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Preface

This volume contains the proceedings of ARW 2017, the twenty-fourth Workshop on Automated
Reasoning, held on the 3rd–4th April 2017, in Bristol, UK. In common with previous events in this
series, the purpose of the workshop was to provide an informal forum for the automated reasoning
community to discuss recent work, new ideas and applications, and current trends. Its aim was
to bring together researchers from all areas of automated reasoning in order to foster links among
researchers from various disciplines; among theoreticians, implementers and users alike.

This year the workshop had a special focus on eXplainable Artificial Intelligence (XAI): a rapidly
developing area that aims to re-establish an awareness of the importance of comprehensibility and
communicability with respect to the outputs of learning and reasoning systems. We believe this is
much a neglected topic to which logic-based approaches have the potential to make a great impact.

These proceedings contain the abstracts of two invited talks, by Maria Paola Bonacina (Uni-
versità degli Studi di Verona), on ‘Conflict-driven reasoning’, and by Nello Cristianini (University
of Bristol), on ‘Why did the chicken cross the road? – Explanations and intelligent behaviour’.

The proceedings also contain twelve extended abstracts, contributed by the participants of the
workshop, which cover a wide range of topics including Natural Deduction and Abstract Argumen-
tation (Session 1), Logic-based Machine Learning (Session 2), Description Logics and Knowledge
Bases (Session 3) and Temporal Logics and Diagrammatic Inference (Session 4).

I would like to thank the members of the ARW Organising Committee for their advice and my
colleagues Helen Cooke and Kacper Sokol for helping with the local organisation.

Oliver Ray
Bristol, April 2017
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Programme

Monday, 3rd April
09:00 Registration
10:00 Invited Talk: Conflict-Driven Reasoning by Maria Paola Bonacina
11:00 Coffee
11:30 Session 1

• On the Complexity of the Natural Deduction Proof Search Algorithm by Daniil
Kozhemiachenko, Alexander Bolotov, Vasilyi Shangin

• ABAplus: Implementing Attack Reversal in Structured Argumentation with Pref-
erences by Ziyi Bao, Kristijonas Čyras, Francesca Toni

• AA-CBR: Explaining Case-Based Reasoning via Argumentation by Kristijonas
Čyras, Francesca Toni

13:00 Lunch
14:00 Session 2

• Automatically Discovering Human-readable Rules to Predict Effective Compiler
Settings for Embedded Software by Craig Blackmore, Oliver Ray, Kerstin Eder

• The role of textualisation and argumentation in understanding the machine learning
process: a position paper by Kacper Sokol, Peter Flach

• An Inductive Logic Programming approach for analysing Cyber-Attacks by
Oliver Ray, Sam Hicks, Steve Moyle

15:30 Coffee
16:00 Business Meeting
17:00 Free Time
19:00 Dinner: Zerodegrees - Restaurant and Micro-Brewery

Tuesday, 4th April
09:30 Session 3

• Forgetting Role Symbols in ALCOQH (5)-Ontologies by Yizheng Zhao, Renate
Schmidt

• Forgetting for Abduction inALC-Ontologies by Warren Del-Pinto, Renate Schmidt

• A Framework for Axiom Selection in Large Theories by Julio Cesar Lopez Hernan-
dez, Konstantin Korovin

11:00 Coffee
11:30 Session 4

• Mind the Gap: Metric Temporal Logic Translations by Ullrich Hustadt, Clare
Dixon, Ana Ozaki

• Verifying A Security Protocol for Secure Service Migration in Commercial Cloud
Environments by Gayathri Karthick, Florian Kammueller, Glenford Mapp, Mahdi
Aiash

• Diagrammatic Reasoning for Ontology Debugging by Zohreh Shams, Mateja Jam-
nik, Gem Stapleton, Yuri Sato

13:00 Lunch
14:00 Invited Talk: Why did the chicken cross the road? - Explanations and intelligent be-

haviour by Nello Cristianini
15:00 Coffee Discussion (eXplainable AI)
16:00 Drinks: Avon Gorge Hotel (White Lion) Bar and Terrace
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Local Map

1 Workshop Venue 2 Zerodegrees Restaurant 3 Trenchard Street Car Park

4 Cabot Tower 5 Clifton Suspension Bridge 6 Avon Gorge Hotel

7 Harbourside 8 City Centre
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Conflict-driven reasoning
Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona

mariapaola.bonacina@univr.it

Abstract: The Conflict-Driven Clause Learning (CDCL) procedure works by guessing truth assignments to
atoms, propagating their consequences through clauses, explaining conflicts by resolution, and learning new
clauses, when assignments lead to conflicts. The success of CDCL in moving SAT-solving from theoretical
hardness to practical success, suggests the challenge of generalizing the concept of conflict-driven reasoning.
SGGS (Semantically-Guided Goal-Sensitive reasoning) lifts CDCL to first-order logic. CDSAT (Conflict-
Driven Satisfiability) does the same for satisfiability modulo theories, introducing the more general problem
of satisfiability modulo assignments. This talk gives an overview of the conflict-driven paradigm and then
focuses on key features of CDSAT. (SGGS is joint work with David A. Plaisted; CDSAT is joint work with
Stphane Graham-Lengrand and Natarajan Shankar.)
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Why did the chicken cross the road? –
Explanations and intelligent behaviour

Nello Cristianini
Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
Nello.Cristianini@bristol.ac.uk

Abstract: This talk will informally discuss the elusive concept of explanation in the context of intelligent
systems, giving a series of examples. We will focus on what we may consider as a valid explanation, and
why in some situations we should expect one. This is part of ongoing work within the ThinkBIG project, that
focusses on ethical and epistemological aspects of machine learning and intelligent technologies.
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On the Complexity of the Natural Deduction Proof Search Algorithm
D.A. Kozhemiachenko,1 A.E. Bolotov,2 V.O. Shangin,3

1 Lomonosov Moscow State University, kodaniil@yandex.ru
2 University of Westminster, A.Bolotov@wmin.ac.uk

3 Lomonosov Moscow State University, b.shngn@gmail.com

Abstract: We present our first account of the complexity of natural deduction proof search algorithms.
Though we target the complexity for natural deduction for temporal logic, here we only tackle classical case,
comparing the classical part of the proof search for temporal logic with the classical analytical tableau.

Rules of Natural Deduction System.
We commence with the review of the classical part of

the natural deduction system for temporal logic [3] define
below the sets of elimination and introduction rules, and
where prefixes ‘el’ and ‘in’ abbreviate an elimination and
an introduction rule, respectively.

Elimination Rules:

∧ el1
A ∧ B

A
∧ el2

A ∧ B
B

¬ el
¬¬A

A

⇒ el
A ⇒ B, A

B
∨ el

A ∨ B, ¬A
B

Introduction Rules:

∨ in1
A

A ∨ B
∨ in2

B
A ∨ B

∧ in
A, B
A ∧ B

⇒ in
[C], B
C ⇒ B

¬ in
[C], B, ¬B

¬C

In ‘⇒ in’ and ‘¬ in’ formula [C] must be the most recent
non discarded assumption occurring in the proof. When we
apply one of these rules on step n and discard an assump-
tion on step m, we also discard all formulae from m to n−1.

Searching Procedures
Searching Procedures update lists of formulae in the

proof, list of goals (list proof, list goals) or both of them.
Let ⊥ abbreviate a dedicated goal, contradiction, and
‘Gcur’ abbreviate the current goal.

Procedure (1) simplifies structures of formulae in
list proof by an applicable elimination rule. Procedure
(2) is fired when the current goal is not reached. Here we
distinguish two subroutines. Procedure (2.1) applies when
the current goal is not reached. Analysing the structure
of the current goal we update list proof and list goals, re-
spectively, by new goals or new assumptions. Subroutines
(2.1.1)–(2.1.9) guide this process. The rules below have
structure Γ 
 α −→ Γ′ 
 α′ indicating that the rule mod-
ifies some given inference task Γ 
 α to a new inference
task −→ Γ′ 
 α′.
(2.1.1) Γ ⊢ ∆, A −→Γ, ¬A ⊢ ∆, A,⊥
(2.1.2) Γ ⊢ ∆,¬A −→Γ, A ⊢ ∆, ¬A, ⊥
(2.1.3) Γ ⊢ ∆, A ∧ B −→Γ ⊢ ∆, A ∧ B, B, A
(2.1.4.1) Γ ⊢ ∆, A ∨ B −→Γ ⊢ ∆, A ∨ B, A
(2.1.4.2) Γ ⊢ ∆, A ∨ B −→Γ ⊢ ∆, A ∨ B, B
(2.1.5) Γ ⊢ ∆, A ⇒ B−→Γ, A ⊢ ∆, A ⇒ B,B

If applying Procedure (2.1.4) we could not reach goals
A, B then we delete these goals, leaving the current goal,

A ∨ B.
Procedure 2.2 is invoked when Gn = ⊥. It searches for
formulae in list proof as sources for new goals. We abbre-
viate these designated formulae as Ψ. The idea behind this
procedure is to search for ”missing” premises to apply a
relevant elimination rule to Ψ.

(2.2.1) Γ, ¬A ⊢ ∆, ⊥ −→Γ,¬A ⊢ ∆, ⊥, A

(2.2.2) Γ, A ∨ B ⊢ ∆, ⊥ −→Γ, A ∨ B ⊢ ∆, ⊥, ¬A

(2.2.3) Γ, A ⇒ B ⊢ ∆, ⊥−→Γ, A ⇒ B ⊢ ∆,⊥, A
Applying the Procedure (2.2.1) we have ¬A in the proof

and are aiming to derive, A itself. If we are successful then
this would give us a contradiction.

When we apply Procedures (2.2.2-2.2.3), our target is to
derive formulae that being in the proof would enable us to
apply a relevant elimination rule, ∨el, ⇒el.
Procedure 3 checks reachability of the current goal in
list goals. If Reached(Gn) = true then list goals=
list goals- Gn and Gcur = Gn−1.
Procedure 4 guides the application of introduction rules.
Any application of the introduction rule is completely de-
termined by the current goal in list goals. This property
of our proof searching technique protects us from infer-
ring by introduction rules an infinite number of formulae
in list proof.

Proof-Searching Algorithm [3]
Given a task ⊢ G, we commence the algorithm by set-

ting the initial goal, G0 = G. Then for any goal Gcur, we
apply Procedure 3, to check if it is reached. If Gi is not
reached we apply Procedure 1. If Gcur is still not reached,
then Procedure 2 is invoked which updates list proof and
list goals dependent on the structure of Gcur. If Gcur is
reached, then Procedure 4 is applied. Otherwise, which
could only be in the case, when current goal is set as ⊥
and we do not have contradictory formulae in list proof, we
update list goals looking for possible sources of new goals
in list proof. Continuing searching we may reach the initial
goal, G0, in which case we terminate having found the de-
sired proof. Otherwise, we reach the stage when our search
cannot update list proofand list goals any further. In the
latter case we terminate, and no proof has been found and a
counterexample can be extracted.

Marking technique introduces and eliminates special
marks for formulae in list proof and list goals. Most of
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these marks are devoted to prevent looping either in ap-
plication of elimination rules or in searching. In particu-
lar, we mark: formulae that were used as premisses of the
rules invoked in Procedure 1; goals A ∨ B in Procedure
(2.1.4); those formulae in list proof which were considered
as sources of new goals in Procedure 2.2 and these new
goals themselves to prevent looping in Procedure (2.1.1).

Let ‘last(list goals)’ return the last element of list goals,
and list goals — Gn deletes the last formula, Gn, from
list goals.

Now, based on the procedures (1)-(4) we introduce the
proof search algorithms NPCompALG.

(0) list proof(), list goals(), GO TO (1)

(1) Given a task Γ 
 G0, Gcur = G0 (Γ ̸= ∅) −→
(list proof = Γ, list goals = G0, GO TO (2)) else
list goals = G0, GO TO (2).

(2) Procedure (3): Reached (Gcur) = true −→
list goals = list goals − Gcur

(Gcur = G0) −→ GO TO (6a) else Gcur =
last(list goals) GO TO (3)

Reached (Gcur) = false −→ GO TO (4).

(3) Procedure (4): apply an introduction rule, GO TO (2).

(4) Procedure (1): elimination rules

(4a) Elimination rule is applicable, GO TO (2) else
GO TO (5).

(5) Procedure (2): update list proof and list goals based
on the structure of Gcur

(5a) Procedure (2.1): analysis of the structure of
Gcur, GO TO (2) else

(5b) Procedure (2.2): searching for the sources of new
goals in list proof), GO TO (2) else

(5c) (if all compound formulae in list proof are
marked, i.e. have been considered as sources for
new goals), GO TO (6b).

(6) Terminate (NPCompALG).

(6a) The desired ND proof has been found. EXIT,

(6b) No ND proof has been found. EXIT.

Complexity Analysis
We consider a family Σn of formulas introduced by Cook

and Reckhow in [4].

Σn =
∪

{±A ∨ ±A± ∨ . . . ∨ A±(n−1)±}

Here +A = p and −A = ¬p are literals. One can
exemplify this family with Σ1 = {A, ¬A} and Σ2 =
{A ∨ A+, A ∨ ¬A+, ¬A ∨ A−,¬A ∨ ¬A−}. Informally,
Σn is simply a family of all disjunctions of literals with n

disjuncts. It is clear that |Σn| = 2n. We will further desig-
nate each member of Σn with Fn

i (1 6 i 6 2n). Following
Cook and Reckhow, analytic tableaux can show inconsis-
tency of Σn in at least 2Ω(2n) steps.

We follow Massacci [5] (see also the discussion about
Massacci’s paper in [2]) and assume that literals are asso-
ciated from left to right. Under these conditions Massacci
showed that analytic tableaux can prove inconsistency of
Σn in no more than O(2n2

) steps which was exponentially
shorter than lower bound provided by Cook and Reckhow.

We will further associate each Σn with two formulae:

F∨ =
2n∨
i=1

Fn
i and F∧ = ¬

2n∧
i=1

Fn
i

We assume that all Fn
i are associated and ordered arbi-

trarily in both cases.
It was shown that the proof searching algorithm for nat-

ural deduction is complete [1], i.e., that it can prove ev-
ery classical propositional tautology. The algorithm has a
remarkable property: it can delete steps of a derivation if
it finds the current goal to be unreachable. This property
means that there can be a difference between number of
steps in the resulting inference and the number of formulas
which were introduced to the inference.

The following theorems can be proved.

Theorem 1. Proof searching algorithm can prove F∨ in
O(2n) steps including deleted ones.

Theorem 2. Proof searching algorithm can prove F∧ in
O(n · 2n) steps including deleted ones.
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ABAplus: Implementing Attack Reversal in
Structured Argumentation with Preferences

Ziyi Bao Kristijonas Čyras Francesca Toni
Department of Computing, Imperial College London

{ziyi.bao14, k.cyras13, ft}@imperial.ac.uk

Abstract: ABA+ is a recent extension of the well established structured argumentation formalism,
Assumption-Based Argumentation (ABA). ABA+ employs a novel way to account for preferences in struc-
tured argumentation, namely via attack reversal. We here present ABAplus, a system that implements ABA+.
ABAplus affords computation, visualisation and comparison of extensions under five argumentation seman-
tics. It is available both as a stand-alone system and as a web application.

1 Introduction

Approaches to preferences in abstract argumentation (AA)
[8] and structured argumentation (SA) [3] can be roughly
classified as follows: 1. discarding attacks from attackers
that are less preferred than attackees (e.g. see [1] for AA
and ASPIC+ [11] for SA); 2. reversing attacks from attack-
ers that are less preferred than attackees (see [2] for AA
and Assumption-Based Argumentation with Preferences
(ABA+) [6] for SA); 3. comparing extensions by aggregat-
ing preferences over their elements (e.g. see [2] for AA and
[13] for SA); 4. incorporating numerical weights of argu-
ments or attacks into the definition of semantics (e.g. see
[5] for AA and [10] for SA). Implementations of several
approaches in classes 1. and 4. exist (e.g. [4, 12]), but, to
the best of our knowledge, implementations of approaches
in classes 2. and 3. are lacking. In this paper we present an
implementation of attack reversal, i.e. approaches in class
2., in SA with preferences.

Our system, ABAplus, implements the recently proposed
formalism ABA+, the only one (to the best of our knowl-
edge) to reverse attacks in SA due to preferences. ABAplus
uses a novel semantics-preserving mapping from ABA+ to
AA and employs off-the-shelf AA implementation ASPAR-
TIX [9] for determining extensions. To this end, ABAplus
implements the principle of Weak Contraposition (WCP)—
a preference-dependent, relaxed form of contrapositive rea-
soning which distinguishes a class of ABA+ frameworks
that can be mapped to AA while preserving semantic corre-
spondence. In particular, WCP guarantees a correct rep-
resentation and implementation of ABA+ via AA under
five semantics, and allows ABAplus to provide concise
graphical visualisation and comparison of ABA+ frame-
works. ABAplus is freely available as a stand-alone sys-
tem (github.com/zb95/2016-ABAPlus) and a web applica-
tion (www-abaplus.doc.ic.ac.uk).

2 ABAplus

In ABA+, knowledge is represented through a deductive
system (L,R) comprising of a formal language L and (a
set of) inference rules R, while a set A ⊆ L of distin-

guished sentences, called assumptions, represents uncer-
tain and/or incomplete information. Assumptions are also
responsible for information conflicts: attacks arise among
sets of assumptions whenever one set of assumptions de-
duces (via rules) the so-called contrary of some assumption
in another set, where contraries are given by a total map-
ping ¯̄̄ : A → L. The conflicts are resolved by taking into
account preferences over assumptions, given as a transitive
binary relation 6 on A.

In ABAplus, the user employs Prolog-like notation to
specify: rules by myRule(h, [b1, . . . , bn]). for a rule
h ← b1, . . . , bn; assumptions by myAsm(a). for an as-
sumption a; contraries by contrary(a, ac). for the
contrary ac of a; preferences by myPrefLE(b, a). and
myPrefLT(b, a)., respectively for b 6 a and b < a.

When processing the input, ABAplus checks and, if
needed, enforces WCP [7] by adding certain ‘contraposi-
tive’ rules to an ABA+ framework. For example, an ABA+

framework comprising three assumptions a, b, c with no
preferences and a single rule bc ← a, c, where b = bc (the
language and contraries are otherwise suppressed), satisfies
WCP (as there are no preferences) and admits a unique ex-
tension, namely {a, c}, under all semantics. However, with
the preference a < b added, the framework does not satisfy
WCP, whence ABAplus enforces it by adding, for instance,
the rule ac ← b, c (where a = ac). The resulting framework
satisfies WCP and has a unique extension, namely {b, c},
under all semantics.

After dealing with WCP, ABAplus maps the ABA+

framework into an AA framework, called assumption
graph, with arguments being assumption sets deducing con-
traries of assumptions and singleton sets of assumptions,
and attacks determined by the ABA+ attack relation. AS-
PARTIX solver is then used to determine the extensions of
the assumption graph, which are then mapped into ABA+

extensions. ABAplus uses the assumption graph to visu-
alise and compare the reasoning outcomes too.

The (cropped) ABAplus output for our running
example—assumptions a, b, c, preference a < b, rules
bc ← a, c and ac ← b, c (for WCP)—is shown in Figure 1.
ABAplus displays the assumption graph with nodes hold-
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Figure 1: Screenshot (cropped) of the ABAplus reasoning outcome for the ABA+ framework with assumptions a, b, c,
preference a < b, and rules bc ← a, c and ac ← b, c. Cropped are the editable input window with the specification of the
ABA+ framework, as well as the drop-down selection options to highlight and compare extensions under other semantics.

ing assumption sets and edges representing attacks. The
latter are distinguished by type: reverse, normal (i.e. non-
reverse), or both. ABAplus lists all extensions under five
semantics (stable, grounded, complete, preferred, ideal) to-
gether with their conclusions (derivable sentences). Any
extension can be highlighted in the assumption graph,
whence nodes are coloured respectively green and red, in-
dicating inclusion and non-inclusion in the extension of
the relevant assumptions. Any two extensions (under pos-
sibly different semantics) can be compared, whence two
accordingly highlighted assumption graphs are displayed.
ABAplus also displays (cropped from Figure 1) an editable
window with the input ABA+ framework together with the
rule(s) added to satisfy WCP, as well as (partially cropped
from Figure 1) drop-down selection options to highlight and
compare extensions under all (not only stable) semantics.

ABAplus is a proof-of-concept research tool under de-
velopment, free to use and open to improvements.
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AA-CBR: Explaining Case-Based Reasoning via Argumentation
Kristijonas Čyras Francesca Toni

Department of Computing, Imperial College London
{k.cyras13, ft}@imperial.ac.uk

Abstract: Case-based reasoning (CBR) is extensively used in AI for various applications, to assess a new
situation (or case) by recollecting past situations (or cases) and employing the ones most similar to the new
situation to give the assessment. We outline a recently proposed method for CBR, based on instantiated
abstract argumentation (AA) and referred to as AA-CBR, for problems where cases are represented by abstract
factors and (positive or negative) outcomes, and an outcome for a new case needs to be established. We also
outline AA-CBR explanations of reasoning outcomes, which can be seen as dialogical processes between a
proponent and an opponent seeking to justify and question, respectively, the AA-CBR outcomes.

1 Introduction

Case-based reasoning (CBR), as overviewed in [8], is ex-
tensively used in various applications of AI (see e.g. [4, 8]).
At a high-level, in CBR a reasoner in need to assess a new
situation, or new case, recollects past situations, or past
cases, and employs the ones most similar to the new sit-
uation to give the assessment. Several approaches to CBR
use (forms of) argumentation, e.g. [1, 7] and, more recently,
the AA-CBR approach of [2, 3].

AA-CBR instantiates abstract argumentation (AA) [5] to
resolve conflicts amongst most similar past cases with di-
verging outcomes. It provides: 1) a method for computing
outcomes for new cases, given past cases and a default out-
come; and 2) explanations for computed outcomes, as di-
alogical exchanges between a proponent, in favour of the
default outcome for the new case, and an opponent, against
the default outcome.

As common in the literature (see e.g. [8]), in AA-CBR
past cases are represented as sets of factors (also known
as features or attribute-value pairs, cf. [9]) together with
an outcome, which may be positive (+) or negative (−).
AA-CBR then relies upon the grounded extension [5] of an
AA framework with, as arguments, a default case (with an
empty set of factors and the default outcome), past cases
(with their outcomes) and a new case (with unknown out-
come). Roughly, a past case attacks another past case or
the default case if they have a different outcomes, the for-
mer is more specific than the latter and at least as concise
as any other similarly more specific, conflicting past case.
The following example illustrates AA-CBR.

Example 1. Suppose Bob wishes to rent his spare room
to get between £800 and £900 per month, and decides
to use an online AA-CBR system to determine whether
this amount is reasonable and why, based on similar lodg-
ings being rented. Let N , the new case, represent the set
of features of Bob’s room, e.g. N = {S,E,O,G} (the
room is Small, with an En-suite bathroom in an Open-
plan flat with a Gym in the building). Here the de-
fault outcome is +, indicating Bob’s bias for the price
range £800–£900. The past cases are either of the form
(X,+), for lodgings in the desired price range, or (Y,−),

for lodgings in different (lower or higher) price ranges,
with X , Y the feature sets of these lodgings. For exam-
ple, suppose the past cases are ({S},−) (Small rooms go
for lower prices), ({S,E},+) (En-suite compensates for
Small room), ({S,O},+) (Open-plan flat compensates for
Small). Then, the corresponding (instantiated) AA frame-
work [2], consisting of a set of arguments (as cases) and a
binary attack relation over arguments, is depicted in Figure
1 (where nodes hold arguments—with (∅,+) the argument
for the default case, and ({S,E,O,G}, ?) the argument for
the new case—and arrows denote attacks).

(∅,+) ({S},−)

({S,E},+)

({S,O},+)

({S,E,O,G}, ?)

Figure 1: The AA framework from Example 1.
The grounded extension of this AA framework—

roughly, obtained by iteratively accepting the unattacked
arguments and discarding the arguments attacked by the
accepted ones—is G = {({S,E,O,G}, ?), ({S,E, },+),
({S,O, },+), (∅,+)}. Since (∅,+) ∈ G, the outcome
for the new case—called AA outcome—determined by AA-
CBR is +, with two possible explanations TP and T ′

P de-
picted in Figure 2 (with P standing for proponent and O

standing for opponent).

TP [P : (∅,+)]

[O : ({S},−)]

[P : ({S,E},+)]

T ′
P [P : (∅,+)]

[O : ({S},−)]

[P : ({S,O},+)]

Figure 2: Explanations of the AA outcome in Example 1.

Thus, for example, TP explains the recommendation +
dialectically as follows: the default outcome + needs to
be defended against the objection posed by the past case
({S},−), and this can be achieved by using the past case
({S,E},+), that cannot be objected against.
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2 Properties of AA-CBR Explanations

The notion of explanation is deemed crucial for CBR in
many settings, but is inherently hard to define formally (see
e.g. [9]). A common form of explanation in CBR amounts
to displaying the most similar past cases. In addition, trans-
parency, in not trying to “hide conflicting evidence” [9,
p. 134], is identified as desirable. To this end, AA-CBR
utilises a notion of most similar past cases, called nearest
cases, which, roughly, are ⊆-maximal subsets of the new
case N [2]. They are important in that whenever a near-
est case is unique, then the AA outcome matches the out-
come of that nearest case. Still further, even when there are
possibly more than one nearest case, the grounded exten-
sion G contains them all, be they of agreeing or diverging
outcomes, thus adhering to the transparency requirement.
However, simply presenting the nearest case(s) as explana-
tion does not “help the user to understand how the symp-
toms connect with the solution” [9, p. 128]. Here, the ar-
gumentative nature of AA-CBR naturally lends itself to a
method of explanation based not only on the nearest cases,
but on a dialectical exchange of past cases too.

In AA-CBR, the notion of AA outcome allows to de-
termine algorithmically whether a new case N should be
assigned the default outcome (d) or not (d), by determin-
ing whether or not (respectively) the default case belongs
to the grounded extension of the corresponding AA frame-
work. Explanations for AA outcomes, AA-CBR explana-
tions henceforth, are then obtained naturally, by exploiting
the argumentative re-interpretation afforded by the corre-
sponding AA framework. In particular, AA-CBR explana-
tions are defined in terms of dispute trees [2, 6]: an explana-
tion for why the AA outcome of a new caseN is the default
outcome d, is an admissible dispute tree rooted at the de-
fault case argument (∅, d); an explanation for why the AA
outcome of a new case N is the opposite d̄ of the default
outcome, is a maximal dispute tree rooted at the default case
argument (∅, d); see [2, 3] for details. As such, AA-CBR
explanations are guaranteed to exist (particularly because
AA-CBR always yields an AA outcome for any new case).
Moreover, the set of proponent’s arguments in an AA-CBR
explanation is guaranteed to be contained (respectively, to
not be contained) in the grounded extension G of the cor-
responding AA framework whenever the AA outcome is d
(respectively, d̄).

In general, AA-CBR explanations indicate whether the
proponent has a desirable default outcome in mind, as illus-
trated in the following example.

Example 2 (Example 1 ctd.). Let there be an additional
case ({S,E,O},−) in Example 1 (say that a Small En-suite
room in an Open-plan flat goes for even more than £ 900).
The corresponding AA framework is depicted in Figure 3.

Here, G = {({S,E,O,G}, ?), ({S,E,O},−), ({S},−)}
is the grounded extension, so the AA outcome of
{S,E,O,G} is −, for which the AA-CBR explanations are
(in linear notation) TO : [P : ({∅},+)] — [O : ({S},−)] — [P :
({S,E},+)] — [O : ({S,E,O},−)] and T ′

O : [P : ({∅},+])

(∅,+) ({S},−)

({S,E},+)

({S,O},+)

({S,E,O},−)

({S,E,O,G}, ?)

Figure 3: The AA framework from Example 2.

— [O : ({S},−)] — [P : ({S,O},+)] — [O : ({S,E,O},−)].
Both explanations suggest to Bob that while with only

either En-suite or Open-plan flat Bob is in his assumed price
range, with both factors he is no more. Presumably, Bob is
better off increasing his desirable price for the room.

A further notion of lean explanations is defined in AA-
CBR [3] to avoid overpopulation of explanations with irrel-
evant arguments, where the concept of relevance captures,
roughly, cases/arguments that share some factors with the
new case. Lean AA-CBR explanations keep the desirable
properties of AA-CBR explanations, at the same time en-
suring that they concern only arguments that are relevant
for the AA outcome, as well as structuring past cases. Still
further, lean AA-CBR explanations are better suited to indi-
cate whether and how a modification of the new case would
result in a different, possibly more desirable, outcome.
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Automatically Discovering Human-readable Rules to Predict
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Abstract: This paper proposes improvements to a recent logic-based approach that optimises the selection of
compiler flags on an embedded architecture. First we present and evaluate a new and more effective approach
to obtain training data for the model. Then we analyse the human-readable rules that our method produces to
gain insights into the learned model and briefly suggest further ways to improve the approach. We provide our
training data online to encourage others to apply their techniques to this problem.

1 Introduction

This paper builds on our recent logic-based approach that
seeks to optimise the selection of compiler flags on an em-
bedded architecture [1]. Modern compilers offer a range of
compiler flags to control optimisation. The optimal config-
uration of compiler flags is dependent on the target program
and architecture. Finding good configurations is a hard task
due to the large number of flags available and complex, of-
ten unknown interactions between them.

Previous work searched for effective configurations us-
ing Iterative Compilation [5], which compiles and runs the
target program with several different configurations and se-
lects the one that gives the best execution time. Although
this finds good results, it is very time-consuming.

As Iterative Compilation is infeasible in practice, re-
cent studies sought to automatically predict which compiler
flags to enable by analysing characteristics of the target pro-
gram. Most have been propositional machine learning ef-
forts [3] which rely on vectors of statistical aggregates that
summarise features of the program code.

Our Inductive Logic Programming (ILP) [4] based ap-
proach aims to automatically discover relevant features for
the machine learning task rather than relying on predeter-
mined features that may not necessarily be most relevant
for the task. This is a first-order logic approach that learns
human-readable rules to relate effective compiler flags to
specific program features.

As in our original study, we develop and evaluate our im-
provements by using the GCC compiler toolchain1 to com-
pile for the STM32VLDISCOVERY embedded system de-
velopment board2. We use 81 programs (21 more than the
original study) from the state-of-the-art Bristol/Embecosm
Embedded Benchmark Suite (BEEBS)3 to measure the ex-
ecution times of a diverse set of programs compiled with
different configurations.

After summarising our original method we present a new,
more effective approach for generating the training data for
the model and we evaluate it using leave-one-out cross val-

1http://gcc.gnu.org/
2http://www.st.com/en/evaluation-tools/stm32vldiscovery.html
3http://beebs.eu

idation. Our revised method outperforms the original on
two thirds of the programs. Next we discuss insights gained
from our method’s human-readable rules. To fully exploit
the expressive power of ILP, further work on program rep-
resentation will be required. To enable this, we have pub-
lished our data online and invite the community to apply
their techniques to this problem.4

2 Original ILP-based compiler tuning (ILP-Rand)

Inductive Logic Programming (ILP) [4] seeks to discover
hypotheses H that generalise relations based on back-
ground knowledge B that describes characteristics of the
problem, positive examplesE+ for which the relation holds
and negative examples E− for which it does not hold.

In the context of compiler flag selection, our goal is to
learn the relation badFlag(P,F). which can be read as “Flag
F is a bad flag for program P”. A ‘bad flag’ is a flag which
degrades performance for the target program and a ‘good
flag’ is one which improves performance. We chose the
predicate badFlag/2 because we found it was more effective
to selectively disable flags rather than predict which ones to
enable.

The training data consists of B which describes the
source code, positive examples E+ of significantly bad
flags and negative examples E− of significantly good flags.

We used Milepost GCC [3] to extract a Datalog encoding
of GCC’s internal Intermediate Representation (IR). This
forms the basis for B. We also added auxiliary predicates
which enable the IR to be generalised.

To determine good and bad flags we generated 1000 ran-
dom configurations of 133 compiler flags and measured
their performance on each program. For each program a
set of good configurations was identified by choosing the
configurations that performed within 5% of the best. If a
flag appeared in at least 75% of these good configurations
it was classed as good and if it appeared in less than 25%
it was classed as bad. These parameters were chosen based
on preliminary experiments.

4http://github.com/craigblackmore/ilp-ce
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3 Revised ILP-based compiler tuning (ILP-CE)

We propose three improvements to ILP-Rand. Firstly, in-
stead of using random sampling to search for good con-
figurations, we use Combined Elimination (CE) [5] which
finds better results in less time [2]. Intuitively, CE begins
with all flags enabled and continually disables the flag with
the biggest negative impact on the program’s performance,
until no further gains are made.

Secondly, we have developed an alternative way to iden-
tify good and bad flag examples. Using random data leads
to noisy examples as flags could appear frequently or infre-
quently in the set of good configurations by chance (espe-
cially when the set of good configurations is small). These
noisy examples confuse the learning process.

We propose a ‘sensitivity analysis‘ which finds flags that
exhibit a significant impact on the target program. For each
program, we first select the best configuration found by CE.
Then each enabled flag is disabled one-by-one – if disabling
the flag makes performance significantly worse, then it is
classed as a good flag. Similarly, each disabled flag is en-
abled one-by-one and, if enabling the flag degrades perfor-
mance significantly, it is classed as a bad flag.

This sensitivity analysis gives more reliable examples
that cannot appear by chance and it also allows all programs
to be included in training, even if only one good configura-
tion is found for them. With the previous approach, it was
impossible to determine whether the flags had appeared in
a single configuration by chance.

Finally, we fixed an oversight in the design of BEEBS
that had enabled the compiler to over-optimise based on
knowledge of the test input data used by some bench-
marks [2]. This increases confidence that the gains are rep-
resentative of realistic applications.

Our improved approach outperforms ILP-Rand on 54 out
of 81 benchmarks (Fig. 1). In many cases the performance
is close to the best known configuration.
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Figure 1: Leave-one-out cross-validation of ILP+CE and
ILP+Rand (logarithmic scale)

4 Insights from Human-readable Rules

ILP+CE found 25 rules to control flags. These can easily be
translated into understandable sentences. For example the

following rule states that flag ‘-fschedule-insns’ should be
disabled if the program has a function with an expression
that contains a 64-bit integer variable:

badFlag(P,’-fschedule-insns’) :-
expr_type(P,F,Expr,Type),
expr_int_size(P,F,Type,64),
expr_var(P,F,Expr,Var).

Another example is a little less clear but may provide
some useful information. The following rule states that
‘-fguess-branch-probability’ should be disabled if the pro-
gram has a function with at least one edge, at least two float-
ing point expressions and an exceptional expression. This
suggests that the compiler’s branch prediction may perform
poorly for floating point programs on the target platform.

badFlag(P,’-fguess-branch-probability’)
:- edge_src(P,F,Src,BB),

expr_class(P,F,Expr,exceptional),
expr_code2(P,F,real_type).

Seven of the rules are actually facts that determine certain
flags should always be disabled on our target platform. Four
of these flags were also found in [2].

5 Conclusion and Future Work

Our revised method generates more robust training exam-
ples that will enable future work to focus on improving
background knowledge. In this respect, we plan to explore
alternative program representations and devise additional
auxiliary rules to fully exploit the expressivity of ILP.
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Abstract: Understanding data, models and predictions is important for any machine learning application. Due
to the limitations of our spatial perception and intuition, analysing high-dimensional data is inherently difficult.
Furthermore, black-box models achieving high predictive accuracy are widely used, yet the logic behind their
predictions is often opaque. Use of textualisation – a natural language narrative of selected phenomenon – can
tackle these shortcomings. When extended with argumentation theory we could envisage machine learning
models and predictions arguing persuasively for their choices.

1 Introduction

In recent years machine learning has witnessed a big tech-
nological leap and proliferation in everyday life. Predictive
models initially flourished in the Internet fuelling shopping
recommendations and internet search. Nowadays they are
becoming a vital part of decision support systems used in
judicial system, politics, finance, credit scoring and job ap-
pointments. This widespread adaptation of machine learn-
ing algorithms and their influence on our every-day life is
often criticised for unfairness1. In the wake of algorithms
taking supposedly “optimal” decisions for human matters
the European Union has introduced the “right to explana-
tion”; it entitles involved parties to receive an explanation
of the algorithm’s decision2. Moreover, protected features
such as gender and race cannot be used in predictive models
to prevent discrimination.

In the digital age data are easy to collect; machine learn-
ing models are simple to use, learn and deploy with pack-
ages such as scikit-learn and weka. Nevertheless,
they are rarely understood and inspected in detail before
deployment as the main objective is to maximise the pre-
dictive accuracy, which rarely includes social costs. Given
large amounts and high dimensionality of data, learnt mod-
els and the nature of their predictions can easily become in-
comprehensible. Their better understanding could result in
selecting the correct features and model for the task, hence
guarantee fair predictions in deployment.

2 Research problem

To address these issues machine learning experts have de-
veloped techniques to inspect data, models and predictions.
Understanding data is the most difficult part of the process;
researchers use correlation maps to discover dependencies
and interactions between features, yet these are limited to
pairwise correlation coefficient. Approaches such as t-SNE
and PCA allow to project high-dimensional data into 2 or
3 dimensions that can be visually inspected [2]. Under-

1“Weapons of Math Destruction” by Cathy O’Neil
2General Data Protection Regulation (EU 2016/679)

standing models and predictions is a difficult task as well.
Most commonly, researchers use white-box models when
transparency is crucial. Decision trees and rule learners,
for example, can be read as conjunctions of logical condi-
tions. Predictions of linear regression can be described with
corresponding feature weights (but this makes assumptions
about the commeasurability of features). Black-box mod-
els like deep neural networks, on the other hand, are almost
impossible to interpret. Their predictions can be under-
stood by applying post-hoc methods. These usually build
a simple representation of the decision criterion (e.g. linear
model) in the neighbourhood of the instance of interest.

In general, these techniques can be divided into two
groups.

Model-dependent are developed with a specific machine
learning task in mind e.g. linear model and feature
weights, conjunction of logical conditions in a rule.
They suffer from scalability issues as each model fam-
ily requires its own approach.

Model-agnostic (usually post-hoc) can be applied to any
task e.g. local linear model. They are versatile but they
use white-box models as backbone, hence they inherit
their limitations.

Finally, all of these approaches to understand the data,
models and predictions share one commonality: they use
visualisation in the core of their descriptive power. This is
powerful but also has limitations as our intuition in high-
dimensional spaces is flawed – we often call this the curse
of dimensionality. Moreover, they describe but do not ex-
plain: they provide statistics and characteristics that quan-
tify models’ behaviour but not their reasoning. While in
some cases model and features are simple (small and shal-
low decision tree) and description is more or less equiva-
lent to explanation, such models are rarely the norm in to-
day’s data-rich world, where multidimensional data renders
white-box models incomprehensible.

Therefore, we need explanations supported by arguments
that lead to understanding. Explaining a model means pro-
viding a high-level insight into its decision system, e.g. self-
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driving cars stop before zebra crossing if a moving object
is detected nearby. Explaining a prediction means present-
ing a thought process supported with arguments, e.g. a self-
driving car crossed the junction without stopping because
the light was green and the pedestrian crossing was empty.
Last but not least, explaining data means to understand their
patterns as used by machine learning algorithms to make
inferences, e.g. this picture shows a pedestrian crossing be-
cause there are vertical white stripes on the road.

3 Approach

The simplest and most common approach to characterise a
machine learning component, in particular data, is (statisti-
cal) summarisation. These are usually numerical tables and
lists which can be difficult to digest for non-experts. Their
role is to describe properties of the data by providing in-
formation from the system to the user. A more advanced
analytic tool is visualisation; graphical representation of
data in a form of plots and figures is more insightful. It is
also descriptive but sometimes the communication can be
bidirectional e.g. interactive plots. Visualisations are often
supported by a small narrative in a form of caption, which
increases their informativeness. To overcome the curse of
dimensionality we can use textualisation – narratives ac-
companied by statistics and figures. Natural language can
express concepts of arbitrary complexity and dimensional-
ity. Moreover, it is proven more insightful and effective
than presenting raw, numerical and visual data [4]. Finally,
we suggest to make use of argumentation – structural, log-
ical narratives accounting for every disputable statement. It
provides explanation leading to understanding rather than
informative description; a long overdue approach.

Using natural language to describe machine learning
data, models and predictions is uncommon. Narrative was
used to present data analysis in the Automatic Statistician
project3. [1] generated reposts of control systems and used
narrative to present anomalies in operating system logs. [4]
developed a system that synthesises medical reports from
neonatal intensive care unit data to support medical de-
cisions. Application of argumentation theory in machine
learning is even less common despite its capability of argu-
menting classification choices, hence providing invaluable
insight into model reasoning [3].

4 Contributions and directions

Expressiveness and versatility of textualisation and logical
reasoning behind argumentation point toward benefits of its
wider adaptation in machine learning. We aim to improve
the currently available data-to-text frameworks. Such sys-
tems mostly use (conditional) templating, hence they re-
quire manual engineering and are limited to a particular ap-
plication domain. We aim to develop a flexible narrative
generation platform that accepts a variety of data types. We
will showcase capabilities of our platform by composing

3https://www.automaticstatistician.com

narratives of experimental results so often used in the re-
sults section of our papers. Such a system, for example,
would provide a textual narrative comparing performance
of a novel algorithm against state-of-the-art solutions only
based on accuracy table and experiment meta-data.

Generating a summary of arbitrary data requires a uni-
fied feature and meta-data representation. We will intro-
duce a feature annotation approach useful in explaining the
data, models and predictions. For example, knowing that
two features are length measurements expressed in the same
unit would vouch for a model using their mean, while aver-
aging time-stamp and temperature is counter-intuitive.

Allowing the data-to-text framework to use arbitrary ap-
proach to analyse feature interactions and dependencies
could help avoid using combinations of features that are
equivalent to a protected feature. If these interactions are
complex, describing them with natural language is prefer-
able to numerical coefficients, graphs and figures.

Finally, full potential of argumentation theory has not yet
been applied to explain machine learning approaches. We
will integrate it with other parts of our data-to-text system to
produce model-agnostic explanations that yield better un-
derstanding of our field. For example, a model recognising
activities based on environmental sensor data could argue in
favour of its choice. By integrating a human into the learn-
ing loop fallacies could be identified and the model refined.

5 Summary

Narrative is a promising direction for better understand-
ing machine learning data, models and prediction. It can
describe concepts of arbitrary complexity and when ac-
companied with argumentation theory it can explain them.
When combined with state-of-the-art statistical and ma-
chine learning models it can vastly improve our understand-
ing of the algorithms that we use, as well as the predictions
they produce and the data on which they are based.
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Abstract: This paper describes a proof-of-principle study aimed at developing an Inductive Logic Program-
ming (ILP) tool to assist experts in analysing cyber-attacks using logs acquired by an eavesdropping device
placed in the host computer’s network to monitor various aspects of its communications traffic. Using the
CryptoWall ransomeware attack as an example, we show how ILP can be used to interactively learn rules
describing malware behaviour that are comparable to those hand-crafted by a human.

1 Introduction

This paper builds on a recent case-study [1] which showed
the Inductive Logic Programming (ILP) system Aleph [2]
can relearn meaningful rules about malware behaviour us-
ing a small amount of carefully curated log data (extracted
by a professional cyber-security collaborator from a sand-
box computer that was deliberately infected with the Cryp-
toWall ransomeware [3]) with respect to a carefully chosen
set of positive and negative examples (selected by us to al-
low Aleph to automatically learn the intended rules).

We note that our work differs from previous applications
of ILP to cyber-security (such as [4]) in that it aims to help
humans understand novel types of attack rather than to help
them detect known types of attack. This paper extends our
previous work in two key ways, as described in the follow-
ing two sections. For more information on the CryptoWall-
4 attack and our Prolog representation of network traffic
data, the reader is referred back to [1].

2 NIDS: Network Intrusion Detection System

Our first contribution was to develop a Network Intrusion
Detection System (NIDS) and collect ten week’s worth of
network traffic data generated by a genuine small business
network. We also developed a tool to transform this data
into the Prolog format we previously used to represent the
CryptoWall sandbox data provided by our collaborator. The
hardware for our NIDS was based on a Raspberry Pi and the
software was based on the open source Bro Network Secu-
rity Monitor [5]. This resulted in the experimental setup
shown in Figure 1. Due to the huge amount of network data
as compared to the tiny amount of sandbox data, we stored
these logs in two separate files that we call the ‘CryptoLog’
and the ‘NetLog’ respectively. They were kept separate as
it was not possible to apply Aleph to the NetLog, since even
running a simple Prolog query on that huge file takes a very
significant amount of time.

3 ACUITY: Abducing Constraints for User-guided In-
duction of a TheorY

Our second contribution was to develop an extension of
Aleph that facilitates the interactive learning of rules by
helping the user find counter-examples to overly general hy-
potheses and avoiding the generation of logically redundant
specialisations of refuted rules. The first part was done by
showing the extent of hypotheses over the CryptoLog and
NetLog. This allowed the user to easily spot potential coun-
terexamples. The second part was done by a Skolemisation
method that overcame a key problem of Aleph’s existing
mechanisms for dealing with incorrect hypotheses: namely
its tendency to become stuck in descending chains of logi-
cally equivalent versions of a rejected hypotheses. Figure 2
outlines the key features of our system compared to Aleph;
and Figure 3 shows the intended rules from [1] that the user
was easily able to find using our new system.
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malware_domain(Domain):-
http_domain_name_parameter(Machine,Domain,Name1,Param1),
http_domain_name_parameter(Machine,Domain,Name2,Param1),
http_domain_name_parameter(Machine,Domain,Name1,Param2),
Name1 \= Name2, Param1 \= Param2.

malware_fetch(A,B,C):-
malware_domain(C), http(A,D,B,E,’POST’,C,F,G,H,I,J,K,L,M,
vector(’text/plain’),N,vector(’text/plain’)), gt1000(K).

Figure 3: Example of learnt rules
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Abstract: Forgetting (in description logic contexts) refers to a non-standard reasoning problem concerned
with eliminating concept and role symbols from description logic ontologies while preserving all logical con-
sequences up to the remaining symbols in their initial signatures. While early work focused mostly on forget-
ting concept symbols, we in this work turn the attention to role symbol forgetting. In particular, we describe
a practical method of role forgetting for ontologies expressible in ALCOQH(O), i.e., the basic description
logic ALC extended with nominals, qualified number restrictions, role inclusions and the universal role.

1 Introduction

Early work in the area of description logics focused mostly
on forgetting concept symbols, as role forgetting was re-
alised to be significantly harder. An important known rea-
son is that the solution of role forgetting often requires more
expressivity than is available in the source language. In this
work we describe a practical method for role forgetting in
expressive description logics not considered so far. In par-
ticular, the method accommodates ontologies expressible in
the description logicALCOQH and the extension with the
universal role O. The extended expressivity enriches the
target language, making it expressive enough to represent
the forgetting solution which otherwise would have been
lost. For instance, the solution of forgetting the role sym-
bol {r} from the ontology {A1 v ≥2r.B1, A2 v ≤1r.B2}
is {A1 v ≥2O.B1, A1 u A2 v ≥1O.(B1 u ¬B2)}, whereas
in a description logic without the universal role O, the uni-
form interpolant is {>}, which is weaker. The method is
goal-oriented and incremental. It always terminates and is
sound in the sense that the forgetting solution is equivalent
to the original ontology up to the symbols that have been
forgotten. Our method is nearly role forgetting complete
for ALCOQH(O)-ontologies, and we characterise cases
where the method is complete. Only problematic are cases
where forgetting a role symbol would require the combina-
tions of certain cardinality constraints and role inclusions.

2 Definition of Forgetting

Let NC, NR and NO be three pairwise disjoint sets of con-
cept symbols (atomic concepts), role symbols (atomic roles)
and individuals (nominals), respectively. Let sigR(X) de-
note the role symbols occurring in X , where X ranges over
concepts, roles, axioms, clauses, ontologies of axioms, or
sets of clauses. Let r ∈ NR be any role symbol, and let I
and I ′ be any interpretations. We say I and I ′ are equiv-
alent up to r, or r-equivalent, if I and I ′ coincide but dif-
fer possibly in the interpretations of r. More generally, I
and I ′ are equivalent up to a set Σ of role symbols, or Σ-
equivalent, if I and I ′ are identical but differ possibly in
the interpretations of the symbols in Σ.

Definition 1 (Forgetting in ALCOQH(O)) LetO andO′

be two ALCOQH(O)-ontologies, and let Σ be any subset
of sigR(O). O′ is a solution of forgetting Σ from O, if the
following conditions hold: (i) sigR(O′) ⊆ sigR(O)\Σ, and
(ii) for any interpretation I: I |= O′ iff I ′ |= O, for some
interpretation I ′ Σ-equivalent to I.

In this work, Σ is assumed to be a set of role symbols to
be forgotten. The symbol in Σ being forgotten is referred to
as the pivot in our method. An axiom (clause) that contains
the pivot is called a pivot-axiom (pivot-clause).

3 Approach to Eliminating Single Role Symbols

Since in a description logic with nominals, ABox assertions
can equivalently be expressed as TBox axioms (via nom-
inals), we assume w.l.o.g. that an ontology contains only
TBox and RBox axioms in this work. Given an ontologyO
and a set Σ ⊆ sigR(O) of role symbols to be forgotten,
computing the solution of forgetting Σ from O can be re-
duced to the problem of eliminating single symbols in Σ.

We then describe our approach to eliminating single role
symbols from a set of TBox and RBox clauses expressible
in ALCOQH(O). In particular, the approach has two key
ingredients: (i) the conversion of pivot-clauses into reduced
form, and (ii) a set of elimination rules, namely, Ackermann
rules. The Ackermann rules are non-trivial generalisations
of Ackermann’s Lemma [1], and allow a role symbol to be
eliminated from a set of clauses in reduced form.

Definition 2 For r ∈ NR the pivot, a TBox pivot-clause is
in reduced form if it has the formEt≥mr.F orEt≤nr.F ,
where E and F are concepts that do not contain r, and
m ≥ 1 and n ≥ 0 are integers. An RBox pivot-clause is
in reduced form if it has the form ¬s t r or s t ¬r, where
s 6= r is a role symbol. A set N of clauses is in reduced
form if every pivot-clause in N is in reduced form.

These reduced forms include all basic forms of TBox and
RBox clauses in which a role symbol could occur. While
an RBox pivot-clause is always in reduced form, this is not
true for a TBox pivot-clause. A TBox pivot-clause not in
reduced form has the form E t ≥mS.F or E t ≤nS.F ,
where S can be any role (including the pivot symbol), and
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Ackermann Rule

N ,
P+
R(r)︷ ︸︸ ︷

¬s1 t r, . . . ,¬sv t r,
P−T (r)︷ ︸︸ ︷

E1 t ≤y1r.F1, . . . , En t ≤ynr.Fn,

P−R(r)︷ ︸︸ ︷
t1 t ¬r, . . . , tw t ¬r

N ,BLOCK(P+
R(r), E1 t ≤y1r.F1), ...,BLOCK(P+

R(r), En t ≤ynr.Fn),BLOCK(P+
R(r), t1 t ¬r), ...,BLOCK(P+

R(r), tw t ¬r)

BLOCK(P+
R(r), Ej t ≤yjr.Fj) denotes the set: {Ej t ≤yjs1.Fj , . . . , Ej t ≤yjsv.Fj}.

BLOCK(P+
R(r), tk t ¬r) denotes the set: {¬s1 t tk, . . . ,¬sv t tk}.

Figure 1: A sample Ackermann rule for eliminating r ∈ sigR(N ) from a set N of clauses in reduced form

E and F are concepts with at least one of them contain-
ing the pivot; (≤1r.A) t (≥2s.≥1r.B) is such an exam-
ple. Finding the reduced form of a TBox pivot-clause is
not always possible unless definer symbols are introduced.
Definer symbols are auxiliary concept symbols that do not
occur in the present ontology and are introduced in the way
described in [4]. In this way, any ALCOQH(O)-ontology
can be transformed into a set of clauses in reduced form.

For space reasons we do not present all Ackermann rules
in this work; instead we provide a sample Ackermann rule
in Figure 1, giving readers a flavour of the rules.

4 Key Aspects of the Method

The forgetting process in our method comprises three main
phases: the conversion of a given ontology O into a set N
of clauses (the first phase), the Σ-symbol elimination
phase (the central phase), and the definer symbol elimi-
nation phase (the final phase). It is always assumed that
as soon as a forgetting solution is computed, the remaining
phases are skipped.

Input: The input to the method are (i) anALCOQH(O)-
ontology O of TBox and RBox axioms, and (ii) a set Σ ⊆
sigR(O) of role symbols to be forgotten. Σ-symbols can be
flexibly specified in our method.

The first phase: The first phase of the forgetting process
transformsO into a setN of clauses using standard clausal
normal form transformations.

The central phase: Central to the forgetting process is
the Σ-symbol elimination phase, which is an iteration of
several rounds in which single Σ-symbols are eliminated.
Specifically, the method attempts to eliminate Σ-symbols
one by one using the approach described in the previous
section. In each elimination round, the method performs
two steps. The first step transforms every TBox pivot-
clause into reduced form, so that one of the Ackermann
rules can be applied. The second step eliminates the pivot
by applying an appropriate Ackermann rule. Upon the in-
termediate result returned at the end of each round, the
method repeats the same steps in the next round (if neces-
sary) for the elimination of another symbol in Σ. If, using
our Ackermann approach, a Σ-symbol has been found ine-
liminable from the present ontology (i.e., none of the Ack-
ermann rules is applicable to the current reduced form), the
method skips the current round and attempts to eliminate
another symbol in Σ (if necessary).

The final phase: To help the conversion of TBox clauses
into reduced form, definer symbols may be introduced dur-
ing the elimination rounds. The final phase of the forgetting
process eliminates the definer symbols using the technique
for definer elimination described in [2].

Output: What the method returns at the end of the for-
getting process, if the forgetting is successful, is a finite set
O′ of clauses that do not contain the symbols in Σ.

Theorem 1 (Termination and Soundness) For any
ALCOQH(O)-ontology and any set Σ ⊆ sigR(O) of role
symbols to be forgotten, the method always terminates and
returns a finite set O′ of clauses. If O′ does not contain
any symbols in Σ, the method is successful. O′ is then a
solution of forgetting Σ fromO. If neitherO norO′ use the
universal role, O′ is an ALCOQH-ontology. Otherwise it
is an ALCOQH(O)-ontology.

Theorem 2 (Completeness) Let O be any ALCOQH(O)
ontology, and let Σ be any subset of sigR(O). The method is
guaranteed to compute a solution of forgetting Σ fromO, iff
one of the following conditions holds for each r ∈ Σ: (i) O
does not include any RBox axioms of the form ¬S t r for S
any role symbol; (ii) O does not include any TBox axioms
containing a number restriction of the form ≥nr.D; (iii)
O does not include any TBox axioms containing a number
restriction of the form ≤nr.D for n ≥ 1.

5 Remarks

This work follows an Ackermann approach to forgetting for
a number of expressive description logic ontologies [3, 4].
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Abstract: Abductive reasoning seeks to find explanatory hypotheses for new observations. We outline the
use of forgetting to perform abduction in ontologies expressed in the description logic ALC. We then suggest
a method for large-scale evaluation of abductive reasoning in this context, and discuss how this will be used to
find ways of guiding hypothesis generation by selection of an appropriate forgetting signature.

1 Introduction

Abduction is one of the three main forms of commonsense
reasoning alongside deduction and induction, as originally
classified by Charles Sanders Peirce [7]. The aim of abduc-
tive reasoning is to generate hypotheses to explain a given
observation, making use of available background informa-
tion. For example, given the information “All birds have
feathers” and the observation “Gary has feathers”, we may
obtain the hypothesis “Gary is a bird” via abduction. Ab-
ductive reasoning is a key component of tasks in a variety of
domains including medical diagnostics, scientific discovery
and natural language interpretation.

Here we specifically consider abduction in description
logic (DL) ontologies. An ontology is a knowledge base
consisting of two main components: a TBox and an ABox.
The TBox contains information regarding general concepts
and the ABox concerns instances of concepts known as “in-
dividuals”. In this context, the aim of abduction is to gen-
erate and add explanatory hypotheses to a given ontology
so that the resulting ontology entails a given observation.
These hypotheses should not contradict existing informa-
tion. This aim can be expressed as follows: given an ontol-
ogy O and an observation φ, find a hypothesis H that can
be added to O such that (i) O∪H |= φ and (ii) O∪H 6|=⊥
[6].

The need for abductive reasoning within ontologies has
been argued by Elsenbroich et al [2], with applications
across many domains that utilise DL ontologies such as
medical informatics, AI and computational linguistics [3].
This broad applicability has led to a variety of work on per-
forming abduction in DL ontologies. Examples include in-
vestigations of the computational complexity of abduction
in the less expressive description logic EL [1] through to
methods for abduction in the more expressive logic ALC
[3].

Here, we focus on the use of forgetting [5, 9] for abduc-
tive reasoning in ALC.

2 Forgetting

Forgetting is a process by which subsets of symbols in a
given ontology can be hidden or removed. This process is
defined by a forgetting signature F , where the aim is that
all symbols Si ∈ F are removed from the ontology. These

symbols should be removed in such a way that all infor-
mation entailed by the original ontology that is expressible
in the remaining symbols is preserved [5]. Forgetting in
ALC is more difficult than standard reasoning based tasks.
Potential issues with the resulting ontology include the pos-
sibility that it cannot be represented by a finite collection of
ALC axioms [4] and the fact that the size of a forgetting so-
lution can be triple exponential with respect to the original
ontology [5].

In this work, we utilise a resolution-based method for
logical forgetting presented by Koopmann and Schmidt
[5, 4]. Our choice of method was motivated by the fol-
lowing factors: 1) The method can represent non-finite for-
getting results using fixpoints [4], which may be required to
successfully perform certain abductions. 2) Support is in-
cluded for both TBoxes and ABoxes [5]. Thus, abductions
are not limited to cases involving only general concepts. 3)
The size of the forgetting result is constrained to a double
exponential bound with respect to the input and the method
is guaranteed to terminate [5]. This reduces the potential
complexity of the resulting abduction procedure.

These factors lead us to believe that this method for for-
getting will provide an efficient and reliable basis for ab-
duction in ALC-ontologies.

3 Forgetting for Abduction

We apply forgetting to the task of abductive reasoning by
exploiting the fact that, given an ontology O, an observa-
tion φ and a hypothesisH: O∪H |= φ iff O∪¬φ |= ¬H .
Thus, we first negate a given observation then add it to the
original ontology. We then perform forgetting on this com-
bination with a signature F , which results in a negated hy-
pothesis consisting of symbols not contained within F . By
negating this result once more, we obtain an explanatory
hypothesis for the observation in terms of a specific set of
symbols.

Due to the reliance on a defined signature of symbols F ,
the abduction process can be directed according to a spe-
cific goal. The choice of symbols in F allows domain ex-
perts to utilise their own intuition to seek specific types of
hypothesis for a given observation. Alternatively, the selec-
tion of forgetting signatures provides a way of guiding the
abduction procedure towards hypotheses that are preferable
with respect to a general abduction scheme or a domain of
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interest. This potential for guiding abduction via forgetting
signatures forms part of our research focus.

4 Guiding Hypothesis Generation

An issue faced by logical abduction is that often an imprac-
tically large number of possible hypotheses are generated
for a given explanation. However, narrowing the space of
generated hypothesis is difficult. It is first necessary to en-
sure that the remaining hypotheses are the most relevant or
preferred ones, but this depends upon the nature of the do-
main, task and specific ontology under consideration.

It is clear that it is necessary to develop guiding prin-
ciples for abduction to ensure that it is practical for use
in real-world ontologies. Using forgetting as described in
Section 3 provides a way to achieve this goal: by selecting
appropriate forgetting signatures.

In order to understand how these signatures can be used
to guide abduction, it is necessary to perform large scale
testing of abduction using real ontologies. Doing so will en-
able the characterization of the process of selecting signa-
tures in terms of different abduction schema, such as those
suggested by Stickel [8].

One way to perform many test abductions would be to
manually create a testing dataset of observations. This is
not feasible, as it would require hand-crafting sufficiently
sized sets of non-trivial observations for each specific on-
tology used. An alternative would be to randomly gener-
ate observations based on symbols in the ontology. This is
likely to be unreliable, and may result in a large number of
trivial observations.

The method we will use in this research is to utilise ex-
isting axioms in real ontologies as observations. Given an
ontology, we start by selecting and removing a random ax-
iom. This axiom is then negated and added to the original
ontology, exploiting the fact thatO∪¬φ |= ¬H as outlined
in Section 3. Performing abduction with a set of forgetting
signatures then results in a set of hypotheses, each of which
“explain” the original axiom that was removed. The sets
of hypotheses generated using each set of forgetting signa-
tures can then be compared to determine how the choice of
signature impacts the nature of the resulting hypotheses.

This approach circumvents the need for manual crafting
of non-trivial observations or reliance on random genera-
tion, guaranteeing that the observations used for evaluation
take the form of actual information that may occur in the
domain of interest.

5 Conclusion and Ongoing Work

We outlined a method for abductive reasoning in descrip-
tion logic ontologies which uses forgetting to compute hy-
potheses, where the hypotheses are expressed in the sym-
bols present in a provided forgetting signature [5]. We then
suggested a method for evaluating abduction in DL ontolo-
gies using information present in existing axioms.

The next step in this research is to identify key statistics
of the resulting hypotheses that can be used to guide our

choice of forgetting signature in different scenarios. Pre-
liminary suggestions for these include the average length of
the hypotheses (potentially relevant to the “most-specific”
and “least-specific” characterisations of abduction outlined
by Stickel [8]), the overall number of hypotheses generated
and perhaps the percentage of hypotheses that are of the
form H v C where C is the observation provided. An-
other possible direction would be to utilise these charac-
teristics in conjunction with inductive learning methods, in
order to learn how to select effective forgetting signatures
for a given objective based on previous abductions.
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Abstract: We present an approach for axiom selection in large theories, which is based on the abstraction-
refinement framework. The proposed approach consists of two approximations: over-approximation and
under-approximation and their combination.

1 Introduction

Selection of relevant axioms from large theories is one of
the challenging problems in automated reasoning. Sev-
eral methods have been proposed to approach this problem.
Some of them are based on the syntactic or semantic struc-
ture of the axioms and conjecture formulas [2, 1]. Other
methods use machine learning to take advantage of previ-
ous knowledge about proving conjectures [3]. What those
methods have in common are two phases of a whole process
for proving a conjecture: one is the axiom selection phase,
and the other one is reasoning phase. Those phases are
performed in a sequential way. First, the axiom selection
takes place, then using the selected axioms the reasoning
process starts. Our proposed approach, which is based on
the abstraction-refinement framework [4] has the purpose
of interleaving the axioms selection and reasoning phases.
It allows a more dynamic interaction between both phases.

2 Preliminaries

A concrete axiom is a fact that is stored in the current used
large theory A for reasoning. This A is a set of concrete
axioms. A strengthening abstraction function αs for axiom
selection is a mapping αs : A → Âs, which assigns a con-
crete axiom in A to a stronger abstract axiom in Âs where
Âs is a set of abstract axioms and Âs |= A.

A stronger abstract axiom âs is an element of Âs such
that âs = αs(a) and âs |= a, where a is a concrete axiom;
i.e., αs strengthens the axioms in the sense that they are
a more general representation of the concrete axioms. A
concretisation function γs is a mapping γs : Âs → A.

A weakening abstraction function αw is a mapping αw :
A→ Âw, which assigns a concrete axioms inA to a weaker
abstract axiom in Âw where Âw is a set of abstract axioms
such that A |= Âw. A weaker abstract axiom âw is an
element of Âw such that âw = αw(a) and a |= âw where a
is a concrete axiom.

Abstraction refinement is a process to approximate an ab-
stract representation of axioms Â to their concrete represen-
tation A. Weakening abstraction refinement is a process to
construct Âs′, which is a closer representation of A from
Âs such that Âs |= Âs′ and Âs′ |= A; i.e., this refine-
ment weakens the abstract axioms in Âs. However those
weak abstract axioms still stronger than the concrete ax-
ioms. Strengthening abstraction refinement constructs Âw′

which is an approximation to the set of concrete axioms A,
such that A |= Âw′ and Âw′ |= Âw.
ATPS is used to denote an instance of automated theo-

rem prover which is sound and could be complete or not.
On the other hand, ATPC is used to make reference to
an automated theorem prover, which is complete but not
necessary sound [6]. The purpose of this ATP is to dis-
prove conjectures more efficiently than a sound and com-
plete ATP.

3 Over-Approximation

This procedure starts by applying the strengthening abstract
function αs to A, to obtain an abstract representation of ax-
ioms Âs, Âs = αs(A). Utilising the set Âs, the proce-
dure tries to prove the conjecture C using an ATPC . If the
ATPC disproves the conjecture, the process finishes and
responds that the conjecture has been disproved. If ATPC

proves the conjecture or the time limit is reached, the pro-
cedure uses the abstract axioms involved in the proof Âs

p to
retrieve their concrete axioms in A by applying the func-
tion γs over Âs

p. The retrieved concrete axioms form a new
subset Ap, where Ap = γs(Â

s
p). With the new set Ap, the

procedure tries again to prove the conjecture using this time
an ATPS . If the ATPS proves the conjecture, the process
stops and provides the proof. Otherwise, if the time limit
is reached or the conjecture is disproved, the set of axioms
Âs is refined using the weakening abstraction refinement.
The procedure is repeated utilising the refined set of ab-
stract axioms. This loop finishes when the conjecture is
proved or disproved or the time limit of the whole proce-
dure is reached. This approach is expressed in algorithm 1.

3.1 Strengthening Abstraction Function

For the over-approximation, one possible candidate as ab-
straction function is changing ground terms in the concrete
axioms’ formulas to variables. This transformation must
have the property that the obtained abstract axioms entail
the concrete axioms, âs |= a.

3.2 Weakening Abstraction Refinement

The abstraction refinement weakens the abstracted axioms
in Âs. In the case of using a strengthening abstraction func-
tion that changes ground terms for variables. Those vari-
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Input: A set of axioms A and a conjecture C
Âs = αs(A)
repeat

if ATPC(Âs, C) returns SAT then the conjecture
is disproved
else

Âs
p = get_axioms_from_proof()

Ap = γs(Â
s
p)

if ATP (Ap, C) returns UNSAT then the
conjecture is proved
else Âs := refine_abstraction(Âs)

end
until the conjecture has been proved or disproved or
the time limit has been reached

Algorithm 1: Over-approximation

ables can be returned to the ground term that they substi-
tute in the concrete axiom. Another manner to refine the set
of abstract axioms is by adding concrete axioms to Âs and
remove their abstract entities.

4 Under-Approximation

The process starts by applying the weakening abstraction
function to the set of concrete axioms A, Âw = αw(A).
This set Âw of weaker axioms is used to prove the conjec-
ture, using an ATPS . If the conjecture is proved the proce-
dure stops and provides the proof. Otherwise, a model I of
Âw and the negated conjecture is obtained. This model is
used to refine the set of weaker axioms Âw. During this re-
finement (strengthening abstraction refinement), the proce-
dure tries to find a set of axioms Ă that turns the model into
a countermodel. If the set of axioms Ă is empty, Ă = ∅, the
procedure stops and disproves the conjecture. Otherwise,
the obtained set of axioms is added to the set of weaker
axioms, Âw := Âw ∪ Ă. Using this new set of abstract ax-
ioms Âw, another round for proving the conjecture starts.
The process finishes when the conjecture is proved or dis-
proved or the time limit for the quest of a proof is reached.
The procedure is shown in algorithm 2.

4.1 Weakening Abstraction Function

In the case of under-approximation, an adaptation of Inst-
Gen framework [5] can be used as abstraction function.
This abstraction function generates ground instances of the
concrete axioms. Another abstraction function can be to
remove concrete axioms from the theory.

4.2 Strengthening Abstraction Refinement

One way to refine the set of abstract axioms is by adding
to it concrete axioms Ă that turn the model I , which is ob-
tained form ATPS , into a countermodel, Ă = {ă | ă ∈
A, I 6|= ă}. Another way to refine the abstract set of ax-
ioms is by generating a set of ground instances of axioms

Input: A set of axioms A and a conjecture C
Âw = αw(A)
repeat

if ATPS(Âw, C) returns UNSAT then the
conjecture is proved
else /* refinement of Âw

*/
I |= Âw ∧ ¬C
find a set Ă such that I 6|= Ă
if Ă = ∅ then the conjecture is disproved
else Âw := Âw ∪ Ă

end
until the conjecture has been proved or disproved or
the time limit has been reached

Algorithm 2: Under-approximation

(Aσ) such that I 6|= Aσ, Ă := Aσ.

5 Combined-Approximation

As a future work, we are working in a way to combine the
two approximations mentioned before. This combination
has the purpose of converging to a proof more rapidly by
over and under approximating. One possible approach to
combine them is using the over-approximation as a black
box. This black box can be used as the ATPS in the under-
approximation process.
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Abstract: We consider the satisfiability problem in Metric Temporal Logic (MTL) with the ‘standard semantics’
in which a weakly monotonic function allows multiple states to be mapped to the same time time. We present
two translations from MTL to Linear Temporal Logic (LTL) for this semantics.

1 Introduction

Metric Temporal Logic (MTL) is an extension of linear time
temporal logic that allows us to impose constraints on the
interval in which a formula is true or becomes true. For
example, the formula 2[3,∞)p states that p holds in all states
that occur at least 3 moments from now, while ♦[2,5]¬p
expresses that ¬p will become true in a state that occurs
in the time interval [2, 5]. MTL has been used to formal-
ise vehicle routing problems, monitoring of algorithms and
cyber-physical systems, among others. In [3] we have con-
sidered MTL with point-wise discrete semantics where each
state is mapped to a time point on a time line isomorphic to
the natural numbers by a strictly monotonic function. For
this semantics we defined two different satisfiability pre-
serving translations from MTL to LTL. In the current paper
we modify these two translations for a semantic variant of
MTL in which states are mapped to time points by a weakly
monotonic function, that is, several states can be mapped
to the same time point. This non-strict semantics is the
‘standard semantics’ for MTL over discrete time [1]. The
modified translations are again polynomial in the size of
the MTL formula and the largest constant occurring in an
interval (but exponential in the size of the MTL formula due
to the binary encoding of the constants). As the satisfiability
problem for LTL is PSPACE [5], our translations again pre-
serve the EXPSPACE complexity of the MTL satisfiability
problem [1].

2 Metric Temporal Logic Translations

We briefly state the syntax and semantics of LTL and MTL.
Let P be a (countably infinite) set of propositional symbols.
Well formed formulae in LTL are formed according to the
rule: ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #ϕ | (ϕUψ) where p ∈ P .

LTL Semantics. A state sequence σ over (N, <) is an
infinite sequence of states σi ⊆ P , i ∈ N. We define |= by
(σ, i) |= p iff p ∈ σi
(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ
(σ, i) |= #ϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= (ϕUψ) iff there is k ≥ i such that

(σ, k) |= ψ and
for all j ∈ N, if i≤j<k then (σ, j) |= ϕ

We denote by #c a sequence of c next operators. Fur-
ther connectives can be defined as usual: p ∨ ¬p ≡ true,

true ≡ ¬(false), trueUϕ ≡ ♦ϕ and ♦ϕ ≡ ¬2¬ϕ. MTL
formulae are constructed in a way similar to LTL, but tem-
poral operators are now bounded by an interval I with nat-
ural numbers as end-points or ∞ on the right side. Well
formed formulae in MTL are formed according to the rule:
ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | #Iϕ | (ϕUIψ) where p ∈ P .

MTL Semantics. A non-strict timed state sequence ρ =
(σ, τ) over (N, <) is a pair consisting of an infinite sequence
σ of states σi ⊆ P , i ∈ N, and a function τ : N → N that
maps every i corresponding to the i-th state to a time point
τ(i) such that τ(i) ≤ τ(i+ 1). We define |= by
(ρ, i) |= #Iϕ iff τ(i+1)− τ(i) ∈ I and (ρ, i+1) |= ϕ
(ρ, i) |= (ϕUIψ) iff there is k ≥ i such that

τ(k)− τ(i) ∈ I and (ρ, k) |= ψ and
for all j ∈ N, if i≤j<k then (ρ, j) |= ϕ

We omit propositional cases, which are as in LTL. Further
connectives can be defined as usual: trueUIϕ ≡ ♦Iϕ and
♦Iϕ ≡ ¬2I¬ϕ. To transform an MTL formula into Nega-
tion Normal Form, one uses the constrained dual until ŨI
operator [4], defined as (ϕŨIψ) ≡ ¬(¬ϕUI¬ψ). An MTL
formula ϕ is in Negation Normal Form (NNF) iff the nega-
tion operator (¬) occurs only in front of propositional vari-
ables. An MTL formula ϕ is in Flat Normal Form (FNF) iff
it is of the form p0 ∧

∧
i 2[0,∞)(pi → ψi) where p0, pi are

propositional variables or true and ψi is either a formula
of propositional logic or it is of the form #Iψ1, ψ1UIψ2 or
ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.
The transformations into NNF and FNF are satisfiability
preserving and can be performed in polynomial time. From

MTL LTL Gap Translation
(#[0,∞)α)] (#[0,0]α)] ∨ (#[1,∞)α)]

(#[0,c2]α)] (#[0,0]α)] ∨ (#[1,c2]α)]

(#[0,0]α)] #(α ∧ same)
(#[c1,∞)α)] (

∧
1≤k<c1 #kgap) ∧#c1(gapU(α ∧ ¬gap))

(#[c1,c2]α)]
∨
c1≤l≤c2(#l(¬gap ∧ α) ∧∧

1≤k<l #
kgap)

(αU[c1,∞)β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,∞)β)]))

(αU[0,∞)β)] (gap ∨ α)U(¬gap ∧ β)

(αU[c1,c2]β)] α ∧#((α ∧ same)U(¬same ∧ (αU[c1−1,c2−1]β)]))

(αU[0,0]β)] (β ∧ ¬gap) ∨ (α ∧#((α ∧ same)U(β ∧ same)))
(αU[0,c2]β)] (αU[0,0]β)] ∨ (αU[1,c2]β)]

Table 1: Gap Translation from MTL to LTL, where α, β are
propositional logic formulae, c1, c2 > 0.
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MTL LTL Time Difference Translation
(#[k1,∞)α)

] #((
∨

k1≤i≤C δ
−
i ) ∧ α)

(#[k1,k2]α)
] #((

∨
k1≤i≤k2

δ−i ) ∧ α)

(αU[c1,∞)β)
] α ∧ #

∨
1≤i≤c1

((α ∧ δ−0 )U i(¬δ−0 ∧ α), (¬δ−0 ∧ (
∨

c1≤j≤c1+C sij) ∧ αUβ))
(αU[0,∞)β)

] αUβ
(αU[c1,c2]β)

] α ∧ #
∨

1≤i≤c2
((α∧δ−0 )U i(¬δ−0 ∧α), (¬δ−0 ∧(∨c1≤j≤c2

sij) ∧ (αU[0,0]β)
]))

(αU[0,c2]β)
] (αU[0,0]β)

] ∨ (αU[1,c2]β)
]

(αU[0,0]β)
] β ∨ (α ∧ #((α ∧ δ−0 )U(β ∧ δ−0 )))

Table 2: LTL Time Difference Translation from MTL to LTL where α, β are propositional logic formulae, k1, k2 ≥ 0,
c1, c2 > 0, and φUnγ, χ, n > 1, is a shorthand for φU(γ ∧#(φUn−1γ, χ)) and φU1γ, χ = φUχ.

now on assume that our MTL formulae are in NNF and FNF.
Gap Translation We translate MTL formulae for discrete
time models into LTL using two new propositional symbols
gap and same. ¬gap is true in those states σ′j of σ′ such
that there is i ∈ N with τ(i) = j and gap is true in all
other states of σ′. same is true exactly in those states σ′j
of σ′ such that there is i ∈ N with τ(i) = j and, for i > 0,
τ(i) = τ(i− 1).

The main distinction between the translation in Table 1
and the one in [3] is that here we use nested LTL until
operators to make ‘progress’ in our encoding of the time line
whenever we encounter a state with ¬same.

Theorem 1. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an

MTL formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi →

(¬gap∧ψ]i )) be the result of replacing each ψi in ϕ by ψ]i as
in Table 1. Then, ϕ is satisfiable if, and only if, ϕ] ∧¬gap∧
¬same ∧ 2(♦¬gap) ∧ 2(¬same ∨ ¬gap) ∧ 2(gap →
#¬same) is satisfiable.

Time Difference Translation As in [2, 3], it is sufficient to
consider timed state sequences where the time difference
from a state to its previous state is bounded by C, where
C − 1 is the greatest number occurring in an interval in an
MTL formula ϕ or 1, if none occur. Then, we can encode
time differences with a set Πδ = {δ−i | 0 ≤ i ≤ C} of
propositional variables where each δ−i represents a time
difference of i w.r.t. the previous state. We also encode
variables of the form snm with the meaning that ‘the sum of
the time differences to the current state from the last n states
with a non-zero time difference to the previous one is m’.
For our translation, we only need to define these variables
up to sums bounded by 2 · C.

To simplify the presentation, we use two additional n-ary
boolean operators ⊕=1 and ⊕≤1. If S = {ϕ1, . . . , ϕn} is
a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn), also
written ⊕=1S, is a LTL formula. Let σ′ be a state sequence
and i ∈ N. Then (σ′, i) |= ⊕=1S iff (σ′, i) |= ϕj ∈ S for
exactly one ϕj ∈ S, 1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S
iff (σ′, i) |= ϕj ∈ S for at most one ϕj ∈ S, 1 ≤ j ≤ n.

Let S′C be the conjunction of the following:
1. #2⊕=1 Πδ , for Πδ = {δ−k | 0 ≤ k ≤ C};
2. 2(δ−k ↔ s1k), for 1 ≤ k ≤ C;

3. 2⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {sij | i ≤ j ≤
2 · C};

4. 2((#s1k ∧ sjl ) → #sj+1
min(l+k,2·C)), for 1 < j + 1 ≤

l + k ≤ 2 · C.
5. 2((#δ−0 ∧ sjl )→ #sjl ), for 1 ≤ j ≤ l ≤ 2 · C.

Note that the main difference to SC in [3] is in Point 5 where
we now propagate the variables of the form snm to the next
state if the time difference is zero. In the translation itself,
shown in Table 2, the main distinction occurs in the transla-
tion of the ‘until’ formulae where we have to nest LTL until
operators so that we can count n states with time difference
greater than zero and then check whether a variable of the
form snm holds.

Theorem 2. Let ϕ = p0 ∧
∧
i 2[0,∞)(pi → ψi) be an MTL

formula in NNF and FNF. Let ϕ] = p0 ∧
∧
i 2(pi → ψ]i )

be the result of replacing each ψi in ϕ by ψ]i as in Table 2.
Then, ϕ is satisfiable if, and only if, ϕ] ∧ S′C is satisfiable.

3 Conclusion

We presented two translations from MTL with non-strict se-
mantics to LTL. For their implementation and evaluation see
http://cgi.csc.liv.ac.uk/˜ullrich/MTL/.
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Abstract: Mobile users are making more demands of networks. They want to run applications such as
network steaming of audio and video as well as immersive gaming that demand high Qualities-of-Service. One
way to address this problem is by using mobile services that move around as users move around. This ensures
that low latencies are maintained between the client and the server resulting in a better Quality-of-Experience.
In addition, the advent of virtual machine technology for example, VMware, and container technology, such
as Docker, have made the migration of services between different Cloud Systems possible. Furthermore,
a Service Oriented Architecture that supports service migration in Cloud environments has been proposed.
Though there are many things in place to support mobile services, a key component that is missing is the
development of security protocols that allow the safe transfer of servers to different Cloud environments. In
particular, it is important that servers do not end up being hosted on unsafe Cloud infrastructure and also
Clouds do not end up hosting malicious servers. This paper proposes a new security protocol to address this
issue. The protocol is specified and tested using AVISPA. The initial results indicate that the protocol is safe
and therefore can be used in practical systems.

1 Introduction

Cloud computing is, therefore, facilitating the migration of
data and services. These services are called mobile ser-
vices and will be used to support mobile users as they move
around.

One aspect of the research on mobile services that has
been inadequate is support for security [1]. In particular, it
is important that servers do not end up being hosted on un-
safe Cloud infrastructure which can hamper service deliv-
ery to mobile clients and also Clouds do not end up hosting
malicious servers which can damage Cloud infrastructure.
This paper attempts to address these issue by providing a
new security protocol for secure service migration [2].

2 Specify the Security Protocol for Mobile Services

In this section, we look at protocols for secure service mi-
gration [3].

A Registry or Certificate Authority (CA) is a trusted
party that issues signed electronic documents to verify
whether the party is a valid entity on the Internet. Elec-
tronic documents used as digital certificates are important
in public key encryption(PKE), usually, these certificates
include the owner’s name, public key, the expiration date of
the digital certificate, location of the owner and other data
of the owner.In addition, the registry can talk securely to
both services and Clouds using public key encryption. [3].

• \The Server{}: The server is identified by a
unique Service Id. Server ID, Type of service (TOS),
Public Key (PKS).

• \Cloud Facilties{}: Cloud A (CA) =
Cloud ID A, TOS = Cloud, PKA, Resources.

Cloud B (CB) = Cloud ID B, TOS = Cloud, PKB,
Resources.

• \The Registry{}: The Registry is the last key
component and is used to verify the identities of all
servers on the network.

• \Nonces denoted by N{}: Nonces are ran-
domly generated numbers which are unforgeable and
are used as session tokens, ensuring that requests can-
not be repaid by unauthorised personnel.

• \Timestamps{}: Timestamps are used explicitly
with migration requests and responses..

The full explanation of this second migration is given be-
low:

• Step 1 The service on Cloud A receives advertise-
ments from Cloud B advertising Cloud’s B resources.

• Step 2 The Server checks the validity of Cloud B.

• Step 3 Registry authenticates Cloud B

• Step 4 The server on Cloud A sends a request to mi-
grate to Cloud B

• Step 5 Cloud B sends a request to make sure that the
server, S, is a valid service:

• Step 6 The Registry validates Cloud B

• Step 7 Cloud B signals to The Service on Cloud A that
it is OK to migrate the service to Cloud B:

• Step 8 The Service signals to Cloud B to migrate the
service:
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Algorithm 1 Security Protocol for Migration between
Cloud A to Cloud B

1: CB → SA: Advertisement (CloudID B, TOS, Re-
sources, PKB)

2: SA → R: Verify Identity (CloudID B, TOS, PKB,
Resource, Server ID, PKS) PKR

3: R → SA: Message: YES (CloudID B, TOS, PKB,
Valid Resources) PKS

4: SA→ CB: Migration Request + (Server ID, TOS, TA,
Req.Resource, PKS, NA) PKB

5: CB→ R: Verify Identity (Server ID, PKS, TOS, Cloud
ID B, PKB) PKR

6: R → CB: Message: Yes (Server ID, TOS, Valid Ser-
vice) PKB

7: CB→ SA: Migration Response + (Cloud ID B, TOS=
Cloud), TB, Resources Granted, NA, NB) PKS

8: SA → CB: Transfer (Migration) + (Server ID,
CloudID B, Services, NB) PKB

9: CB → SA: Transfer Ack (Server ID, CloudID B,
NA, Tcomp) PKS

10: SB → R: Transfer-Complete + (Server ID,
CloudID B, TOS, TA, TB, Tcomp) PKR

• Step 9 Cloud B signals to the server on Cloud A that
the migration is complete: Hence, New Location:
(SA→SB) The service is now started on Cloud B.

• Step 10 The service on Cloud B signals to the Registry
that the migration has been completed:

Figure 1 shows the steps for Cloud to Cloud migration of
services.

REGISTRY

CLOUD A CLOUD B

7

2

3

4

5

6

1

8
9

10

SA 

SB 

Figure 1: Migration from Cloud A to Cloud B

2.1 Using AVISPA

In this section, AVISPA is used to analyse the protocol spec-
ified in the previous section. AVISPA provides automated
validation of Internet security protocols and applications.In
simple, we modelled in HLPSL and analysed with Avispa
tool.It supports for multiple back-end tools for the Analysis
of Security Protocols (TA4SP) and it verifies the security
properties for a bounded number of sessions.The first back

end tool is called OFMC, and the second back end tool is
called ATSE, also indicates that the protocol is SAFE. Now,
both of the protocol results SAFE, so that the probability of
the expected result is accomplished.

Figure 2: OFMC: Cloud A to Cloud B

Figure 3: ATSE: Cloud A to Cloud B

3 Conclusion

The protocol is safe under normal operation; the present
protocol critically prevents impersonation attacks either by
rogue cloud infrastructure hoping to sneer valid services or
by malicious servers wanting inflict damage on Cloud in-
frastructure. We are exploring how this protocol and be en-
hanced to prevent intruder and man-in-the-middle attacks.
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Abstract: Ontologies are notoriously hard to define, express and reason about. Many tools have been devel-
oped to ease the ontology debugging and reasoning, however they often lack accessibility and formalisation.
A visual representation language, concept diagrams, was developed for expressing ontologies, which has been
empirically proven to be cognitively more accessible to ontology users. Here, we answer the question of “How
can concept diagrams be used to reason about inconsistencies and incoherence of ontologies?”’.

1 Introduction

Ontologies are sets of statements that represent proper-
ties of individuals, classes and properties, typically ex-
pressed using symbolic notations such as description log-
ics (DL) [2] and OWL [1]. Although ontologies are widely
used for knowledge representation in domains involving di-
verse stakeholders, the languages they are expressed in are
often inaccessible to those unfamiliar with mathematical
notations. This shortcoming has given rise to several vi-
sualisation facilities and notation that aid ontology compre-
hension. However, these notations are either informal or
do not fully exploit the potential of formal diagrammatic
notations. The design of concept diagrams [5] for express-
ing ontologies is based on cognitive theories of what makes
a diagrammatic notation accessible [3]. Concept diagrams
are extensions of Euler diagrams and, in addition to closed
curves for set representation, they use dots (spiders) and ar-
rows for individuals and properties, respectively.

Similar to traditional logical systems, concept diagrams
are equipped with inference rules which are used for speci-
fying, reasoning and evaluating ontologies. Evaluating on-
tologies involves debugging them of inconsistencies and in-
coherence before they can be published. These, so-called
antipatterns, capture the unintended model-instances of an
ontology. An inconsistent ontology is one that cannot have
any model and, so, entails anything [4], whereas an incoher-
ent ontology is one that entails an unsatisfiable (i.e., empty)
class or property.

Empirical evidence proves that for incoherence check-
ing, novice users perform significantly better with concept
diagrams than with OWL [1] or DL [2]. Based on these
results, we formalise the use of concept diagrams for rea-
soning about inconsistencies and incoherence in ontologies
by defining inference rules for them.

2 Concept Diagrams

In this section, we informally define what concept diagrams
are through an example. Please see [6] for formal syntax
and semantics of concept diagrams. The concept diagram in
Fig. 1 has the following syntax and semantic interpretation:

• One dot – called a spider – which represents a named
individual, s;
• Two boundary rectangles (represented by �) each of

which represents the universal set.
• Seven curves, representing seven sets, five of which

have labels A to E. The two curves without labels
represent anonymous sets. The spatial relationships
between curves and spiders convey semantics. For ex-
amples, the syntax within the LHS rectangle says that
the individual s is in the set B; B is a subset of A; the
sets A and C are disjoint.
• Shading (e.g., inside curve B) which is used to place

upper bounds on set cardinality: in a shaded region,
all elements are represented by spiders. Thus, the only
element in B is s.
• Two arrows, one of which is solid and the other one

is dashed and annotated with ≥ 1. Arrows are used
to convey semantics about binary relations, using their
sources and targets. The solid arrow asserts that things
inA are only related to things in C under op1. The un-
labelled curve, say c1, targeted by op1 represents the
set of things to which elements of A are related under
op1. The dashed arrow is sourced on c1 and again tar-
gets an unlabelled curve. This unlabelled curve, say
c2, represents a subset of D to which elements of c1
are related under op2. The inclusion of c2 inside the
curve labelled D expresses that c2 is subset of D. The
dashed arrow’s annotation, ≥ 1, places a constraint on
the set c1: all elements of c1 must be related to at least
one element of c2 under op2.

3 Concept Diagrams for Debugging Ontologies

Debugging ontologies of incoherence and inconsistencies
requires detecting these characteristics first. We first define
what it means for an ontology to be incoherent and then
give example of inference rules that allow detecting inco-
herence. We have similar inference rules devised for incon-
sistency that are not presented here due to space limitation.

To prove that ontology o is incoherent, we have to show
that a class or an object property is unsatisfiable. When
using a set of concept diagrams, D, to define o, the task
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Figure 1: A concept diagram.

(a) A is empty. (b) op is empty.

Figure 2: Incoherence in concept diagrams.

is thus to prove a lemma of the form: (i) a curve labelled
A necessarily represents an empty class, or (ii) an arrow
labelled op necessarily represents an empty object property.

A lemma of type (i) is proved if, carrying out the proof
visually, we derive a diagram in Fig. 2a: an entirely shaded
region with no spiders represents the empty set in any
model. Type (ii) lemmas are proved if the proof derives
a diagram in Fig. 2b, in which the target of the arrow is
entirely shaded with no spiders: this target represents the
empty set, implying the image of op is empty, thus op is an
empty relation.

The space does not allow showcasing proofs of lemmas
that establish incoherence and inconsistency using concept
diagrams. However, our approach to designing inference
rules is driven by the requirements of the proof, rather than
in isolation from the proof. We believe that proof driven
inference rules give rise to more natural proofs. In con-
trast, the established common approach to designing infer-
ence rules in logic is primarily driven by the requirements
of the theoretical properties (e.g., soundness and complete-
ness) of the rules. Fig. 3 shows two examples on inference
rules. The top inference rule in Fig. 3 spots an incoherence
by showing that A is unsatisfiable. We have that the univer-
sal image of op is restricted to B, while there is set A such
that the partial image of A under op includes C. However,
C and B are disjoint. Since the universal image of op is re-
stricted to B, the image of A under p cannot be outside B,
which is clearly not the case here. So A is empty. The bot-
tom inference rule shows that object property op is empty,
because the first premise displays the image of op as a sub-
set of intersection of B and C, while the second premise
defines B and C as disjoint.

4 Results and Future Work

The set of inference rules we have designed so far are
proven sound and are mainly derived from proofs that aim
at establishing that a set of ontology axioms are inconsistent
or incoherent. Compleness is a desiarble property that we
leave for future work (non-trivial). We conjecture that con-
cept diagrams, as defined here, correspond to a fragment
of second-order logic with one and two place predicates.
One-place and two-place predicates arise due to the use
of labelled curves and arrows respectively. Second-order
(existential) quantification occurs through the use of unla-

Figure 3: Incoherence examples.

belled curves. Although concept diagrams do not contain
quantifiers in their syntax, an equivalent fragment of SOL
would need to do so. For instance, two non-overlapping
labelled curves, A and B say, give rise to (first-order) uni-
versal quantification and express ∀x ¬(A(x)∧B(x)). Due
to the restricted way in which second-order quantification
arises, finding a complete set of inference rules should be
possible.

Moreover, in the future we will use concept diagrams
and inference rules we have devised for them in building
the first mechanised reasoning system for concept diagrams
and reasoning about antipatterns in ontology engineering.
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