
International Symposium On Symbolic Systems Biology (ISSSB’11) Shonan Village Centre, Japan 13-17 November, 2011

Complex PRISM models for
analyzing very large biological
sequence data
– plus a few notes on
 probabilistic abductive logic programming

Henning Christiansen
Roskilde University, Denmark
henning@ruc.dk, http://www.ruc.dk/~henning

1

This talk: Probabilistic tools which may
 be useful for systems biology

✤ Experiences and adaptation of PRISM (Sato & al) for sequence data

✤ Developed in the LoSt project, funded by Danish Strategic Research Council
✤ Thanks especially to PhD students, Christian Theil Have, Ole Torp Lassen, postdoc

Matthieu Petit; to the PRISM group, Taisuke Sato, Yoshitaka Kameya, Neng-Fa Zhou

✤ (Probabilistic) abductive logic programming developed with
Constraint Handling Rules (here: only brief overview)

2

PRISM (Sato & al) and the LoSt project

✤ Chosen for the LoSt project because
✤ Declarative: Firm, theoretical basis
✤ Flexible: A full programming language
✤ Instrumented with powerful probabilistic inference methods
✤ LoSt project goal: investigate to which extent “such models” are useful for bio sequence analysis

as compared with “traditional tools”, e.g. HMM software written in C

✤ Most of our effort
✤ Cope with inherently high complexity of PRISM models
✤ Increase scaleability
✤ (No revolutionary biological results yet)
✤ Learned quite a lot about writing different models in PRISM

✤ E.g. (Christiansen, Have, Lassen, Petit. Taming the Zoo of discrete HMM subspecies &
some of their relatives. In Biology, Computation and Linguistics, New Interdisciplinary
Paradigms, volume 228 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2011

3

Sequence analysis with PRISM
Example: HMM + study scaleability
Hidden Markov Model

✤ Well-known probabilistic model for sequential phenomena, e.g., genomes
✤ Probabilistic, finite state machine with probabilistic emissions

Viterbi path

✤ ≈ the most probable sequence of states for observed sequence
✤ aka explanation, description, annotation
✤ Linear time Viterbi algorithm – dynamic programming (DP)
✤ PRISM has generalized Viterbi algorithm, DP effect obtained by B-Prolog’s tabling

Our example: Simple 2-state HMM adapted from PRISM manual
4

Version 0

5

values(init,[s0,s1]).
values(out(_),[a,b]).
values(tr(_),[s0,s1]).

hmm(L):-
 msw(init,S0),
 hmm(S0,L).

hmm(_,[]).

hmm(S,[Ob|Obs]):-
 msw(out(S),Ob),
 msw(tr(S),Next),
 hmm(Next,Obs).

?- viterbif(hmm([b,a,a,b]))

hmm([a,a,b,b])
 <= hmm(s1,[a,a,b,b]) & msw(init,s1)
hmm(s1,[a,a,b,b])
 <= hmm(s1,[a,b,b]) & msw(out(s1),a)
 & msw(tr(s1),s1)
hmm(s1,[a,b,b])
 <= hmm(s0,[b,b]) & msw(out(s1),a)
 & msw(tr(s1),s0)
hmm(s0,[b,b])
 <= hmm(s1,[b]) & msw(out(s0),b)
 & msw(tr(s0),s1)
hmm(s1,[b])
 <= hmm(s0,[]) & msw(out(s1),b)
 & msw(tr(s1),s0)
hmm(s0,[])

Viterbi_P = 0.008470728000000

Problem:
– we want an explicit represen-
 tation of the Viterbi path
– so let’s add it

Version 1: explicit annotation

6

values(init,[s0,s1]).
values(out(_),[a,b]).
values(tr(_),[s0,s1]).

hmm(L,Ss):-
 msw(init,S0),
 hmm(S0,L,Ss).

hmm(S,[],[S]).

hmm(S,[Ob|Obs],[S|Ss]):-
 msw(out(S),Ob),
 msw(tr(S),Next),
 hmm(Next,Obs,Ss).

?- viterbig(hmm([b,a,a,b],Path)).

Path = [s1,s0,s1,s0,s1]

Problem:
– PRISM not design with this
 in mind
– The history argument destroys
 tabling
Runtime more than exponential

Length Runtime
10 0.022 sec
20 > 1 min
21 ???

Version 2: Remove non-discriminating arguments
 (Christiansen, Gallagher, ICLP 2009)

7

values(init,[s0,s1]).
values(out(_),[a,b]).
values(tr(_),[s0,s1]).

hmm(L,--Ss):-
 msw(init,S0),
 hmm(S0,L,--Ss).

hmm(S,[],--[S]).

hmm(S,[Ob|Obs],--[S|Ss]):-
 msw(out(S),Ob),
 msw(tr(S),Next),
 hmm(Next,Obs,--Ss).

?- prismAnnot(hmm2).
?- viterbiAnnot(hmm([b,a,a,b],Path),Prob)
Path = [s1,s0,s1,s0,s1]
Prob = 0.008470728 ?

Program transformation for PRISM
programs:
– remove such arguments
– run viterbi on reduced program
– reconstruct arguments by
 deterministic run directed by
 proof tree.
– runtimes as Version 0 :)

Runtimes still not good enough

≈ Quadratic time complexity :(

✤ B-Prolog’s tabling copies and compares structure
✤ No optimization for ground structures - where in principle storing and comparing

pointers would do
8

Length Version 1: With annot Version 2+autoannot ≈ Version 0
10 0.022 sec 0
20 > 1 min 0
21 ??? 0
...

1,000 – 0.07 sec
5,000 – 1.6 sec
10,000 – 6 sec
20,000 – 25 sec
30,000 – 1 min

Tests made with PRISM 2.0
on iMac 2.8GHs Intel Core i5
with 12 GB ram

Version 3: As Version 2 but now simulating pointers
 (Have, Christiansen, PADL 2011)

9

.....
hmmTop(L,--S):-
 store_list(L,Index),
 hmm(Index,--S).

hmm(S,[],--[S]):-!.

hmm(S,ObY,--[S|Ss]):-
 retrieve_list(ObY,Ob,Y),
 msw(out(S),Ob),
 msw(tr(S),Next),
 hmm(Next,Y,--Ss). ?- prismAnnot(hmm3).

?- viterbiAnnot(hmmTop([b,a,a,b],Path),Prob)
Path = [s1,s0,s1,s0,s1]
Prob = 0.008470728 ?

:- store_list([b,a,a,b],Idx).

May result in
retrieve_list(1, b, 2).
retrieve_list(2, a, 3).
retrieve_list(3, a, 4).
retrieve_list(4, b, 5).
retrieve_list(5, _, []).

Program trans. for PRISM:
– translate structured args. into
 pointer representation

Runtimes, finally

Linear time complexity :)
✤ ... crashes around length = 150,000 :/
✤ independently of memory settings, 32 vs. 64 bit machine with extreme amount of RAM

10

Length V. 1: With annot V. 2 = V.1 + autoannot V. 3 = V. 2 + pointers V. 4 = V3 + log_scale
10 0.022 sec 0
20 > 1 min 0
21 ??? 0
...

1,000 – 0.07 sec 0.016 sec 0.018 sec
5,000 – 1.6 sec 0.052 sec 0.08 sec
10,000 – 6 sec 0.11 sec 0.19 sec
20,000 – 25 sec 0.24 sec 0.44 sec
30,000 – 1 min 0.4 sec 0.66 sec
100,000 – – 2.9 sec 3.8 sec

Runtimes, finally

Linear time complexity :)
✤ ... crashes around length = 150,000 :/
✤ independently of memory settings, 32 vs. 64 bit machine with extreme amount of RAM

11

Length V. 1: With annot V. 2 = V.1 + autoannot V. 3 = V. 2 + pointers V. 4 = V3 + log_scale
10 0.022 sec 0
20 > 1 min 0
21 ??? 0
...

1,000 – 0.07 sec 0.016 sec 0.018 sec
5,000 – 1.6 sec 0.052 sec 0.08 sec
10,000 – 6 sec 0.11 sec 0.19 sec
20,000 – 25 sec 0.24 sec 0.44 sec
30,000 – 1 min 0.4 sec 0.66 sec
100,000 – – 2.9 sec 3.8 sec

Our approach to complex models:
Bayesian Annotation Networks
 (Christiansen, Have, Lassen, Petit, ICLP 2011)

Divide complex model into sub-models (= separate PRISM models) organized in a
Bayesian network

✤ each model possibly parameterized by outcome of other models

 mi(+Sequence, –Annot, +Annot1, +Annot2, ...):-

 msw(xxx(part-Annot1, part-Annot2), part-Annot)

✤ A distinguished top-model
✤ Viterbi computations done one submodel at a time in topological order, thus

reducing degrees of freedom (≈no of states) in each step
✤ Training done in a similar way
✤ Implemented as “The LoSt Framework” with its own script language for

dependencies
✤ To be released spring 2012, integrated with the previous PRISM optimizations 12

mi(+Sequence, –Annot, +Annot1, +Annot2, ...):-

 msw(xxx(part-Annot1, part-Annot2), part-Annot)

Our approach to complex models:
Bayesian Annotation Networks
 (Christiansen, Have, Lassen, Petit, ICLP 2011)

Divide complex model into sub-models (= separate PRISM models) organized in a
Bayesian network

✤ each model possibly parameterized by outcome of other models

 mi(+Sequence, –Annot, +Annot1, +Annot2, ...):-

 msw(xxx(part-Annot1, part-Annot2), part-Annot)

✤ A distinguished top-model
✤ Viterbi computations done one submodel at a time in topological order, thus

reducing degrees of freedom (≈no of states) in each step
✤ Training done in a similar way
✤ Implemented as “The LoSt Framework” with its own script language for

dependencies
✤ To be released spring 2012, integrated with the previous PRISM optimizations 13

mi(+Sequence, –Annot, +Annot1, +Annot2, ...):-

 msw(xxx(part-Annot1, part-Annot2), part-Annot)

m0(S,A0,A1,A2)!

m1(S,A1,A3,A4)! m2(S,A2,A4)!

m3(S,A3,A5)!
m4(S,A4,Ax)!

BLAST(S,..,Ax)!m5(S,A5)!

Sequence S!

Overview of probabilistic abduction, inspired
by PRISM and Constraint Handling Rules

State of the art Probabilistic Abductive Logic Programming:
 (Christiansen, 2008, in “Constraint Handling Rules, Current Research Topics”, LNCS 5388)

✤ An LP language with possibly non-ground abducibles and integrity constraints
✤ A nice semantics (possible worlds; assumed independent abducibles)
✤ Prototype implementations in CHR, including with best-first search

Probabilistic Abductive Logic Programming with dependencies in simult.
probability distr. over abducibles specified using CHRiSM (Sneyers,...).

 (Christiansen, Saleh, CHR-Workshop, 2011)
✤ Nice semantics (possible worlds)
✤ Slow prototype implementation in CHR+CHRISM

14

Efficient implementation of non-prob. abduction, with powerful ICs
 (Christiansen. Executable specifications for hypothesis-based reasoning with Prolog and Constraint Handling
Rules, Journal of Applied Logic, vol 7, 2009) SEE EXAMPLE IN SEPARATE FILE()	

Conclusions

(Probabilistic) Logic programming technology apply to biological sequence analysis
✤ Clean semantics: (Probabilistic) Herbrand models, ...
✤ Transparency, modifiability, easy experiments, high expr. power
✤ Flexibility of a full programming language (incl. dirty tricks)

It does scale
✤ Our program transformation based optimizations obvious to implement at low level
✤ If you want n>100.000 in LoSt Framework, use a chunker as submodel ;-)

Newer logic programming paradigms add forward chaining rules, (state --> state)
✤ CHR, CHRiSM (= CHR*PRISM)

(P)LP technology demonstrated here for sequence analysis, so obvious
in the toolbox for systems biology

15

