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Abstract

Modeling genetic networks is an important in problem genomic research. Boolean Net- work (BN)

and its extension Probabilistic Boolean networks (PBN) have been proposed to model genetic

regulatory interactions. In a PBN, its steady-state distribution gives very important information

about the long-run behavior of the network. The construction of PBNs from a given transition

probability matrix and a given set of BNs is an inverse problem of huge size. We propose

a maximum entropy approach for the above problem. Newton’s method in conjunction with

conjugate gradient method is then applied to solving the inverse problem. We investigate the

convergence rate of the proposed method. Numerical examples are also given to demonstrate the

effectiveness of our proposed algorithm.
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1. Boolean Networks and Probabilistic Boolean Networks.

1.1 Boolean Networks

• In a BN, each gene is regarded as a vertex of the network and is

then quantized into two levels only (expressed: 1 or unexpressed:

0) though the idea can be extended to the case of more than two

levels.

• The target gene is predicted by several genes called its input

genes via a Boolean function.

• If the input genes and the corresponding Boolean functions are

given, a BN is said to defined and it can be considered as a deter-

ministic dynamical system.

• The only randomness involved in the network is the initial system

state.
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1.1.1 An Example of a BN of Three Genes

vi(t+1) = f(i)(v1(t), v2(t), v3(t)), i = 1,2,3.

State v1(t) v2(t) v3(t) f(1) f(2) f(3)

1 0 0 0 0 1 1
2 0 0 1 1 0 1
3 0 1 0 1 1 0
4 0 1 1 0 1 1
5 1 0 0 0 1 0
6 1 0 1 1 0 0
7 1 1 0 1 0 1
8 1 1 1 1 1 0

Table 1

(0,0,0) → (0,1,1) ↔ (0,1,1),

(1,0,1) → (1,0,0) → (0,1,0) → (1,1,0) → (1,0,1),

(0,0,1) → (1,0,1), (1,1,1) → (1,1,0).
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• The transition probability matrix of the 3-gene BN is then given

by

1 2 3 4 5 6 7 8

A3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0


.

• We note that each column has only one non-zero element and

column sum is one.
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1.2 A Review on BNs

• A BN G(V, F ) actually consists of a set of vertices

V = {v1, v2, . . . , vn}.

We define vi(t) to be the state (0 or 1) of the vertex vi at time t.

• There is also a list of Boolean functions (fi : {0,1}n → {0,1}):

F = {f1, f2, . . . , fn}

to represent the rules of the regulatory interactions among the

genes:

vi(t+1) = fi(v(t)), i = 1,2, . . . , n

where

v(t) = (v1(t), v2(t), . . . , vn(t))
T

is called the Gene Activity Profile (GAP).
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• The GAP can take any possible form (states) from the set

S = {(v1, v2, . . . , vn)T : vi ∈ {0,1}} (1)

and thus totally there are 2n possible states.

• Since BN is a deterministic model, to overcome this deterministic

rigidity, extension to a probabilistic setting is natural.

• Reasons for a stochastic model:

- The biological system has its stochastic nature;

- It is likely that regularity of genetic function and interaction known

to exist is not due to logical rules, but rather to the intrinsic self-

organizing stability of the dynamical system;

- The microarray data sets used to infer the network structure are

usually not accurate because of the experimental noise in the

complex measurement process.
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1.3 Probabilistic Boolean Networks (PBNs)

• For each vertex vi in a PBN, instead of having only one Boolean

function as in BN, there are a number of Boolean functions (pre-

dictor functions)

f
(i)
j (j = 1,2, . . . , l(i))

to be chosen for determining the state of gene vi.

• The probability of choosing f
(i)
j as the predictor function is

c
(i)
j ,0 ≤ c

(i)
j ≤ 1 and

l(i)∑
j=1

c
(i)
j = 1 for i = 1,2, . . . , n.
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• If we let fj be the jth possible realization,

fj = (f(1)j1
, f

(2)
j2

, . . . , f
(n)
jn

), 1 ≤ ji ≤ l(i), i = 1,2, . . . , n.

Thus in an independent PBN (the selection of the Boolean func-

tion for each gene is independent), the probability of choosing the

j-th BN pj is given by

pj =
n∏

i=1

c
(i)
ji

, 1,2, . . . , N. (2)

• There are at most

N =
n∏

i=1

l(i) (3)

different possible realizations of BNs.
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• We note that the transition process among the states in the set

S in (1) is a Markov chain process. Let a and b be any two column

vectors (binary unit vector) in S. Then the transition probability

Prob {v(t+1) = a | v(t) = b}

=
N∑

j=1

Prob {v(t+1) = a | v(t) = b, the jth network is selected } · pj.

• By letting a and b take all the possible states in S, one can get the

transition probability matrix for the process. The transition matrix

can also be given by:

A = p1A1 + p2A2 + · · ·+ pNAN .

Here Aj is the corresponding transition probability matrix of the j-th

BN.

• There are at most N2n nonzero entries for the transition proba-

bility matrix A. This matrix can be very sparse.
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2. The Inverse Problem

2.1 The Motivation

• We study the problem of constructing a PBN from a given sta-
tionary distribution.

• Such problems are very important to network inference from
steady-state data, as most microarray data sets are assumed to
be obtained from sampling the steady-state.

• This is an inverse problem of huge problem size. The inverse
problem is ill-posed, meaning that there will be many networks or
no network having the desirable properties.

• Ching et al. (2008), a modified Conjugate Gradient (CG) method
has been proposed to give some possible solutions of PBNs. How-
ever, there are infinitely many possible PBNs and the algorithm
ends up with different PBNs with different initial guesses.
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• The problem can be decomposed into two parts.

• (I) Construct a sparse transition probability matrix from a given

steady-state probability distribution.

-A mathematical formulation based on entropy rate theory has been

proposed for (I) Ching et al. (2009).

• (II) Construct a PBN based on a given sparse transition prob-

ability matrix and a set of BNs.

• We will focus on this problem here.
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2.2 The Formulation

• Suppose that the possible BNs constituting the PBN are known

and their BN matrices are denoted by

{A1, A2, . . . , AN}.

• The sparse transition probability matrix is given and they are re-

lated as follows:

A =
N∑

i=1

qiAi. (4)

• We are interested in getting the parameters qi, i = 1,2, . . . , N when

A is given.
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• Since the problem size is huge and A is usually very sparse. Here

we assume that each column of A has at most m non-zero entries.

In this case, we have N = m2n and we can order A1, A2, · · · , Am2n

systematically.

• We note that qi and Ai are non-negative and there are only m · 2n
non-zero entries in A. Thus we have at most m · 2n equations for

m2n unknowns.

• To reconstruct the PBN, one possible way to get qi is to consider

the following minimization problem:

min
q

∥∥∥∥∥∥∥A−
m2n∑
i=1

qiAi

∥∥∥∥∥∥∥
2

F

(5)

subject to

0 ≤ qi ≤ 1 and
m2n∑
i=1

qi = 1.

14



• Here ∥ · ∥F is the Frobenius norm of a matrix. Let us define a

mapping F from the set of l× l square matrices to the set of l2 × 1

vector by

F




a11 · · · a1l
... ... ...
... ... ...

al1 · · · all


 = (a11, . . . , al1, a12, . . . , al2, . . . , . . . , a1l, . . . all)

T .

(6)

• If we let

U = [F (A1), F (A2), . . . , F (Am2n)] and p = F (A) (7)

then (5) becomes

min ∥Uq− p∥22 (8)

subject to

0 ≤ qi ≤ 1 and
m2n∑
i=1

qi = 1.
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• Since

||Uq− p||22 = (Uq− p)T (Uq− p) (9)

and

(Uq− p)T (Uq− p) = qTUTUq− 2qTUTp+ pTp. (10)

• Thus the minimization problem (10) without constraints is equiv-

alent to

min
q

{qTUTUq− 2qTUTp}. (11)

• The matrix UTU is a symmetric positive semi-definite ma-

trix. The minimization problem without constraints is equivalent to

solving

UTUq = UTp (12)

with the Conjugate Gradient (CG) method.
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• We note that if there is q satisfying the equation Uq = p with

1Tq = 1 and 0 ≤ q ≤ 1. Then the CG method can yield a solution.

• To ensure that 1Tq = 1, we add a row of (1,1, . . . ,1) to the

bottom of the matrix U and form a new matrix Ū . At the same

time, we add an entry 1 at the end of the vector p to get a new

vector p̄. Thus we consider the revised equation:

ŪT Ūq = ŪT p̄. (13)

• This method can give a solution of the inverse problem. But

usually there are too many solutions. Extra constraints or criterion

have to be introduced in order narrow down the set of solutions or

even a unique solution.

17



3. The Maximum Entropy Approach

• One possible and reasonable approach is to consider the solution

which gives the largest entropy as q itself can be considered as a

probability distribution.

• This means we are to find q such that it maximizes

−
m2n∑
i=1

qi log(qi). (14)

• Similar method has been used by Wilson (1970) in traffic demand

estimation in a transportation network and it has become more

popular (Ching et al. 2004).
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• We recall that for the inverse problem, we have m · 2n equations
for m2n unknowns. Thus one may have infinitely many solutions.

• Since q can be viewed as a probability distribution, one possible
way to get a better choice of qi is to consider maximizing the entropy
of q subject to the given constraints, i.e., the following maximization
problem:

max
q


m2n∑
i=1

(−qi log qi)

 (15)

subject to

Ūq = p̄ and 0 ≤ qi i = 1,2, . . . ,m2n.

• We remark that the constraints that qi ≤ 1 can be discarded as
we required that

m2n∑
i=1

qi = 1 and 0 ≤ qi i = 1,2, . . . ,m2n.
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• The dual problem of (15) is therefore of the type

min
y

max
q

L(q,y) (16)

where y is the multiplier and L(·, ·) is the Lagrangian function

L(q,y) =
m2n∑
i=1

(−qi log qi) + yT (p̄− Ūq). (17)

• The optimal solution q∗(y) of the inner maximization problem of

(16) solves the equations

∇qiL(q,y) = − log qi − 1− yT Ū·i = 0, i = 1,2, . . . ,m2n

and is thus of the form:

q∗i (y) = e−1−yT Ū·i, i = 1,2, . . . ,m2n (18)

where Ū·i is the ith column of the matrix Ū .
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• After substituting q∗(y) back into (17) the dual problem (16)

can be simplified to

min
y


m2n∑
i=1

e−1−yT Ū·i + yT p̄

 . (19)

• The solution of the primal problem (16) is obtained from the

solution of the dual problem (18) through (19).

• Thus we have transformed a constrained maximization problem

with m2n variables into an unconstrained minimization problem of

m · 2n +1 variables.

• We will then apply Newton’s method in conjunction with Con-

jugate Gradient (CG) method to solving the dual problem.
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4. Numerical Experiments

4.1 Newton’s Method

• In the following, we will explain how Newton’s method in conjunc-
tion with the conjugate gradient method can be used. To this end
we denote by

f(y) =
m2n∑
i=1

e−1−yT Ū·i + yT p̄ (20)

the function to be minimized.

• The gradient and the Hessian of f are respectively of the forms:

∇f(y) = −Ūq∗(y) + p̄ (21)

and

∇2f(y) = Ū · diag(q∗(y)) · ŪT (22)

where q∗(y) is as defined in (18) and diag(q∗(y)) is the diagonal
matrix with diagonal entries (q∗(y)).
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Newton’s Method

Choose starting point y0 ∈ Im(Ū)
k = 1;

while ||∇f(yk)||2 > tolerance

find pk with ∇2f(yk−1)pk = −∇f(yk−1);
set yk = yk−1 + pk;

k = k +1;
end.

• From (22), we observe that f is strictly convex on the subspace
Im(Ū).

• Newton’s method will produce a sequence of points yk according
to the iteration yk = yk−1 + pk, where the Newton step pk is the
solution of the Hessian matrix system:

∇2f(yk−1)pk = −∇f(yk−1). (23)
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• We note that ∇2f(yk−1) is a one-to-one mapping of the con-

cerned subspace onto itself.

• Moreover, from (21) ∇f(y) ∈ Im(Ū) as p̄ ∈ Im(Ū). Hence, Equa-

tion (23) has an unique solution and therefore Newton’s method for

minimizing f is well defined.

• If we start with y0 ∈ Im(Ū) the Newton sequence will remain

in the subspace. Moreover, it will converge locally at a quadratic

rate.

• To enforce global convergence one may wish to resort to line

search or trust region techniques. However, we did not find this

necessary in our computational experiments.
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4.2 Conjugate Gradient Method

• In each iteration of the Newton’s method, one has to solve the

linear system of the form (23). We propose to solve the linear

system (23) by Conjugate Gradient (CG) method.

• The convergence rate of CG method depends on the effective

condition number

λ1(∇2f(y))

λs(∇2f(y))
(24)

of ∇2f(y). Since ∇2f(y) is singular we have to consider the second

smallest eigenvalue λs(∇2f(y)).
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Theorem : For the Hessian matrix ∇2f(y), we have

2n · e−2(m·2n+1)·∥y∥∞ ≤
λ1(∇2f(y))

λs(∇2f(y))
≤
(√

2n +
√
m
)2

· e2(m·2n+1)·∥y∥∞.

• For Newton’s method, we set the tolerance to be 10−7 while the

tolerance of CG method is 10−10.

Example 1. In the first example, we consider the case n = 2

and m = 2 and we suppose that the observed/estimated transition

probability matrix of the PBN is given as follows:

A2,2 =


0.1 0.3 0.5 0.6
0.0 0.7 0.0 0.0
0.0 0.0 0.5 0.0
0.9 0.0 0.0 0.4

 . (25)
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• Then there are 16 possible BNs for constituting the PBN and they
are listed below:

A1 =

( 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
A2 =

( 1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

)
A3 =

( 1 1 0 1
0 0 0 0
0 0 1 0
0 0 0 0

)
A4 =

( 1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)

A5 =

( 1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0

)
A6 =

( 1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

)
A7 =

( 1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

)
A8 =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

A9 =

( 0 1 1 1
0 0 0 0
0 0 0 0
1 0 0 0

)
A10 =

( 0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1

)
A11 =

( 0 1 0 1
0 0 0 0
0 0 1 0
1 0 0 0

)
A12 =

( 0 1 0 0
0 0 0 0
0 0 1 0
1 0 0 1

)

A13 =

( 0 0 1 1
0 1 0 0
0 0 0 0
1 0 0 0

)
A14 =

( 0 0 1 0
0 1 0 0
0 0 0 0
1 0 0 1

)
A15 =

( 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

)
A16 =

( 0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

)
.
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• Suppose we have

A =
16∑
i=1

qiAi

and the followings are the 8 equations governing qi (cf. (7)):

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1





q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13
q14
q15
q16



=



0.1
0.0
0.0
0.9
0.3
0.7
0.0
0.0
0.5
0.0
0.5
0.0
0.6
0.0
0.0
0.4



.
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Fig. 1. The Probability Distribution q for the case of A2,2.
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State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 0 0
4 1 1 0 0

Table 2: The Truth Table for A13.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 0 0
4 1 1 1 1

Table 3: The Truth Table for A14.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 1 0
4 1 1 0 0

Table 4 : The Truth Table for A15.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 1 0
4 1 1 1 1

Table 5 : The Truth Table for A16.
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Example 2. We then consider the case n = 3 and m = 2 and we

suppose that the observed transition matrix of the PBN is given as

follows:

A3,2 =



0.1 0.3 0.5 0.6 0.2 0.1 0.6 0.8
0.0 0.7 0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0


.

• There are 256 possible BNs for constituting the PBN. The solution

is shown in Figure 2. We note that the PBN is dominated (over

60%) by 25 BNs.
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Fig. 2. The Probability Distribution q for the case of A3,2.
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• Finally, we present the number of Newton’s iterations required

for convergence and the average number of CG iterations in each

Newton’s iteration in the following table.

n m Number of BNs Newton’s Iterations Average Number
of CG Iterations

2 2 16 9 9
2 3 81 7 9
3 2 256 7 7
3 3 6561 11 13

Table 6 : Number of Iterations.
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Example 3: A Three-gene Network with Small Perturbations

• In Shmulevich, et al. (2002), they proposed a PBN consisting of

three genes V = (x1, x2, x3) and the function set F = (F1, F2, F3).

• Here F1 = {f(1)1 , f
(1)
2 }, F2 = {f(2)1 }, and F3 = {f(3)1 , f

(3)
2 }. The

functions are given by the truth table below:

x1x2x3 f (1)
1 f (1)

2 f (2)
1 f (3)

1 f (3)
2

000 0 0 0 0 0
001 1 1 1 0 0
010 1 1 1 0 0
011 1 0 0 1 0
100 0 0 1 0 0
101 1 1 1 1 0
110 1 1 0 1 0
111 1 1 1 1 1

c(i)j 0.6 0.4 1 0.5 0.5

Table 7 : Truth Table (Taken from Shmulevich et al.)
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• The corresponding four BNs are given in the table below.

BN1 1 7 7 6 3 8 6 8
BN2 1 7 7 5 3 7 5 8
BN3 1 7 7 2 3 8 6 8
BN4 1 7 7 1 3 7 5 8

Table 8 : The Four BNs (The position of the non-zero entry in each column)

• The transition probability matrix is

A4,4 =



1.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0
0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0
0.0 1.0 1.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0


.
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• We then consider adding some perturbations to the first two rows

and the non-zeros entries of the transition probability as follows:

δ(A4,4) =

1.0− δ δ δ 0.2+ δ δ δ δ δ
δ δ δ 0.2+ δ δ δ δ δ

0.0 0.0 0.0 0.0 1.0− 2δ 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3− δ 0.0 0.0 0.5− δ 0.0
0.0 0.0 0.0 0.3− δ 0.0 0.0 0.5− δ 0.0
0.0 1.0− 2δ 1.0− 2δ 0.0 0.0 0.5− δ 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5− δ 0.0 1.0− 2δ


.

• For δ = 0.01,0.02,0.03 and 0.04, using our algorithm, we obtain

16 major BNs. These BNs actually contribute around respectively

94%, 90%, 84% and 79% of the network. Moreover the four BNs

(BN1, BN2, BN3, BN4) are included.
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5. Concluding Remarks.

• We present the problem of constructing a PBN from a given

transition probability matrix and a given set of BNs. It is an inverse

problem of huge size.

• We propose a maximum entropy approach for solving the problem.

Newton’s method is then applied to solving the inverse problem with

CG method for solving the Hessian matrix system. We also give a

convergence rate analysis for the proposed method.

• The computational cost can be reduced significantly if further

information about the set of possible BNs is given.
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