yeast

Dae-Kyun Ro¹*, Eric M. Paradise²*, Mario Ouellet¹, Karl J. Fisher⁶, Karyn L. Newman¹, John M. Ndungu³, Kimberly A. Ho¹, Rachel A. Eachus¹, Timothy S. Ham¹, James Kirby², Michelle C. Y. Chang¹, Sydnor T. Withers², Yolchiro Shiba², Richmond Sarpong³ & Jay D. Keasling^{1,2,4,5}

Convert sunlight into electricity

Challenges

- Programming cells is hugely difficult
 - Issues of reliability, toxicity, strain on the host cell

- Systems are highly complex
 - Cannot be designed by trial and error
 - Requires use of computer software

 Could software for programming cells one day rival software for programming silicon?

DNA Structure (A-T,G-C)

www.wehi.edu.au/wehi-tv

DNA as a Computing Substrate

- Molecular Scale
 - Overcome limits to miniaturisation of silicon chips
 - 1GB of information in a millionth of a mm³
 - Can self-assemble
 - Clean and cheap to manufacture

• Programmable

Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

- Interactions are directly controlled by the sequence
- Massively parallel

DNA Computers Inside Cells

DNA Drugs (Mullis)

Programmable Drugs (Shapiro)

An autonomous molecular computer for logical control of gene expression

Yaakov Benenson $^{1,2},$ Binyamin Gil 2, Uri Ben-Dor 1, Rivka Adar 2 & Ehud Shapiro 1,2

©2004 Nature Publishing Group

DNA Strand Displacement

Computation solely by complementary base pairs sticking together (T-A and G-C)

Bernard Yurke

DNA Strand Displacement

Dynamic DNA nanotechnology using strand displacement reactions

David Yu Zhang¹ and Georg Seelig²

NATURE CHEMISTRY | VOL 3 | FEBRUARY 2011

Enzyme-Free Nucleic Acid Logic Circuits

Georg Seelig,¹ David Soloveichik,² David Yu Zhang,² Erik Winfree^{2,3}*

SCIENCE VOL 314 8 DECEMBER 2006

Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA

David Yu Zhang, ¹† Andrew J. Turberfield, ² Bernard Yurke, ³* Erik Winfree¹†

SCIENCE VOL 318 16 NOVEMBER 2007

Selective cell death mediated by small conditional RNAs

Suvir Venkataraman^a, Robert M. Dirks^{a,b}, Christine T. Ueda^b, and Niles A. Pierce^{a,c,1}

PNAS | September 28, 2010

DNA Strand Displacement Language

DNA Strand Displacement (DSD) Language

Step 1: Program circuit design

Step 2: Compile circuit behaviour

Step 3: Simulate circuit

Step 4: Compile circuit to DNA or RNA

Step 5: Insert circuit into cells

Phillips, Cardelli. Royal Society Interface, 2009 Lakin, Youssef, Cardelli, Phillips. Royal Society Interface, 2011 Lakin, Youssef, Polo, Emmott, Phillips. Bioinformatics, 2011

Output = Input1 AND Input2

Input 1

Input 2

TATTCC CCCAAAACAAAACAAAACAA

CCCTTTTCTAAACTAAACAA GCTA

Output

Output = Input1 AND Input2

Output = Input1 AND Input2

Output = Input1 AND Input2

Output = Input1 AND Input2

Output

🔄 Visual DSD - lepton.research.microsoft.com	
Examples: Compile Simulate Analyse	Pause Compilation: Default
Simulation: Stochastic 🔹 View: 💌	
Code DNA Input	Compilation Simulation Analysis
	Species Reactions Graph Text Domains SBML
	Pan Zoom Layout Zoom S2 % Fit Layout
CCCAAAACAAAACAAAACAAAACAA ATAAGG GGGTTTTGTTTGTTTGTTTGTTTGTTTGTTTGT	Horizontal Aspect Ratio Group Initial Nodes
TATTCC CCCAAAACAAAACAAAACAA	
CCCTTTTCTAAACTAAACAA GCTA	
	· · ·

Large-Scale Logic Circuits

Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades

Lulu Qian¹ and Erik Winfree^{1,2,3}*

Scaling Up DNA Computation

John H. Reif

"In addition to biochemistry laboratory techniques, computer science techniques were essential."

"Computer simulations of seesaw gate circuitry optimized the design and correlated experimental data."

3 JUNE 2011 VOL 332 SCIENCE

18 3 JUNE 2011 VOL 332 SCIENCE

Turing-Powerful Circuits

Encoding a Stack

Encoding state transitions

Model-Checking a DNA Ripple Carry Adder

1	nput	A	Input B			Output X		Output C	Result
MSB	LSB	Value	MSB	LSB	Value	LSB	MSB	Value	Value
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	1
0	0	0	1	0	2	0	1	0	2
0	0	0	1	1	3	1	1	0	3
0	1	1	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1	0	2
0	1	1	1	0	2	1	1	0	3
0	1	1	1	1	3	0	0	1	4
1	0	2	0	0	0	0	1	0	2
1	0	2	0	1	1	1	1	0	3
1	0	2	1	0	2	0	0	1	4
1	0	2	1	1	3	1	0	1	5
1	1	3	0	0	0	1	1	0	3
1	1	3	0	1	1	0	0	1	4
1	1	3	1	0	2	1	0	1	5
1	1	3	1	1	3	0	1	1	6

Lakin, Phillips. DNA Computing, 2011

Localised Circuits

Organization of Intracellular Reactions with Rationally Designed RNA Assemblies

Camille J. Delebecque, 1,2,3,4 Ariel B. Lindner, 3,4* Pamela A. Silver, 1,2* Faisal A. Aldaye1,2

SCIENCE

22 JULY 2011

VOL 333

Hairpins tethered to origami

- Increased speed
- Reduced interference

²⁰ Chandran, Gopalkrishnan, Phillips, Reif. DNA Computing, 2011

Programming Living Cells

The "software" of a cell: DNA \rightarrow RNA \rightarrow Protein

DNA transcription (real time)

Messenger RNA translation

Information storage and processing within the cell is more efficient by many orders of magnitude than electronic digital computation, with respect to both information density and energy consumption.

DNA can function across species

A "multi-platform" code

Glowing jellyfish

Glowing bacteria

Moving DNA from one organism to another

DNA can completely reprogram a cell

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Sciencexpress / www.sciencexpress.org / 20 May 2010

M. mycoides Extraction Sequencing ...GTTTCTCCATACCCGTTTTTTTGGGCTAGC... M. capricolum **Synthesis** Insertion Transformation

Low-Level DNA Language

A simplified view of DNA instructions

High-Level DNA Language

Given a design, automatically determine the DNA

A language for programming cells

Genetic Engineering of Cells (GEC)

Step 1: Program device design

Step 2: Compile device behaviour

Step 3: Simulate device

Step 4: Compile device to DNA

Step 5: Insert DNA into cells

With Michael Pedersen, Matthew Lakin

Pedersen & Phillips. Royal Society Interface, 2009

Programming a receiver device

Signal crosses cell wall and binds to Receiver

Programming a receiver device

Programming a receiver device

Characterising a receiver device

Model Simulation

Experimental Data

Spatial Receiver Device

Model Simulation

Experimental Data

Programming Turing Patterns

Cells that communicate to perform complex functions

Modelling Biophysics: Thresholding

With Tim Rudge, James Brown, Jim Haseloff

Modelling Biophysics: Thresholding

MHC class I Antigen Presentation

© Diego Accorsi 2011. A Master's Research Project submitted in conformity with the requirements for the degree of Master of Science in Biomedical Communications (MScBMC), Faculty of Medicine, University of Toronto.

Peptide Optimisation

- Peptide-MHC complexes generally need to be stable for many hours or days at the cell surface
- *Peptide optimisation:* high affinity peptides are preferentially selected for presentation
- Optimisation in the ER is typically limited to tens of minutes
 - How is such high optimisation is achieved in so little time?
 - What are the main mechanisms of optimisation?

MHC Class I Model

37

Automatic generation of reactions

Automatic generation of ODEs

 $\varnothing \quad \rightleftharpoons \frac{g_M}{d_M}$ M $\varnothing \qquad \rightleftharpoons \stackrel{g_T}{\rightleftharpoons} \quad T$ $M+T \quad \rightleftharpoons \overset{b_T}{\underset{u_T}{\Rightarrow}} TM$ $Me \rightarrow^{d_{Me}} \varnothing$ $\varnothing \qquad \rightleftharpoons \stackrel{g_i}{\underset{d_{\mathcal{D}}}{\rightleftharpoons}} \quad P_i$ MP_i $TM + P_i \quad \rightleftharpoons \stackrel{c}{\underset{u_i \cdot q}{\leftarrow}}$ TMP_i $TMP_i \rightarrow u_T \cdot v \quad T + MP_i$ $MP_i \rightarrow^e MeP_i$ $MeP_i \rightarrow^{u_i}$ Me

 $[M]' = \sum_{i} u_i [MP_i] + u_T [TM] + g_M$ $-(b\sum_{i}[P_i]+b_T[T]+d_M)[M]$ $[T]' = u_T[TM] + g_T + u_T v \sum_{i} [TMP_i] - (b_T[M] + d_T)[T]$ $[MP_i]' = b[M][P_i] + u_T v[TMP_i] - (u_i + e)[MP_i]$ $[TM]' = b_T[M][T] + q \sum_i u_i [TMP_i] - (u_T + c \sum_i [P_i])[TM]$ $[TMP_i]' = ba[TM][P_i] - (u_iq + u_Tv)[TMP_i]$ $[P_i]' = u_i[MP_i] + u_iq[TMP_i] + g_i$ $-(b[M]+c[TM]+d_P)[P_i]$ $[MeP_i]' = e[MP_i] - u_i[MeP_i]$ $[Me]' = \sum u_i [MeP_i] - d_{Me}[Me]$

Phillips, Dalchau et al. PLoS Computational Biology, 2011

Steady-state ODE analysis

$$x = u_T v/q \qquad C = c[TM]^*/d_P$$

Steady-state experiments

Tapasin enhances peptide presentation by $1/u_i$ Measured off-rates u_i for SIINFEKL peptides

Delayed egress vs. Enhanced off-rate

Measured transit time of MHC to cell surface

42

Fast transit => fast optimisation => enhanced off-rate

Time-dependent experiments

Representative peptides P_{low}, P_{med}, P_{high}

Identify differences between alleles

44

Allele-specific peptide binding

Phillips, Dalchau et al. PLoS Computational Biology, 2011

Optimisation of HIV peptides

Biological Computation Group

Biological Modelling Engine: A common language runtime for Biological Computation

Acknowledgements

DNA Computing

Luca Cardelli

Simon Youssef

Michael Pedersen

James Brown

Rudge

Jim Haseloff

Microsoft Research

Immunology

Synthetic Biology (Cambridge)

Matthew Lakin

Filippo Polo

Neil S Dalchau I

Stephen Emmott

Leonard Goldstein (Cambridge)

Mark Howarth (Oxford)

Tim Joern Elliott Werner (Southampton)