
Pre-Proceedings of the 2007 International

Workshop on Abduction and Induction

in Artificial Intelligence (AIAI’07)

Abduction and induction are forms of logical reasoning that are used in many
applications of Artificial Intelligence (AI). Individually, abduction reasons from
effects to possible causes, while induction learns general rules for particular ob-
servations. In combination, abduction and induction can be integrated within
an iterative cycle of knowledge development. But, recent attempts to such hy-
brid methods in tasks that require spatio-temporal learning and reasoning, have
begun to reveal a need for more expressive formalisms and inference mechanisms
than offered by existing systems.

This workshop will focus on expressive methodologies and applications of
logic-based abduction and induction. To provide a concrete application domain,
the AIAI’07 workshop will be co-located with the 1st Franco-Japanese Sympo-
sium on Knowledge Discovery in Systems Biology. The aims of the workshop are
to investigate need for expressive logical formalisms in bioinformatics and other
areas of AI, to idendity the state-of-the-art inference techniques for handling
such formalisms, and to encourage interaction between biologists and logicians
by discussing potential application areas and suggesting possible solutions.

The workshop will be held on the 15th of September 2007 at the Aquabella
Hotel in the French town of Aix-en-Provence. The event is generously spon-
sored by the Laboratory for the Analysis and Architecture of Systems at the
French National Centre for Scientific Research (LAAS-CNRS) and the Japanese
National Institute of Informatics (NII) as part of a strategic Franco-Japanese
collaboration on Knowledge-based Discovery in Systems Biology.

Andrei Doncescu
Peter A. Flach
Katsumi Inoue
Antonis C. Kakas
Oliver Ray

(Workshop Organisers)

September 2007

i

Programme Committee

Chitta Baral, Arizona State University, USA
Andrei Doncescu, National Center for Scientific Research, France
Peter Flach, University of Bristol, UK
Katsumi Inoue, National Institute of Informatics, Japan
Antonis Kakas, University of Cyprus, Cyprus
Ross King, University of Wales, UK
Ramon Otero, University of Corunna, Spain
Oliver Ray, University of Bristol, UK
Chiaki Sakama, Wakayama University, Japan

Workshop Participants

Dalal Alrajeh (Imperial College London, UK)
Chitta Baral (Arizona State University, USA)
Gauvain Bourgne (Univ, Paris IX, France)
Henning Christiansen (Roskilde University, Denmark)
Jacques Demongeot (TIMC-IMAG Laboratory, France)
Andrei Doncescu (LAAS-CNRS, France)
Louis Farinas del Cerro (IRIT, France)
Gerald Goma (INSA-INRA-CNRS, France)
Katsumi Inoue (National Institute of Informatics, Japan)
Koji Iwanuma (University of Yamanashi, Japan)
Carole Jouve (INSA-INRA-CNRS, France)
Antonis Kakas (University of Cyprus, Cyprus)
Yoshitaka Kameya (Tokyo Institute or Technology, Japan)
Nicolas Maudet (Univ. Paris IX, France)
Emmanuel Montseny (LAAS-CNRS, France)
Gerard Montseny (LAAS-CNRS, France)
Hidetomo Nabeshima (University of Yamanashi, Japan)
Ramon Otero (University of Corunna, Spain)
Oliver Ray (University of Bristol, UK)
Gilles Richard (IRIT, France)
Gilles Roux (LAAS-CNRS, France)
Alessandra Russo (Imperial College London, UK)
Chiaki Sakama (Wakayama University, Japan)
Taisuke Sato (Tokyo Institute of Technology, Japan)
Pierre Siegel (Univ. Provence, France)
Louise Trave-Massuyes (LAAS-CNRS, France)
Jean Louis Urribelarea (INSA-INRA-CNRS, France)
Yoshitaka Yamamoto (The Graduate University for Advanced Studies, Japan)

ii

Programme

09.15 OPEN

09.30 Invited Talk: To be announced
Chitta Baral

10.15 Logic-statistic modeling and analysis of biological sequence data:
A Research Agenda
Henning Christiansen

10.45 COFFEE

11.15 Invited Talk: To be announced
Ramon Otero

12.00 Nonmonotonic Abductive Inductive Learning
Oliver Ray

12.30 LUNCH

14.15 Towards Refinement of Abductive or Inductive Hypothesis
through Propagation
Gauvain Bourgne, Amal El Fallah Seghrouchni and Nicolas
Maudet

14.45 Reconsideration of Circumscriptive Induction with Pointwise Cir-
cumscription
Koji Iwanuma, Katsumi Inoue and Hidetomo Nabeshima

15.15 Using Abduction and Induction for Operational Requirements
Elaboration
Dalal Alrajeh, Oliver Ray, Alessandra Russo and Sebastian Uchi-
tel

15.45 COFFEE

16.15 Equivalence Issues in Abduction and Induction
Chiaki Sakama and Katsumi Inoue

16.45 PANEL DISCUSSION

18.00 CLOSE

19.30 DINNER

iii

Table of Contents

Using Abduction and Induction for Operational Requirements Elaboration
D. Alrajeh, O. Ray, A. Russo, and S. Uchitel . 1

Towards Refinement of Abductive or Inductive Hypothesis through Propagation
G. Bourgne, A. El Fallah Seghrouchni, and N. Maudet .20

Logic-statistic modeling and analysis of biological sequence data: A Research
Agenda
H. Christiansen . 42

Reconsideration of Circumscriptive Induction with Pointwise Circumscription
K. Iwanuma, K. Inoue, and H. Nabeshima . 50

Nonmonotonic Abductive Inductive Learning
O. Ray . 65

Equivalence Issues in Abduction and Induction
C. Sakama and K. Inoue . 82

iv

Using Abduction and Induction for Operational

Requirements Elaboration

Dalal Alrajeh1, Oliver Ray1,2, Alessandra Russo1, and Sebastian Uchitel1,3

1 Imperial College London
{da04,or,ar3,su2}@doc.ic.ac.uk

2 University of Bristol
oray@cs.bris.ac.uk

3 University of Buenos Aires/CONICET
s.uchitel@dc.uba.ar

Abstract. Requirements Engineering involves the elicitation of high-
level stakeholder goals and their refinement into operational system re-
quirements. A key difficulty is that stakeholders typically convey their
goals indirectly through intuitive narrative-style scenarios of desirable
and undesirable system behaviour, whereas goal refinement methods
usually require goals to be expressed declaratively using, for instance,
a temporal logic. In actual software engineering practice, the extraction
of formal requirements from scenario-based descriptions is a tedious and
error-prone process that would benefit from automated tool support.
This paper presents an Inductive Logic Programming (ILP) method for
inferring operational requirements from a set of example scenarios and an
initial but incomplete requirements specification. The approach is based
on translating the specification and the scenarios into an event-based
logic programming formalism and using a non-monotonic reasoning sys-
tem, called eXtended Hybrid Abductive Inductive Learning (XHAIL), to
automatically infer a set of event pre-conditions and trigger-conditions
that cover all desirable scenarios and reject all undesirable ones. This
learning task is a novel application of logic programming to requirements
engineering that also demonstrates the utility of non-monotonic learning
and the use of integrity constraints during generalisation for capturing
the inter-relationship between pre-conditions and trigger-conditions.

1 Introduction

Requirements Engineering (RE) is an integral part of the software engineering
life-cycle. It is concerned with the elicitation, elaboration, specification, analysis
and documentation of goals concerning an envisaged system. These concerns all
play important roles in the development of a complete and correct system spec-
ification. A core aspect of RE is the operationalisation of high-level goals. This
process involves extracting from partial system descriptions (e.g. scenarios, goals,
use cases, etc.,) operational requirements that satisfy high-level system goals as
specified by the stakeholders. Few approaches have been developed to support
the elicitation and elaboration of such requirements. These approaches focus

1

on the process of refining high-level goals into operational requirements [11, 12]
declaratively expressed in a temporal logic [15]. The use of a temporal formalism
enables the deployment of automated analysis and refinement tools, but is not
directly accessible to most stakeholders with a less technical background. In fact,
stakeholders prefer to convey their goals through more intuitive narrative-style
scenarios of desirable and undesirable system behaviour [31] rather than tempo-
ral assertions. Because scenarios are inherently partial descriptions about specific
system behaviours, they leave requirements implicitly defined. It is therefore nec-
essary to synthesise declarative specifications of operational requirements that
admit the desired behaviours while rejecting the undesired ones. Currently, the
elicitation of declarative requirements from scenario-based descriptions is a te-
dious and error-prone process that relies on the manual efforts of an experienced
engineer and would benefit from automated tool support.

This paper addresses this problem by providing a formal Inductive Logic
Programming (ILP) [21] approach for extracting operational requirements from
example scenarios and partial specifications. The approach here presented is an
extension of the one introduced in [1], which used a non-monotonic ILP system to
learn a particular type of operational requirements called event pre-conditions
[12] from example scenarios and partial system description. In this paper, we
show how this technique can, at the same time, be used to learn another class
of operational requirements called event trigger-conditions [12]. Intuitively, pre-
conditions state that a certain event should not happen under some conditions,
while trigger-conditions are conditions under which an event must happen.

As in [1], the scenarios from which operational requirements are to be ex-
tracted represent examples of desirable and undesirable system behaviour over
time; while a partial system specification captures an initial but incomplete back-
ground knowledge of the envisioned system and its environment. The task is to
complete the specification by learning a set of missing event pre-conditions and
trigger-conditions that covers all of the desirable scenarios, but none of the un-
desirable ones. The partial specification and scenarios are both expressed in Lin-
ear Temporal Logic (LTL) [15]. The former is expected to include information
about the initial state of the system, domain properties and any pre-existing
operational requirements, whereas the latter are sequences of events that can
(or cannot) happen. Both, the partial specification and example scenarios, are
transformed into an ILP representation based on the Event Calculus (EC) [7,
16] framework by means of a sound translation process. Because this represen-
tation makes essential use of negation in formalising the effects and non-effects
of actions, the resulting learning problem is inherently non-monotonic.

We show that, under the stable model [5] semantics for logic programs with
negation, the stable models of the transformed program correspond to the tempo-
ral models of the original specification. We then use the non-monotonic learning
system XHAIL [25, 26] to generalise the scenarios with respect to the initial re-
quirements specification. The abuctive component of XHAIL generates a ground
unit explanation of the example scenaria, This preliminary explanation is then
generalised by XHAIL’s inductive component to produce the final hypothesis.

2

In this way, XHAIL integrates assumption-based and generalisaton-based infer-
ence within a coherent non-monotonic learning framework. The language bias
of XHAIL is defined so as to allow the inference of pre- and trigger-conditions.
The process of generalising operational requirements from scenarios makes use
of integrity constraints for restricting the hypothesis space to include only those
solutions that capture the inter-relationship between pre-conditions and trigger-
conditions. We show that once the EC clauses learnt by XHAIL are translated
back to LTL formulae, they provide a correct extension of the given partial sys-
tem specifications with respect to the given example scenarios.

The paper is organized as follows. Section 2 presents the relevant background
material on Inductive Logic Programming (ILP), XHAIL, Linear Temporal Logic
(LTL), and the Event Calculus (EC). Section 3 describes the main features of our
approach and presents some results on the soundness of the translation process
of LTL requirements specifications into EC logic programs and on the corre-
spondence between LTL and EC extensions of the initial specification. Section
4 provides an illustrative case study involving a Mine Pump controller, where
event pre-conditions and trigger-conditions are simultaneously learned using the
XHAIL system. A summary and some remarks about related and future work
conclude the paper.

2 Background

This section introduces the necessary background material. After a summary
of notation and terminology, two specific logic-based formalisms are described,
namely Linear Temporal Logic (LTL), for expressing requirements specifications,
and the Event Calculus (EC) for reasoning logically about action and change.

2.1 Notation and terminology

A term is either a constant, a variable or a function F (t1, ..., tn) where F is a
function symbol and ti is a term. A literal is an atomic formula ℘(t1, ..., tn) or
its negation, not ℘(t1, ..., tn) where ℘ is a predicate symbol, ti is a term and
not is the negation as failure operator. A clause is an expression of the form
φ← ψ1 ∧ ... ∧ ψn where φ is an atom (called the head atom) and ψi is a literal
(called a body literal). A clause is ground if it contains no variables. A clause
is definite if all of its body literals are positive. The empty clause is denoted �

and represents the truth value false. A goal clause is a clause (← ψ1...ψn) with
an empty head. A logic program is set of clauses. A definite logic program is a
program in which all clauses are definite. A normal logic program is one in which
the clauses are of the form A← B1, . . . , Bn, not C1, . . . , not Cm where A is the
head atom, Bi are positive body literals, and not Cj are negative body literals.

In general, a model I of a normal logic program, Π, is a set of ground atoms
such that, for each ground instance G of a clause in Π, I satisfies the head of
G whenever it satisfies the body. A model I is minimal if it does not strictly
include any other model. Definite programs always have a unique minimal model.
Normal programs may have instead one, none, or several minimal models. It is

3

usual to identify a certain subset of these models, called stable models, as the
possible meanings of the program. Given a normal logic program Π, the reduct
of Π with respect to I, denoted ΠI , is the program obtained from the ground
instances of Π by (a) removing all clauses with a negative literal not a in its
body where a ∈ I and (b) removing all negative literals from the bodies of
the remaining clauses. Clearly ΠI is a definite logic program and as such has a
unique minimal (Herbrand) model. If the model of ΠI coincides with I then I

is said to be a stable model of Π as formalised in Definition 1.

Definition 1. A model I of Π is a stable model if I is a minimal (Herbrand)
model of ΠI where ΠI is the definite program ΠI = {A← B1, . . . , Bn | A←
B1, . . . , Bn, not C1, . . . , not Cn is the ground instance of a clause in Π and
I does not satisfy any of the Ci}.

2.2 Inductive Logic Programming and XHAIL

ILP is concerned with the computation of hypotheses H that generalise a set of
(positive and negative) examples E with respect to a prior background theory B.
In this paper we consider the case when B and H are normal logic programs, E is
a set of ground literals (with positive and negative literals representing positive
and negative examples, respectively), and H satisfies the condition B ∪H |= E

under the stable model semantics. In other words, the examples E must be
satisfied in a stable model of B ∪H.4 As formalised in Definition 2 below, it is
usual to further restrict the clauses in H to a set of clauses S called a hypothesis
space.

Definition 2. Given a normal logic program B, a set of ground literals E, and a
set clauses S, the task of ILP is to find a normal logic program H ⊆ S, consistent
with B such that B∪H |= E. In this case, H is called an inductive generalisation
of E wrt. B and S.

There are comparatively few ILP systems which can solve the learning task
studied in this paper. In our experiments, we used the XHAIL framework [26],
which is based on a three-phase Hybrid Abductive Inductive Learning (HAIL)
approach [25]. XHAIL operates by constructing and generalising a preliminary
ground hypothesis K, called a Kernel Set of B and E, which can be regarded
as a non-monotonic multi-clause generalisation of the Bottom Set concept used
in several well-known monotonic ILP systems [19, 20]. Like these monotonic ILP
systems, XHAIL heavily exploits language and search bias when constructing
and generalising a Kernel Set in order to bound the ILP hypothesis space.

The XHAIL language and search bias mechanisms are based upon the tried-
and-tested notions of compression and mode declarations as used, for example, in
Progol [19]. The compression heuristic favours hypotheses containing the fewest
number of literals and is motivated by the scientific principle of Occam’s razor

4 Note that this condition assumes the consistency of B and H since at least one stable
model of B ∪H must exist in order for E to be satisfied.

4

(which, roughly speaking, means choose the simplest hypothesis that fits the
data). Mode declarations provide a convenient mechanism for specifying which
predicates may appear in the heads and bodies of hypothesis clauses and for
controlling the placement and linking of constants and variables within those
clauses [19].

As defined in [19], a mode declaration is either a head declaration modeh(r, l)
or a body declaration modeb(r, s) where r is an integer (the recall) and s is a
ground literal (the scheme) possibly containing so-called placemarker terms of
the form +t, −t and #t, which must be replaced by input variables, output
variables, and constants of type t, respectively. The symbol ∗ is often used to
denote an arbitrary recall.

As explained in [26], XHAIL computes hypotheses using a nonmonotonic
abductive interpreter to implement the three stages of the HAIL approach.5 In
the first phase, the head declarations are used to abduce the head atoms of the
Kernel Set.6 In the second phase, the body atoms of the Kernel Set are com-
puted as the successful instances of queries obtained from the body declaration
schemas. In the third phase, the hypothesis is computed by searching for a com-
pressive theory that subsumes the Kernel Set, is consistent with the background
knowledge, covers the examples and falls within the hypothesis space.7

2.3 Linear Temporal Logic

Several logic-based formalisms have been proposed for modeling event-based
systems [6, 9, 27]. Among these Linear Temporal Logic (LTL) [15] is widely used
and is supported by analysis techniques and tools such as model checking [14].
The language of LTL includes a finite non-empty set of Boolean propositions P ,
Boolean connectives ¬,∧ and → and temporal operators © (next), � (always),
and U (strong until). A well-formed LTL formula is constructed such that:

– ff and tt, representing truth and falsity respectively, are formulae.
– an atomic proposition p is a formula.
– if φ and ψ are formulae then so are: ¬φ, φ ∧ ψ, φ→ ψ, ©φ, �φ, and φUψ.

Other formulae are introduced as abbreviations: φ∨ψ abbreviates ¬(¬φ∧¬ψ) and
φ⇔ ψ abbreviates (φ→ ψ)∧ (ψ → φ). The formula ♦φ abbreviates ¬�¬φ, and
φWψ abbreviates (�φ)∨ (φUψ). We use (¬)p to refer to either the proposition p
or the negation ¬p of that proposition. Also, we use ©i to denote i consecutive
applications of the © operator. We further assume P to be partitioned into
two sets Pe and Pf denoting event and fluent propositions respectively. The
semantics of an LTL formula can be defined with respect to a structures called
a Labeled Transition System (LTS) [30].

5 There is a close correspondence between abduction and NAF [4].
6 As an incremental approach is incompatible with the nonmonotonicity of normal

programs, all examples (positive and negative) are processed by XHAIL in one go.
7 While several pruning techniques can be used to prune the search space in the Horn

case, these are unsound when applied to normal logic programs.

5

Definition 3 (Labeled Transition System). A labeled transition system T

is a tuple (S,L, s0,→) where S is a finite nonempty set of states, L is a finite
nonempty set of labels, called the alphabet, s0 is a subset of S, called the set of
initial states, and →⊆ S × L× S is a nonempty set of transition relations.

An input σ∗ for an LTS T is a finite sequence of the form l1, l2, ...lm where
li ∈ L. A path σ in T is a (possibly infinite) sequence s0, s1, ..., of states such
that for each i ≥ 0 there is a transition relation (si, li+1, si+1) ∈→, with label
li+1. An input σ∗ = l1, l2, ...lm is said to be accepted by T if there is a path
σ = s0, s1, ..., sm in T where (si, li+1, si+1) ∈→ for all 0 ≤ i < m. Note that, for
a given path (resp. input), the index of a state (resp. event) is referred to as its
position in that path (resp. input).
An LTL model is a pair 〈T, V 〉 consisting of an LTS, T , and a valuation function,
V , that assigns to each fluent proposition an arbitrary set of pairs of path, in T ,
and positions in the path. The events, however, are not specified in V as their
truth is implicitly determined by the transitions.

Definition 4. Given an LTL language with propositions P = Pe ∪ Pf , an LTL
model is a pair 〈T, V 〉 where T is an LTS with events Pe and V is a valuation
function V : Pf ⇒ 2A, where A = {(σ, i) | σ path in T and i position in σ}.

The satisfiability of an LTL formula in a model M = 〈T, V 〉 is defined with
respect to positions in a given path σ.

Definition 5. Given an LTL language with propositions P = Pe ∪ Pf , an LTL
model 〈T, V 〉 and a path σ in T , the satisfaction of an LTL formula φ at a
position i ≥ 0 of the path σ is defined inductively as follows:

– σ, 0 6|= e for any event proposition e ∈ Pe

– σ, i |= e iff e is at position i (i ≥ 1) in the path σ, where e ∈ Pe

– σ, i |= f iff (σ, i) ∈ V (f), where f ∈ Pf

– σ, i |= ¬φ iff σ, i 6|= φ

– σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ

– σ, i |=©φ iff σ, i+ 1 |= φ

– σ, i |= �φ iff ∀j ≥ i. σ, j |= φ

– σ, i |= φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ

An LTL formula φ is said to be satisfied in a path σ iff it is satisfied at the initial
position, i.e. σ, 0 |= φ. Similarly, a set of formulae Γ (also called a theory) is
said to be satisfied in a path σ if each formula ψ ∈ Γ is satisfied in the path σ.
Given the above notions of satisfiability, we can now give a formal definition of
a model of an LTL theory.

Definition 6 (Model of a Theory). Let M = (T, V) be an LTL model and Γ
be an LTL theory. M is said to be a model ofΓ , denoted |=M Γ , iff Γ is satisfied
in every path σ in T .

Definition 7 (Entailment). Let Γ be a LTL theory, φ a LTL formula and
M = 〈T, V 〉 an LTL model. The formula φ is said to be entailed by Γ , written
Γ |=M φ, iff φ is satisfied in each path σ in T that satisfies Γ .

6

2.4 Event Calculus

The Event Calculus (EC) formalism [7] is particularly well suited for reasoning
about events and their effects over time [29] using logic programming techniques
such as ILP. Its ontology is close enough to existing types of event-based re-
quirements specifications to allow them to be mapped automatically into logical
representations that can be used as a back-end to existing requirements engineer-
ing representational methods. in particular, an EC language includes three sorts
of terms: event terms, fluent terms, and time terms. While time is represented
by the non-negative integers 0, 1, 2, . . ., the event and fluent sorts are defined ac-
cording to the domain being modeled. In this paper, we assume the EC language
to include an additional sort called scenarios. The EC ontology includes the ba-
sic predicates happens, initiates, terminates and holdsAt. The atomic formula
happens(e, t, s) indicates that event e occurs at time-point t in a given scenario
s, while initiates(e, f, t, s) (resp. terminates(e, f, t, s)) means that, in a given sce-
nario s, if event e were to occur at time t, it would cause fluent f to be true (resp.
false) immediately afterwards. The predicate holdsAt(f, t, s) indicates that fluent
f is true at time-point t in a given scenario s. The formalism includes also an
auxiliary predicate, clipped, and three additional predicates impossible, attempt
and triggered. The predicate clipped(t1, f, t2, s) means that, in a given scenario
s, an event occurs which terminates f between times t1 and t2. The predicate
impossible(e, t, s) means that in a scenario s the event e cannot be performed at
time t, the predicate attempt(e, t, s) states that in a scenario s an event e may
be attempted (i.e. is allowed) at time t, and triggered(e, t, s) indicates instead
that in a scenario s the event e has been triggered at time point t. Whereas
the predicate attempt expresses the concept of a possible transition, the pred-
icate triggered (resp. impossible) defines transitions that must (resp. cannot)
occur. Their distinction is clearly captured by the translation function given in
Section 3 for constructing EC programs from LTL requirement specifications.

An EC program includes domain dependent axioms describing which actions
initiate and terminate which fluents, through the predicates initiates and ter-
minates, which fluents are initially true, which events are attempted, and rules
defining the impossibility and the triggering conditions of event occurrences. It
also contains a narrative, which describes a course of events that may be at-
tempted at specific time points and in specific scenarios, and a set of domain
independent axioms which govern the interactions between the EC predicates:

clipped(T1, F, T2, S)←happens(E, T, S),
terminates(E,F, T, S), T1 < T < T2.

(1)

holdsAt(F, T2, S)←happens(E, T1, S), initiates(E,F, T1, S),
T1 < T2, not clipped(T1, F, T2, S).

(2)

holdsAt(F, T, S)← initially(F, S), not clipped(0, F, T, S). (3)

happens(E, T, S)←attempt(E, T, S), not impossible(E, T, S). (4)

happens(E, T, S)←attempt(E, T, S), triggered(E, T, S). (5)

← impossible(E, T, S), triggered(E, T, S). (6)

7

The three axioms (1)-(3) describe general principles for deciding when fluents
hold or do not hold at particular time-points8. They formalize the commonsense
law of inertia which states that, a fluent that is true remains to hold until a
terminating event occurs and vice versa. The two axioms (4) and (5) capture
the semantics of event pre-conditions and event trigger-conditions respectively.
The rule (4) states that an event E cannot happen if its pre-conditions are not
satisfied (i.e. impossible is true). The rule (5), on the other hand, declares that
an event E must happen if its trigger-conditions have been satisfied. The last
rule (6) captures the semantic relationship between trigger-conditions and pre-
conditions stating in particular that an impossible event can not be triggered
at any time point in any scenario. An EC program is therefore a normal logic
program with semantics given by the standard stable model semantics [5].

3 The Approach

In this section we show how ILP can be used to extend a partial system spec-
ification using information from a given set of scenarios. The learning problem
is formalized in terms of an LTL specification. The given specification and sce-
narios are transformed, by means of a sound translation, into a non-monotonic
ILP problem using an EC formalization which is then used to find a set of re-
quirements that together with the partial specification account for the example
scenarios.

3.1 Problem Description

Our aim is to develop an approach for extending a incomplete system specifica-
tion with two types of operational requirements, namely event pre-conditions and
trigger-conditions using information provided by user-defined scenarios. It is as-
sumed that system specifications and scenarios are expressed in LTL. Since LTL
is used in this context to represent system behaviors and their effects on the sys-
tem and environment, it is further assumed that each fluent f ∈ Pf is associated
with two disjoint sets If and Tf called the f-Initiating set and f-Terminating set
of event propositions respectively. Moreover, only a special class of LTL models
are considered in which the labeled transition system T has a single initial state
and the valuation function V is defined to capture the dependencies between
fluent propositions and event propositions. For convenience, the notation EIf

is
used to represent the disjunction

∨
e∈If

e of f -Initiating events, and ETf
for the

disjunction
∨

e∈Tf
e of f -Terminating events. S0 is instead used to represent the

set of fluents f ∈ Pf that are true in the initial system state s0.

8 These axioms are identical to those presented in [29] apart from the extra argument
S for representing scenarios.

8

A system specification describes the relationship between events and fluents of
the system and environment. As formalised below in Definition 8, it contains ini-
tial state axioms (7)-(8), specifying the fluent propositions that are true (resp.
false) in the initial state; persistence axioms (9)-(10), formalising the common-
sense law of inertia that any fluent will remain true (resp. false) until a terminat-
ing (resp. initiating) event occurs that causes it to flip truth value; effect axioms
(11)-(12), which describe the effect a set of f -Initiating and f -Terminating events
has on a fluent f ; and finally a set of pre-condition axioms (13), and a set of
trigger-condition axioms (14), describing the conditions under which an event
cannot occur and must occur, respectively.

Definition 8. A system specification is an LTL theory consisting of

– a positive initial state axiom representing all fluent propositions that are true
in S0 (if any).

∧
fi∈S0

fi (7)

– a negative initial state axiom representing all fluent propositions that are not
true in s0 (if any).

∧
fj∈Pf−S0

¬fj (8)

– a pair of persistence axioms for each fluent proposition f ∈ Pf .

�(f → f W ETf
) (9)

�(¬f → ¬f W EIf
) (10)

– a pair of f-Initiating and f-Terminating effect axioms for each fluent propo-
sition f ∈ Pf

�(EIf
→ f) (11)

�(ETf
→ ¬f) (12)

– pre-condition axioms (if any).

�(
∧

0≤i≤n
(¬)fi →©¬e) (13)

– trigger-condition axioms (if any).

�(
∧

0≤i≤m
(¬)fi →©e) (14)

A scenario is a finite sequence of events 〈e1, ..., en〉 (i.e. an input) that describes a
system’s behavior from its initial state. For each scenario, an associated scenario
property can be defined. This can be of two types, namely an existential scenario
property, expected to hold for some paths in T of a given model M of a system
specification, or a universal scenario property, expected to hold over all the paths
in T of a given model M of a system specification. The syntactic definition of
these properties is given in Definition 9 and Definition 10 respectively.

9

Definition 9. An existential scenario property is a property of the form (15),
below, that is satisfied in some (i.e., at least one) path of a model M = 〈T, V 〉

∧
1≤i≤m−1

©iei ∧©
m(¬)em (15)

We refer to (
∧

1≤i≤m−1
©iei) as the prefix of the existential scenario property

and to the sub-formula ©m(¬)em as its consequence.

Definition 10. A universal scenario property is a property of the form (16),
below, that is satisfied in all paths of a model 〈T, V 〉

∧
1≤i≤n−1

©iei → ©n(¬)en (16)

The antecedent of a universal scenario property is also referred to as the prefix
of the property. Definition (11) below formalizes the notion of consistent (exis-
tential and universal) scenario properties.

Definition 11. Let SPu and SP e be sets of universal and existential scenario
properties, respectively. The set SPu ∪ SP e is said to be a consistent set of
scenario properties iff:

• There is no pair of universal scenario properties spu
1 , sp

u
2 ∈ SP

u with
same prefixes and complementary consequences.

• There is no pair of universal scenario properties spu
1 , sp

u
2 ∈ SP

u with
same prefixes and different positive consequences.

• For each universal scenario property spu ∈ SPu there is no existential
scenario property spe ∈ SP e with the same prefix but complementary
consequence.

• For each universal scenario property spu ∈ SPu there is no existential
scenario property spe ∈ SP e with same prefix but different positive
consequences.

Given the above formalization, we can now define the task of learning pre-
conditions and trigger-conditions.

Definition 12. Let Spec be a system specification, M = 〈T, V 〉 be a model of
Spec, SPu be a set of universal scenario properties of the form (

∧
1≤i≤n−1

©iei →
©n¬en), and SP e be a set of existential scenario properties of the form (

∧
1≤i≤m

©i ei) such that (SPu ∪ SP e) is consistent. A set Pre of pre-condition axioms
is a correct pre-condition extension of Spec with respect to SPu and SP e iff

• Spec ∪ Pre |=M spu, for each universal scenario property spu ∈ SPu,
• Spec ∪ Pre 6|=M ¬sp

e, for each existential scenario property spe ∈ SP e.

Definition 13. Let Spec be a system specification, M = 〈T, V 〉 be a model of
Spec, SPu be a set of universal scenario properties of the form (

∧
1≤i≤n−1

©iei →
©nen) and SP e be a set of existential scenario properties of the form (

∧
1≤i≤m−1

©iei ∧ ©
m¬em) such that (SPu ∪ SP e) is consistent. A set Trig of trigger-

condition axioms is a correct trigger extension of Spec with respect to SPu and
SP e iff

10

• Spec ∪ Trig |=M spu, for each universal scenario property spu ∈ SPu,
• Spec ∪ Trig 6|=M ¬sp

e, for each existential scenario property spe ∈ SP e.

Now we define the task for learning a correct extension.

Definition 14. Let Spec be a system specification, M = 〈T, V 〉 be a model of
Spec, SPu ∪SP e be a set of consistent scenario properties. A set Pre∪ Trig of
pre-condition and trigger-condition axioms is a correct extension of Spec with
respect to SPu and SP e iff

• Spec ∪ Pre ∪ Trig |=M spu, for each spu ∈ SPu,
• Spec ∪ Pre ∪ Trig 6|=M ¬sp

e, for each spe ∈ SP e.

Intuitively, finding a correct extension of a given specification with respect
to given existential and universal scenario properties means refining the models
of the original Spec by removing unwanted or undesirable traces. Given a model
M = (T, V) of a specification Spec, adding a pre-condition axiom to Spec has the
effect of removing from T all those (sub-)paths that satisfy at the first position
the prefix of the pre-condition and have a first transition labeled with the event
in the consequence of axiom. On the other hand, adding a trigger-condition
axiom to the Spec means removing from T all those (sub-)paths that satisfy at
the first position the prefix of the trigger-condition and have a first transition
labeled with an event different from the event in the consequence of axiom.

3.2 Translating LTL Specifications into EC Logic Programs

In order to apply ILP to the task of learning correct extensions, the LTL system
specification and scenario properties, of the form defined above, are translated
into EC normal logic program, where the sorts of event and fluent are given by
the set Pe of event propositions and the set Pf of fluent proposition of the LTL
language; time points corresponding to the positions in the paths of a model M ,
and a scenario constant is introduced for every universal and existential scenario
property in SPu and SP e. The translation of a system specification Spec into
such a corresponding EC program Π is formally defined below.

Definition 15. Given a system specification Spec expressed in LTL, the corre-
sponding logic program Π = τ(Spec) is defined as the program containing the
following clauses:

– the fact initially(fi,S) for each fluent fi appearing in a positive initial state
axiom of the form

∧
fi∈S0

fi

– the fact initiates(ei,f,T,S) for each f-Initiating event ei ∈ If appearing in an
f-Initiating effect axiom of the form �(EIf

→ f)

– the fact terminates(ei,f,T,S) for each f-Terminating event ei ∈ Tf appearing
in a f-Terminating effect axiom of the form �(ETf

→ ¬f)

11

– the clause impossible(e,T,S)←
∧

0≤i≤k(not)holdsAt(fi,T,S) for each pre-
condition axiom of the form �(

∧
0≤i≤k(¬)fi →©¬e)

– the clause triggered(e,T,S)←
∧

0≤i≤l(not)holdsAt(fi,T,S) for each trigger-
con-dition axiom of the form �(

∧
0≤i≤l(¬)fi →©e)

– the EC core axioms (1)-(6).

Note that negative initial state axioms (8) and persistence axioms (9) and (10)
of an LTL specification are all implicitly captured by the stable model interpre-
tation of the EC core axioms. Moreover, the semantics of the temporal operator
� is captured by the implicit universal quantification over the time variable T
that appears in the initiates and terminates facts and in the impossible and
triggered rules. Theorem 1 below states that the translation τ in Definition 15
is sound, i.e. for any path σ in a given model M of Spec there is a corresponding
narrative Nar such that the program Π = τ(Spec) ∪ Nar satisfies the same
fluent and event formulae as in σ.

Theorem 1 (Soundness and Completeness). Let Spec be a system specifi-
cation and M = 〈T, V 〉 be a model of Spec. Let σ = 〈e1, e2, . . . , en〉 be an accepted
input in T and let Nar be the set of facts of the form attempt(ei, i − 1, σ) for
each event ei in σ. Let Π be the EC logic program Π = τ(Spec) ∪ Nar with a
unique stable model I. Then, for any fluent f and position i, we have σ, i |= f iff
holdsAt(f, i, σ) is true in I; and, for any event e and position i, we have σ, i |= e

iff happens(e, i− 1, σ) is true in I.

Proof. The proof is by induction of the position i in σ using the fact that Π is
a locally stratified program and, as such, has a unique stable model [3].

3.3 Learning Requirements using ILP

ILP is concerned with the task of learning a hypothesis H that that explains
a set of examples E with respect to a background theory B. In the context of
learning requirements, we are given a partial specification B a set of scenarios
E, the task is to learn a set H of operational requirements such that B∪H |= E

(under the stable model semantics). In the EC formalism, event pre-conditions
are represented as clauses with impossible in the head and holdsAt literals in
the body

impossible(E, T, S)←
∧

0≤i≤n(not) holdsAt(fi, T, S) (17)

while event trigger-conditions are represented as clauses of the form

triggered(e, T, S)←
∧

0≤i≤m(not) holdsAt(fi, T, S) (18)

Hence, the task of learning requirements is the process of generating hypotheses
of the form above from a partial specification and a set of scenario proper-
ties which, respectively, comprise the background and examples. The function

12

τ can be used to translate an initial LTL specification into an ILP theory. To
fully define the inductive learning task a corresponding translation from scenario
properties to ILP example must be specified. As shown in Definition 16 below,
scenario properties contribute to the background theory as well as to the exam-
ples. The translation depends on the event for which the pre-condition (resp.
trigger-condition) axiom is to be learnt. In what follows, it is assumed that pre-
conditions (resp. trigger-conditions) axioms are to be learnt for the last event
of each universal scenario and existential scenario property. Therefore, in the
case of pre-conditions (resp. trigger-conditions), each universal scenario prop-
erty produces a sequence of facts stating that certain events do happen followed
by one fact stating that some particular event should not (resp. must) happen
immediately afterward and each existential scenario property simply states that
a certain sequence of events does (resp. does not) happen.

Definition 16. Given a system specification Spec and a set of consistent univer-
sal and existential scenario properties SPu∪SP e, the EC translation τ(Spec, SPu, SP e)
is the pair (B,E) of EC programs constructed as follows:

– for each universal scenario property spu = (©e1, ...∧©
n−1en−1 → ¬ ©nen)

in SPu

• E includes n-1 facts of the form happens(ei, i− 1, spu) with 1 ≤ i < n.
• E includes 1 fact of the form not happens(en, n− 1, spu).
• B includes n facts attempt(ei, i− 1, spe) with 1 ≤ i ≤ n.

– for each universal scenario property spu = (©e1∧...∧©
m−1em−1 → ©mem)

in SPu:
• E includes m facts of the form happens(ei, i− 1, spu) with 1 ≤ i ≤ m.
• B includes m facts of the form attempt(ei, i− 1, spu) with 1 ≤ i ≤ m.

– for each existential scenario property spe =
∧

1≤i≤l−1
©iei ∧©

l¬el in SP e

• E includes l-1 facts of the form happens(ei, i− 1, spe) with 1 ≤ i < l.
• E includes 1 fact of the form not happens(el, l − 1, spe).
• B includes l facts of the form attempt(ei, i− 1, spe) with 1 ≤ i ≤ l.

– for each existential scenario property spe =
∧

1≤i≤k©
iei in SP e

• E includes k facts of the form happens(ei, i− 1, spe) with 1 ≤ i ≤ k.
• B includes k facts of the form attempt(ei, i− 1, spe) with 1 ≤ i ≤ k.

– B includes all facts and rules in τ(Spec).

As shown in Definition (16), given a partial specification Spec and sets SPu and
SP e of universal and existential scenario properties respectively, the translation
τ results in corresponding EC programs consisting of a background theory B,
and a set of examples E where (B,E) = τ(Spec, SPu, SP e).

The utility of the transformation is demonstrated by Theorem 2, which shows
that τ can be used to compute correct extensions via nonmonotonic ILP. Given
a partial specification Spec, and scenario properties SPu and SP e, the corre-
sponding EC programs B and E are obtained using τ and the hypothesis space
S is defined as the set of clauses of the form (17) and (18). Theorem 2 states
that any ILP solution to this problem can be translated back into a correct LTL
extension of the initial Spec with respect SP e and SPu.

13

Theorem 2. Let Spec be a system specification, let SPu∪SP e be a set of consis-
tent scenario properties, let (B,E) = τ(Spec, SPu, SP e) be their EC translation,
and let S be the set of clauses of the form (17) and (18) — i.e. the set of all
event pre-condition and trigger-condition rules. Then, for any inductive gener-
alisation H of E wrt. B and S, the corresponding set Pre ∪ Trig = τ−1(H) of
LTL pre-condition and trigger-condition axioms is a correct extension of Spec
with respect to SPu and SP e.

In other words, for a given B and E, any inductive solution of the form
(17) and (18) once translated back into LTL and added to the original partial
specification will have the effect of eliminating all paths in T which violates spu

but still contains at least one path satisfying spe. Note that depending on the
generality of H, τ−1(H) may also eliminate paths in T which satisfy spu. This is
restricted by the fact that τ−1(H) should cover with all universal and existential
scenarios considered. In order to extend a partial specification in this way, we
use the nonmonotonic ILP system XHAIL [26], as illustrated in the following
case study.

4 Case Study: A Mine Pump Control System

This section presents an extension of case study used in [1] as an application of
the learning approach proposed in this paper to a event-driven system involving
a Mine Pump Controller [8]. This is a system that is supposed to monitor and
control water levels in a mine, to prevent water overflow. It is composed of a
pump for pumping mine-water up to the surface as well sensors for monitoring
the water levels and methane percentage. The pump should be activated once
the water has reached pre-set high water level and deactivated once it reaches
low water level. Moreover, the pump should be switched off if the percentage of
methane in the mine exceeds a certain critical limit.

An initial partial system specification Spec is given along with a set of pos-
itive and negative scenario properties, written in an LTL language with flu-
ent propositions Pf = {pumpOn, criticalMethane, highWater} and event propo-
sitions Pe = {turnPumpOn, turnPumpOff, signalCriticalMethane, signalNotCrit-
icalMethane, signalHighWater, signalNotHighWater}. The specification includes
information about the initial state of the system, persistence axioms, effect ax-
ioms and a single trigger-condition axiom, all formalised as follows:

(¬criticalMethane ∧ ¬pumpOn ∧ ¬highWater) (19)

�(criticalMethane→ (criticalMethane W signalNotCriticalMethane)) (20)

�(¬criticalMethane→ (¬criticalMethane W signalCriticalMethane)) (21)

�(pumpOn→ (pumpOn W turnPumpOff)) (22)

�(¬pumpOn→ (¬pumpOn W turnPumpOn)) (23)

�(highWater→ (highWater W signalNotHighWater)) (24)

�(¬highWater→ (¬highWater W signalHighWater)) (25)

14

�(signalCriticalMethane → criticalMethane) (26)

�(signalNotCriticalMethane→ ¬criticalMethane) (27)

�(signalHighWater→ highWater) (28)

�(signalNotHighWater→ ¬highWater) (29)

�(turnPumpOn→ pumpOn) (30)

�(turnPumpOff→ ¬pumpOn) (31)

�(methane→©turnPumpOff) (32)

Equation (19) defines the negative initial state of the system, equations (20)–
(25) specify the persistence axioms, equations (26)–(31) define the effect axioms
and finally equation (32) specifies a trigger-condition axiom. Note that because
all fluents are assumed to be initially false, the specification does not include a
positive initial state axiom.

A consistent set of universal and existential scenario properties for this system
is given by the following formulae:

spu
1 = (©signalCriticalMethane ∧©2signalHighWater→

©3 ¬turnPumpOn)
(33)

spe
1 = (©¬turnPumpOn) (34)

spe
2 = (©signalHighWater ∧©2turnPumpOn) (35)

Applying the translation τ to the specification and scenario properties above
results in an ILP theory B composed of the EC core axioms and the following
clauses:

initiates(signalCriticalMethane,criticalMethane,T,S).
terminates(signalNotCriticalMethane,criticalMethane,T,S).
initiates(signalHighWater,highWater,T,S).
terminates(signalNotHighWater,highWater,T,S).
initiates(turnPumpOn,pumpOn,T,S).
terminates(turnPumpOff,pumpOn,T,S).
triggered(turnPumpOff,T,S)← holdsAt(methane,T,S).

attempt(signalCriticalMethane,0,spu
1). attempt(signalHighWater,1,spu

1).
attempt(turnPumpOn,2,spu

1). attempt(turnPumpOn,0,spe
1).

attempt(signalHighWater,0,spe
2). attempt(turnPumpOn,1,spe

2).

In addition, the translation produces the following set of ILP examples E:

happens(signalCriticalMethane,0,spu
1). happens(signalHighWater,1,spu

1).
not happens(turnPumpOn,2,spu

1). not happens(turnPumpOn,0,spe
1).

happens(signalHighWater,0,spe
2). happens(turnPumpOn,1,spe

2).

In order bias XHAIL to learn pre- and trigger-conditions, the following mode
declarations are used.

modeh(∗, impossible(#event,+time,+scenario))
modeh(∗, triggered(#event,+time,+scenario))
modeb(∗, holdsAt(#fluent,+time,+scenario))
modeb(∗, not holdsAt(#fluent,+time, +scenario))

(36)

15

As explained in [19] these ensure the hypothesis space S consists of clauses
of the form (17) and (18) with atoms impossible(e, T, S) and triggered(e, T, S)
in the head and literals of the form (not) holdsAt(e, T, S) in the body.
Applying XHAIL to B and E then yields the (non minimal) abductive explana-
tion ∆ =

triggered(turnPumpOn, 1, spe
2)

impossible(turnPumpOn, 2, spu
1)

impossible(turnPumpOn, 0, spe
1)

(37)

which is turned into the Kernel Set K =

triggered(turnPumpOn, 1, spe
2)← holdsAt(highWater, 1, spe

2),
not holdsAt(pumpOn, 1, spe

2), not holdsAt(methane, 1, sp
e
2).

impossible(turnPumpOn, 2, spu
1)← holdsAt(highWater, 2, spu

1),
not holdsAt(pumpOn, 2, spu

1), holdsAt(methane, 2, spu
1).

impossible(turnPumpOn, 0, spe
1)← not holdsAt(highWater, 0, spe

1),
not holdsAt(pumpOn, 0, spe

1), not holdsAt(methane, 0, sp
e
1).

(38)

and is generalised to give the maximally compressive hypotheses H =

triggered(turnPumpOn,X, Y)← holdsAt(highWater,X, Y),
not holdsAt(methane,X, Y).

impossible(turnPumpOn,X, Y)← holdsAt(methane,X, Y).
impossible(turnPumpOn,X, Y)← not holdsAt(highWater,X, Y).

(39)

corresponding to the correct extension

�((highWater ∧ ¬methane)→©turnPumpOn)
�(methane→©¬turnPumpOn)
�(¬highWater →©¬turnPumpOn)

(40)

stating that the pump should turn on whenever there is water and no methane;
and that it should turn off whenever there is methane or no water.

Note that the integrity constraint (6) plays an important role since leaving
it out would result in the more compressive solution

�((highWater ∧ ¬methane)→©turnPumpOn)
�(©¬turnPumpOn)

(41)

in which turnPumpOn would have to be both true and false whenever
highWater was true but methane was false.

5 Related Work

Among the few approaches that use inductive learning for requirements elici-
tation it worth mentioning [10]. The approach presented in [10] captures high-
level goals, as temporal formulae, from manually tailored scenarios provided by

16

stake-holders using an ad-hoc inductive inference process. The tailored scenarios
are then used to elicit new declarative goals that explain the given scenario.
These new goals are then added to the given initial (partial) goal model for
”non-operational” analysis (i.e. goal decomposition, conflict management and
obstacle detection). The inductive inference of these declarative goals is simply
a process of pure generalization of the given scenarios that does not take into
account the given partial goal model. It is therefore a potentially unsound in-
ference process in that it can generate declarative goals that are inconsistent
with the given (partial) goal model. Our approach, on the other hand, can be
extended so to include the goals as integrity constraints. In so doing, the learnt
operational requirements would be guaranteed to be consistent with the given
goals and partial specification and can therefore be directly added to it.

The ILP task defined in this paper is somewhat related to some earlier work in
[18] and [17], where the ILP systems Progol5 and Alecto were applied to the
learning of domain specific EC axioms. Like XHAIL, these procedures employ
an abductive reasoning module to enable the learning of predicates distinct from
those in the examples — an ability that is clearly required in this application.
However, unlike XHAIL, they do not have a well-defined semantics for non-
definite programs and their handling of negation is rather limited [26]. In fact,
the inability of Progol5 and Alecto to reason abductively through nested nega-
tions means that neither of these systems can solve the case study presented in
this paper. Some related approaches for inferring action theories from examples
are presented in [13], [22] and more recently in [24], which reduce learning in the
Situation Calculus to a monotonic ILP framework. These approaches work by
pre- and post-processing the inputs and outputs of a conventional Horn Clause
ILP system. This technique is very efficient, but is not as general as our own
approach. An alternative method for nonmonotonic ILP under the stable model
semantics is proposed in [28], but cannot be used in our case study because it
assumes the target predicate is the same as the examples. [28] also includes a
thorough review of previous work on non-monotonic ILP. A more recent tech-
nique is proposed in [23] that uses a combination of SAT solvers and Horn ILP
to perform induction under the stable model semantics.

6 Conclusion and Future Work

This paper presents a methodology for extending a partial system specification
with event pre-conditions and trigger-conditions from information provided by
user scenarios using ILP. This involves transforming the initial specification and
scenarios from an LTL representation into an EC logic programs which are then
used by a non-monotonic ILP system to learn the missing requirements. By
exploiting the semantic relationship between the LTL and EC, the approach
thereby provides a sound ILP computational “back-end” to a temporal formal-
ism familiar to Requirements Engineers.

17

It is assumed in this paper that scenarios are provided by stake-holders. Cur-
rent work involves integrating ILP and model checking techniques, as the ones
presented in [2, 11], such that undesirable scenarios are generated automatically
using model checking tools. A current assumption of the approach described
in this paper is that the scenarios provided to the ILP technique are complete
in the sense that the event appearing in the sequence are the only events that
occur. An area for future research is to relax these assumptions and learn opera-
tional requirements from incomplete scenarios that satisfy a given specification.
Furthermore, system specifications are assumed to be asynchronous. By that we
mean that the specification is expected to be satisfied at every position in a path
of an LTL model. In goal-oriented requirements engineering approaches, system
specifications are usually represented synchronously in which the specification
is assumed to hold at certain time points rather than positions. We therefore
aim to extend the approach to handle learning synchronous specifications as well
as asynchronous. Future research also includes extending the specification with
other forms of operational requirements such as postconditions which capture
additional conditions on fluents that must (not) hold as a consequence of execut-
ing event e written as �(e→

∧
1≤i≤n(¬)f). In addition, a main focus of interest

is to incorporate user-defined goals in the learning process to guarantee that the
learnt requirements satisfy the stake-holders goals.

Acknowledgments This work is funded by the Philip Leverhulme Trust, Re-
search Councils UK and the Saudi Arabian Ministry of Higher Education.

References

1. D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Extracting requirements from sce-
narios with ILP. In 16th Int. Conference on Inductive Logic Programming, pages
63–77, 2006.

2. D. Alrajeh, A. Russo, and S. Uchitel. Inferring operational requirements from
goal models and scenarios using inductive systems. In Proc. 5th Int. Workshop on
Scenarios and State Machines, 2006.

3. K. R. Apt and R.N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19/20:9–71, 1994.

4. K. Eshghi and R.A. Kowalski. Abduction compared with negation by failure. In
G. Levi and M. Martelli, editors, Proc. of the 6th Int. Conf. on Logic Programming,
pages 234–254, 1989.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R.A. Kowalski and K. Bowen, editors, Proc. of the 5th Int. Conf. on Logic
Programming, pages 1070–1080. The MIT Press, 1988.

6. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In Proc. 11th ACM SIGSOFT Symp. on Foundations Software Engineering, 2003.

7. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New generation
computing, 4(1):67–95, 1986.

8. J. Kramer, J. Magee, and M. Sloman. Conic: An integrated approach to distributed
computer control systems. In IEE Proc., Part E 130, pages 1–10, Jan. 1983.

9. A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Proc. 5th IEEE Int. Symp. on Requirements Engineering, pages 249–263, 2001.

18

10. A. Van Lamsweerde and L. Willemet. Inferring declarative requirements spec-
ifications from operational scenarios. IEEE Trans. on Software Engineering,
24(12):1089–1114, 1998.

11. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transitions
systems from goal-oriented requirements models. Technical Report 2006/2, Impe-
rial College London, 2005.

12. E. Letier and A. Van Lamsweerde. Deriving operational software specifications
from system goals. In Proc. 10th ACM SIGSOFT Symp. on Foundations of Soft-
ware Engineering, pages 119–128, 2002.

13. D. Lorenzo. Learning non-monotonic Logic Programs to Reason about Actions and
Change. PhD thesis, University of Coruna, 2001.

14. J. Magee and J. Kramer. Concurrency : State Models and Java Programs. John
Wiley and Sons, 1999.

15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

16. R. Miller and M. Shanahan. Some alternative formulation of event calculus. Com-
puter Science; Computational Logic; Logic programming and Beyond, 2408, 2002.

17. S. Moyle. An investigation into Theory Completion Techniques in ILP. PhD thesis,
University of Oxford, 2000.

18. S. Moyle and S. Muggleton. Learning programs in the event calculus. In Proc. 7th
Int. Workshop on ILP, 1997.

19. S.H. Muggleton. Inverse Entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

20. S.H. Muggleton and C.H. Bryant. Theory Completion Using Inverse Entailment .
In Proc. 10th Int. Conf. on ILP, volume 1866 of LNCS, pages 130–146. 2000.

21. S.H. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and
Methods. Journal of Logic Programming, 19,20:629–679, 1994.

22. R. Otero. Embracing causality in inducing the effects of actions. In Proc. 10th
Conf. of the Spanish Assoc. for AI, 2004.

23. R. Otero and J. Gonzalez. Iaction: a system for induction under non-horn programs
with stable models. In Proc. of the 16th Int. Conf. on ILP, volume submitted of
Lecture Notes in Artificial Intelligence, 2006.

24. R. Otero and M. Varela. Iaction: a system for learning action descriptions for
planning. In Proc. of the 16th Int. Conf. on ILP, volume submitted of Lecture
Notes in Artificial Intelligence, 2006.

25. O. Ray. Hybrid Abductive-Inductive Learning . PhD thesis, Imperial College Lon-
don, 2005.

26. O. Ray. Using abduction for induction of normal logic programs. In Proc. ECAI’06
Workshop on Abduction and Induction in AI and Scientific Modelling, pages 28–31,
2006.

27. A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for
analysing event-based requirements specifications. In Proc. 18th Int. Conf. on
Logic Programming, volume 2401 of LNCS, pages 22–37, 2002.

28. C. Sakama. Induction from answer sets in non-monotonic logic programs. ACM
Trans. on Computational Logic, 6(2):203–231, 2005.

29. M.P. Shanahan. Solving the Frame Problem. MIT Press, 1997.
30. C. Stirling. Comparing Linear and Branching Time Temporal Logics. In Temporal

Logics in Specification, volume 398 of LNCS, pages 1–20. Springer Verlag, 1987.
31. A. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel. Supporting scenario-

based requirements engineering. IEEE Trans. on Software Engineering, 24:1072–
1088, 1998.

19

Towards Refinement of Abductive or Inductive

Hypothesis through Propagation

Gauvain Bourgne1, Amal El Fallah Seghrouchni2, and Nicolas Maudet1

1 LAMSADE, Univ. Paris IX-Dauphine
Paris 75775 Cedex 16 (France)

Email: {bourgne,maudet}@lamsade.dauphine.fr
2 LIP6, Univ. Pierre and Marie Curie

104, Avenue du Prsident Kennedy - 75016 - Paris (France)
Email: Amal.Elfallah@lip6.fr

Abstract. In this paper we address the problem of distributed sources
of information (agents) that observe locally the environment, and have
to communicate in order to refine their hypothesis regarding the actual
state of this environment. One manner to attack the problem would be
to centralize all the collected observations and knowledge, and to cen-
trally compute the resulting theory. In many situations however, this
would not be possible to adopt this centralized approach (e.g. for prac-
tical reasons, or privacy concerns). In this paper, we assume that agents
individually face abductive or inductive tasks in a globally coherent en-
vironment, and we show that general mechanisms can be designed that
abstractly regard both cases as special instances of a problem of hypoth-
esis refinement through propagation. Assuming that agents are equipped
with some individual revision machinery, our concern will be to investi-
gate how (under what conditions) convergence to a consistent state can
be guaranteed at more global levels: (i) between two agents; (ii) in a
clique of agents; and (iii) in general in a connected society of agents.

1 Introduction

In this paper we address the problem of distributed sources of information
(agents) that observe locally the environment, and have to communicate in or-
der to refine their hypothesis regarding the actual state of this environment. One
manner to attack the problem would be to centralize all the collected observa-
tions and datas, and to centrally compute the resulting theory. This trivially
solves the problem if we assume that the situation is globally consistent, but
still necessitates to merge knowledge bases if agents have potentially conflicting
opinons [8].

In many situations however, this would not be possible to adopt this central-
ized approach; either because no agent would be prepared to play the role of a
central authority; because the number and spatial repartition of agents makes
that approach not realistic in practice; or because privacy concern makes agents
reluctant to communicate some of their informations.

20

This would be the case for instance if different labs could hold observations
(medical datas) regarding a patient, and had to carefully communicate with
each others in order to come up with a satisfying diagnostic, while keeping some
information private. One further illustration would be agents representing dif-
ferent knowledge bases storing examples linking genes and function, and agents
communicating in order to refine their knowledge of the gene-function rule.

In the context of this paper, we assume that the environment is globally con-
sistent. As the examples above suggest, the task that agents face can be either
abductive or inductive, and we precisely argue in this paper that general mecha-
nisms can be designed that abstractly regards both cases as special instances of
a problem of hypothesis refinement through propagation. Section 2 introduces the
formal framework and notions that we shall use throughout the paper. Agents
will be supposed to be equipped with some individual revision machinery, and
our concern will be to investigate how (under what conditions) consistence at
a more global level (being it two agents, or within the whole system) can be
guaranteed. As must be clear from our introduction, we will not adopt here a
broadcast method that would amount to widely propagate agents’ knowledge,
but favour more focused mechanisms that seek to optimize information propaga-
tion. Section 3 present these protocols, and discuss their properties. The paper
eventually shows how the framework can be instantiated in the context of an
abductive or inductive application (Section 4). Section 5 draws some connections
with related works. Section 6 concludes and reports on preliminary experiments
that have been published in companion papers.

2 Formal Model

2.1 Agent

We take a system populated by n agents a1, . . . , an. Each agent ai has two
different kind of knowledge:

– Ki is the information set, representing all the certain, non-revisable, knowl-
edge of the agent. Among these certain knowledge, we further distinguish
two sets :
• F , the set of facts, is the common ground of the agents. It represents

prior knowledge that are shared by all agents.
• Oi is its observation set. We assume a perfect senses and memory, hence

these observations are certain and the set grows monotonically. This set
represents the collected knowledge of each individual agent, it contains
all certain knowledge that are acquired by the agents. We note O the set
of possible observations in the system. Therefore, Oi ⊆ O.

– Ai is the belief base, or assumed hypotheses set, representing all the uncertain,
explicit knowledge of the agent. These beliefs are usually derived from non-
monotonic inferences and are therefore revisable. We can constrain this set by
specifying the set H of possible hypotheses. We will note hi the conjunction
or disjunction (according to the application) of all the elements of Ai, called
the working hypothesis, or favourite hypothesis of the agent.

21

Using these explicit knowledge, we can now derive the implicit knowledge of
the agent. The belief set Bi, representing all the knowledge the agent believes to
be true, with ou without certainty, is defined as Bi = Cn(Ki ∪ Ai) (where, at
this point, Cn(T) just represents the set of all possible conclusions that can be
soundly derived from T .) Among this belief set Bi, we will distinguish the closed
information set Ki = Cn(Ki) representing all the certain knowledge, that the
agent knows to be true.

2.2 Consistency

As beliefs are uncertain, there can be contradiction between them. We want to
ensure that the working hypothesis hi (and by extension the belief set Bi) has
some property ensuring its internal coherence and adequacy with the information
set Ki. We shall then define an abstract notion of consistency relation to cap-
ture this adequacy. Depending of the type of beliefs or hypothesis, this relation
might take different forms such as logical coherence, when considering belief revi-
sion, coherence and completeness of an abductive or inductive hypothesis, when
building explanation or generating rules, or even arc-consistency in distributed
constraint satisfaction problems. This notion is used to abstract away from the
specifics of different applications and define communication protocols as generic
as possible. We will represent it as a complete binary relation Consα(h, K) be-
tween an hypothesis h v H3 and an information set K, where α will enable
different instanciation for applications. As F is common to all agents and does
not vary, we will take it out of the consistency notation, and abuse the notation
a little bit by simply denoting by Consα(h, O) the basic consistency relation.

The only requirement that we put on the consistency relation so far is that
it is assumed to be compositional, meaning that:

Consα(h, O) and Consα(h, O′) iff Consα(h, O ∪ O′) (1)

To understand the consequences of this assumption, it is useful to distinguish
both directions of this equivalence relation. The ‘if’ direction is often called
additivity [4]. It basically means that it is possible to consider independently
each observation. The ‘only if’ direction is best understood when we read the
contrapositive: it says that the inconsistence is monotonic (that is, when h is not
consistent with some observation set O, it cannot become consistent again when
that set grows monotically). In other words, an hypothesis assessed inconsistent
on the basis of an observation set cannot become consistent when that set grows.
We refer to this latter property, following [4], as incrementality. Depending on
the application domain, both assumptions may be challenged and relaxed.

We now make more precise our abstract notion of consistency. The basic
notion that we shall use is a notion a group consistency.

3 We will denote by h v H the fact that h is a conjunction or disjunction of elements
of H.

22

Definition 1 (Group Consistency). An agent ai is group consistent wrt. the
group of agents G (GCons(ai, G)) iff Cons(hi,∪i∈GOi))

Note that the definition does not necessarily imply that ai belongs to G.
However, we did not encounter interesting cases where it would be required to
consider this case. We shall then assume that ai ∈ G in the remainder of this
paper.

A stronger notion of consistency requires any agent within the group to be
consistent with the entire group.

Definition 2 (Mutual Consistency). A group of agents is mutually consis-
tent (MCons(G)) iff ∀ai ∈ G, it is the case that GCons(ai, G).

Now for the purpose of our work, we shall mainly be interested in some
interesting particular cases which depends on the cardinality of the group G:

– Internal consistency— this is the limit case when G is limited to a single
agent. In this case, Group and Mutual consistency collapse into a single
notion that we shall call internal consistency (ICons(ai)).

– Peer consistency— when the group of agents we consider contains only two
agents. In this case we can distinguish both the peer consistency of an agent
wrt a fellow agent, and the mutual peer consistency of a group of two agents
(see Fig. 1). This is especially important in our context, since our commu-
nication protocols only deal locally with bilateral communications.

– MAS-consistency —we conclude with the limit case involving all agents
within the society. In this case, we will refer to the MAS-consistency of
an agent wrt to the society; and to the mutual MAS-consistency of a society
of agents.

� �

� �

� �

� �

� �

� �

� �

� �

� � � � � � � �

Fig. 1. Peer consistency and mutual peer consistency of agents a1 and a2.

For the sake of readability, we now introduce some notational sugar. When we
refer to the internal consistency of an agent ai, we shall simply write ICons(ai).
As for the case of peer and MAS consistency, we will put the cardinality of the
group involved as an exponent (recall that the society is composed of n agents).
The different notations obtained are summarized in Table 2.2.

23

Group Consistency Mutual Consistency

Internal consistency (single agent) ICons(ai) ICons(ai)
Peer consistency (pair of agents) GCons2

α(ai, {ai, aj}) MCons2
α({ai, aj})

MAS-consistency (society of agents) GConsn
α(ai, {a1, . . . , an}) MConsn

α({a1, . . . , an})

2.3 Revision mechanisms

To ensure its consistency, each agent is equipped with an abstract reasoning
machinery that we shall call the hypothesis formation function Eh. This function
takes a set of observations and an hypothesis as input, and returns a single
preferred hypothesis. We assume h′ = Eh(h, O) to be consistent with O by
definition of Eh, so using this function on its observation set to determine its
favourite hypothesis is a sure way for the agent to achieve consistency. Note
however that an hypothesis does not need to be generated by Eh to be consistent
with an observation set.

Definition 3 (Individualism). An agent is said to be individualistic iff its
working hypothesis hi may only be modified as a consequence of the application
of the hypothesis formation function Eh

This means that no other agent can directly impose a given hypothesis to it.
As a consequence, only a new observation (being it a new perception, or an
observation communicated by a fellow agent) can result in a modification of its
working hypothesis hi (but not necessarily of course).

A internal revision mechanism is a mechanism µ by which an agent ai (with
its working hypothesis hi and its observation set Oi) receiving an observation o

updates its observation set by adding up o , and update its working hypothesis
to h′

i = µ(hi).

Definition 4 (guaranteed internal consistency). An internal revision
mechanism µ guarantees internal consistency iff for any agent ai internally
consistent, and any observation o reaching ai, the application of µ by ai

preserves its internal consistency. More formally: ∀o∀Oi∀hi, Consα(hi, Oi) ⇒
Consα(µ(hi), Oi ∪ {o}).

A simple internal revision mechanism µEh
consists of replacing hi by h′

i =
Eh(hi, Oi ∪ {o}) upon receival of a new observation o. It guarantees internal
consistency. In what follows we assume that agents are equipped with a revision
mechanism that preserves internal consistency.

A local revision mechanism is a mechanism (denoted M2 following our notation
convention) by which an agent ai receiving an observation o communicates with
another agent aj to update its working hypothesis and possibly the hypothesis
of the other agent. A global revision mechanism is a mechanism Mn by which an
agent ai receiving an observation o triggers a series of local revision mechanisms
to update its working hypothesis and possibly the hypotheses of the other agents.

24

Definition 5. A revision mechanism M guarantees GCons(ai, G)(resp.
MCons(G)) iff, for any observation o reaching ai,it is the case that the exe-
cution of M by ai with G will result in a situation where GCons(ai, G) (resp.
MCons(G)) holds.
In particular, a local mechanism will be said to guarantee peer consistency (resp.
mutual peer consistency), while a global mechanism guarantee MAS-consistency
(resp. mutual MAS-consistency).

2.4 Communication

The communication of the agents might be constrained by topological consider-
ation. A given agent will only be able to communicate with a number of neigh-
bours. Typically, an agent can only communicate with agents that it knows, but
one could imagine topological constraints on communication based on a network
of communication links between agents. Who an agent can communicate with
will be fixed beforehand, and remain static during the time required for the
hypothesis refinement process. We can then construct a communication graph
representing these communication links between the agent. (We assume that the
relation that links two neighbours in a communication graph is symmetric, but
of course not transitive.) A communication path will then refer to a path between
two agents in the communication graph. In the following, we will suppose that
the communication graph is connected, that is, there exists a communication
path between any pair of agents.

3 Communication Protocols

We are now in a position to examine different (local and global) communication
protocols, and to investigate what properties they guarantee, when used with
some specific agents’ strategies.

3.1 Local revision mechanisms

In this section, we present two different local revision mechanisms. Each of them
consists in a communication protocol with an associated strategy.

Unilateral Hypothesis Exchange. The first mechanism M2
U uses an asym-

metric protocol that we call Unilateral Hypothesis Exchange (UHE). The agent
applying the mechanism takes an active role in building and refining an hypoth-
esis. It is called the learner agent. The second agent is a critic, that uses its
knowledge to acknowledge or invalidate the proposed hypothesis.

Figure 2 illustrates the protocol. The associated strategy is as follows. The
learner agent ai first updates its hypothesis hi to h′

i using an internal revision
mechanism µ guaranteeing ICons(ai). Then it proposes it to the partner agents
aj , and aj either replies with acceptdirect and adopts h′

i as its new working

25

1 2 3
propose accept

counter − example

Fig. 2. Unilateral Hypothesis Exchange Protocol (UHE).

hypothesis if Consα(h′
i, Oj), or otherwise sends counter-example(o′), where o′ ∈

Oj is such that Consα(h′
i, {o

′}) is false. Upon reception of a counter-example, ai

applies again µ to update its hypothesis with the new observation, and propose
the resulting hypothesis as before, except that an acceptation will now result in a
acceptindirect message. (The reason justifying the distinction between acceptdirect

and acceptindirect will be become clear later.)

Property 1. When agents are non individualistic M2
U guarantees mutual peer

consistency.

Proof. Let n1 =card(Oj \ Oi). Each time aj receives an hypothesis hi from ai,
it will check the consistence of this hypothesis against its observation set, by
considering individually each observation it contains.

– If there is an observation o ∈ Oj such that Consα(hi, {o}) is false, then
o is sent as a counter-example to ai. Now suppose that o ∈ Oi, then
Consα(hi, Oi) would hold, and by virtue of the incrementality of consis-
tency this would in turn imply that Consα(hi, {o}), which is known to be
false. Therefore o 6∈ Oi, that is o ∈ Oj \ Oi. When ai receives the counter-
example, it adds it to its observation set (O′

i = Oi ∪ {o}). This means that
n1 decreases (as o 6∈ Oj \ O′

i).
– If there is no observation o ∈ Oj such that Consα(hi, {o}) is false (the

agent cannot find any counter-example), then, because the Cons relation is
complete, it implies that each of its observation, when taken separately, is
consistent with hi. The additivity of the consistency in turn implies that
Consα(hi, Oj) (this hypothesis is consistent with the whole observation set
of agent aj). Agent aj sends an accept, which terminates the protocol.

At each hypothesis proposal either n1 decreases, or the protocol ends with an
accept. As n1 is a positive integer, it cannot decreases for ever. So this protocol
will end with an accept after at most n1 hypothesis proposals. Upon termination,
we necessarily have Consα(hi, Oj) and Consα(hi, Oi) and the adoption of the
proposed hypothesis ensures that hj = hi. That is, agents ai and aj each have
a common hypothesis that is consistent with Oi and Oj . Hence MCons(ai, aj)
holds. This demonstrates that this revision mechanisms guarantees mutual peer-
consistency. 2

After termination, both agents share the same mutually consistent hypothesis
(which is not required to have mutual peer consistency). However, the fact that

26

the critic agent adopts the learner’s hypothesis clearly violates the property of
individualism.

Unilateral Hypothesis Exchange without Adoption. A straightforward
possible variant of this mechanism (M2

UwA) preserving the individualism of the
agents would require that aj does not adopt the hypothesis when it accepts it.
This variant only guarantees peer-consistency instead of mutual peer-consistency.
The local consistency of aj with ai is indeed not ensured, that is, we have
GCons2

α(ai, {ai, aj}), but not GCons2
α(aj , {aj, ai}).

Bilateral Hypothesis Exchange. To get a local revision mechanism that
guarantees mutual peer consistency but still preserves the individualism of
agents, we symmetricize the unilateral UHE mechanism. The obtained proto-
col is called the Bilateral Hypotheses Exchange protocol (see Fig. 3). Here, the
critic agent becomes learner agent once it has validated the other agent’s hy-
pothesis.

1 2

5 6

3 4
propose

accept

counter − propose

accept

counter − example

propose

counter − example

Fig. 3. Bilateral Hypothesis Exchange Protocol (BHE).

Again, we now specify the associated strategy. Upon reception of an hypoth-
esis hi (by propose(hi)), agent aj ends up in state 2 and can reply either with
an accept, a counter-example, or a counter-propose, as specified by the following
strategy:

– If ∃o ∈ Oj s.t. Consα(hi, {o}) is false, a counter-example consisting of the
observation o is sent, as with the UHE mechanism.

– else, we have Consα(hi, Oj) (see proof of Prop. 1). We now want to check
that Consα(hj , Oi) holds.
• If hi = hj, aj can directly accept hi.
• else, it must counter-propose(hj) to invert critic and learner roles. Then

ai will act as a critic and accept or send counter-examples until consis-
tency is reached.

27

This mechanism can be interpreted as two reciprocal applications of the
unilateral protocol without adoption of hypothesis. Note that when termination
is reached via state 6, it is not guaranteed that agents will share the same
hypothesis (while it is, by definition of the strategy, when the protocol terminates
in state 5). Still, we indeed have GCons2

α(ai, {ai, aj} and GCons2
α(aj , {ai, aj} .

This mechanism then guarantees mutual peer-consistency.

Property 2. M2
B guarantees MCons2

α({ai, aj})

Proof. Omitted for lack of space, the proof closely follows proof of Prop. 1.

Besides, unlike M2
U , it respects the agents’ individualism. This enables us

to get several different consistent hypotheses, but makes it more difficult to
maintain the consistency at the global level. Let us now consider this level in
more details.

3.2 Global revision mechanisms (for cliques)

Clock-like Hypothesis Propagation. The general idea is to make repeated
uses of a local mechanism guaranteeing mutual peer consistency to eventually
get a MAS-consistent hypothesis adopted by all agents. The hypothesis must be
validated by all agents in turn without being changed. Any change in the hy-
pothesis forces us to check it again from the beginning. Intuitively, as consistence
is additive, the hypothesis should grow precise enough to become consistent with
all agents.

In more details, the global revision mechanism Mn
C can be described as

follows. When the learner agent a1 applies it after receiving an observation o,
a1 first applies M2

U (unilateral hypothesis exchange local revision mechanism)
to reach mutual consistency with agent a2. Then it does the same with agent
a3. If the local protocol ends with an acceptdirect, then a1 proceeds to exchange
its hypothesis with the next agent (a4), else (acceptindirect) it goes back to a2.
This iterates, each acceptindirect restarting the process with a new hypothesis
submitted to a2. When an sends a acceptdirect, it means that the hypothesis has
been accepted and adopted in turn by all agents. In such a case, the mechanism
ends, and this common hypothesis is MAS-consistent.

Property 3. Mn
C guarantees mutual MAS-consistence in any clique (fully con-

nected society) of non-individualistic agents.

Proof. Let n2 =card(
⋃

i∈{2,...,n} Oi \ O1). Using the same principles as the ones
used in demonstration of Prop. 1, we show that each time a counter-example is
sent (finally resulting in a acceptindirect) n2 decreases. As n2 is a positive integer,
it cannot decrase for ever. If n2 does not decrease, it means that the hypothesis
is accepted directly by all agents, that is h1 is consistent with all the observation
sets of the system and all agents have this same hypothesis h1. Thus, all agents
are MAS-consistent, that is, the system is mutually MAS-consistent. This global
revision mechanism hence guarantees mutual MAS-consistence. 2

28

Note however that this mechanism requires a1 to be able to communicate with all
other agents. As a1 can be chosen arbitrarily, this means that this mechanism can
only guarantee this property in the context of fully connected societies (cliques).

Clock-like Hypothesis Propagation without Adoption. Similarly to the
case of local mechanisms, it is possible to define a simple variant of this mecha-
nism: the mechanism Mn

CwA obtained by using M2
UwA (M2

U without adoption)
in Mn

C , respects the individualism of the agents, but can only ensure that the
agent applying it is MAS-consistent.

Iterated Clock-like Hypothesis Propagation. We can make it mutually
MAS-consistent by making all agents whose hypothesis is inconsistent with o

apply it in turn, starting with the agent having received the observation o 4.
We will denote the resulting global revision mechanism by Mn

C∗, for Iterated
Clock-Like Hypothesis Propagation. It guarantees mutual MAS-consistency in
any clique (fully connected society) of possibly individualistic agents.

3.3 Global revision mechanisms (for connected societies)

Static sequential global protocol with propagation When agents are topo-
logically constrained in their communications, a single learner cannot directly
propose its hypothesis to all others agents, and the above-mentionned global
mechanisms cannot be used. Instead, the global mechanism must rely on some
kind of propagation. To ensure that propagation does not reach the same agent
from two different ways, the first basic idea is to eliminate cycles by constructing
a spanning tree (a tree-like sub-graph that contains all the nodes of the original
communication graph).

We describe here a mechanism Mn
P to construct such a tree while propa-

gating and refining the hypothesis at the same time. The agent receiving a new
observation becomes the root of the tree. It begins the propagation by choos-
ing one of its neighbour as its first child, ensuring mutual consistency with it,
and asking it to propagate this hypothesis. Figure 4 illustrates the sub-protocol
MP (ai, k) triggered when an agent ai who has already validated its hypothe-
sis with its k first confirmed children, receives the message propagate(k). The
associated strategy is described below.

1. If k = 0, and ai has some unchecked neighbours, it will first send request-link
to each of its unchecked neighbours. These one can answer either accept-link
(thus becoming a new child of ai), or reject-link if it is already part of this
tree. Either way the agents is marked out of the unchecked neighbours, and
confirmed sons are somehow ordered.

4 Recall that the agents whose hypothesis is inconsistent with o will be the only
ones that will need to change their hypothesis, since hypotheses consistent with o

will remain consistent with
⋃

i∈{1,...,n}
Oi ∪ {o} using the compositionality of the

consistency relation

29

Fig. 4. Global Propagation Mechanism (for agent ai having already validated its hy-
pothesis with k children.

2. If ai does not have more than k children (or if k = 0 does not have any
unchecked neighbour), it means it has no more children to propagate its
hypothesis to. It can then confirm this hypothesis to its parent by sending
it strong-accept. If ai is the root of the tree, then the mechanism ends there.

3. If ai has at least k + 1 children, it triggers a local revision mechanism M2
U

with this (k + 1)th child a′
k.

– If M2
U ends with a acceptindirect, it means that the hypothesis has been

changed, and that ai now has at least one counter-example for its previ-
ous hypothesis. As new hypotheses should only be proposed by the root
of the tree, ai sends hyp-changed to its parent (or itself if ai is the root).

– If M2
U ends with a acceptdirect, ai is now in state 3. It sends propagate(0)

to a′
k, asking it to propagate in turn the hypothesis to its children, if any,

starting with the first. a′
k will then go through the same process that ai,

finally ending with either strong-accept or hyp-changed.
• Receiving a hyp-changed, ai would be back in state 1 and initiate

a local revision mechanism with the sender to get some counter-
example.

• Receiving a strong-accept, ai would then tries to check its hypothesis
with its next children, sending itself a propagate(k+1) to iterates the
process. strong-accept or hyp-changed resulting from this would be
directed to its parent.

Note that in the case of a clique, Mn
P is equivalent to Mn

C .

Property 4. In a connected multiagent system of non-individualistic agents, the
global revision mechanism Mn

P guarantees mutual MAS-consistency.

30

Proof. (Sketch.) First, we consider the linking part of the protocol. The root
links to each of its neighbours, and then, in time, each of its children links to
any neighbour that is not already linked in the tree. As a results we get a tree
containing all agents that are connected to the first agent (the root). If the graph
is connected, the whole system is in the resulting tree.

If the depth of the tree (that is the longest path between the roots and one
of the leaves) is 1, then the protocol is equivalent to Mn

C whose properties has
been proven.

By recurrence, if the depth of the tree is d > 1. Let n3 =card(
⋃

i∈{1,...,n} Oj \

Or) where ar is the root. Then we can consider each of the children ot the root
ar as a sub-tree containing this child and all its descendants. When this child ac

receives a propagate it applies the algorithm to a sub-tree of depth d− 1, ending
with either strong-accept or hyp-changed. An hyp-changed means that ac has
changed its hypothesis hc = hr. As a parent never adopts an hypothesis from a
child, it means that ac has changed its hypothesis because of a counter-example
o ∈

⋃
i∈{1,...,n} Oj , which is inconsistent with its old hypothesis hr. When ar

engage a new conversation with protocol MU , this counter example o will be
added to Or and n3 will decrease. Thus only a finite number of hyp-changed
messages will be send. When all counter-examples are exhausted, each of the
child of ar will finish their propagation by a strong-accept, and the protocol will
end with the hypothesis hr being common to all agents and consistent with every
observation set of the system.2

3.4 Summary

The following table summarises the different revision mechanisms presented here.
The first column is the mechanism name, the second corresponds to the type of
revision mechanism (either internal, local or global), the third is the consistency
property of the mechanism (with its domain) and the last column indicates if
the mechanism respects the individualism of the agents.

Mechanism Type Consistency Indiv.
µEh

internal internal consistency yes
M2

U local mutual peer-consistency no
M2

UwA local peer-consistency yes
M2

B local mutual peer-consistency yes
Mn

C global mutual MAS-consistency (clique only) no
Mn

CwA global MAS-consistency (clique only) yes
Mn

C∗ global mutual MAS-consistency (clique only) yes
Mn

P global mutual MAS-consistent (connected societies) no

4 Applications

4.1 Induction framework

The learning task. We experiment the mechanism proposed above in the case
of incremental MAS concept learning.

31

We consider a propositional language Lp, defined over a set of atoms A.
Negative literals are here represented by additional atoms, like not − a. The
boolean formulae f =(a∧ b)∨ (b∧¬c) will then be written (a∧ b)∨ (b∧not− c).
This representation will be used for learning boolean formulae.

A hypothesis will be a disjunction of terms called prototypes. Each prototype
is a conjunction of atoms a ∈ A. An observation here will be called an example.
An example is represented by a tag + or − and a description composed of a
subset of atoms e ⊆ A. The observation set of an agent, called here its example
memory E = E+ ∪ E− , is constituted of a set of positive examples E+ and a
set of negative examples E−. We shall say that a prototype covers an example if
its constituting atoms are included in the example, and that a hypothesis covers
an example if one of its term covers it.

Consind(h, E), the instanciation of Consα for this inductive setting, states
that h is complete, meaning that it covers all positive examples of E+, and
coherent, meaning that it does not cover any negative example of E−.

We will described below the incremental learning process, which is internal
revision mechanism guaranteeing internal consistence, that we can use as the
base internal revision mechanism for local revision mechanism M2

U or M2
B.

Incremental learning process. The learning process is an update mechanism
that, given a current hypothesis H , a memory E = E+ ∪ E− filled with the
previously received examples, and a new positive or negative example e, produces
a new updated hypothesis. Before this update, the given hypothesis is complete,
meaning that it covers all positive examples of E+, and coherent, meaning that it
does not cover any negative example of E−. After the update, the new hypothesis
must be complete and coherent with the new memory state E∪{e}. We describe
below our single agent update mechanism, inspired from a previous work on
incremental learning [7].

In the following, a hypothesis H for the target formula f is a list of terms
h, each of them being a conjunction of atoms. H is coherent if all terms h are
coherent, and H is complete if each element of E+ is covered by at least one term
h of H . Each term is by construction the lgg (least general generalisation) of a
subset of positives instances {e1, ..., en} [5], that is the most specific term covering
{e1, ..., en}. The lgg operator is defined by considering examples as terms, so we
denote as lgg(e) the most specific term that covers e, and as lgg(h, e) the most
specific term which is more general than h and that covers e. Restricting the
term to lgg is the basis of a lot of Bottom-Up learning algorithms (for instance
[5]). In the typology proposed by [9], our update mechanism is an incremental
learner with full instance memory: learning is made by successive updates and all
examples are stored. Note that this is also a case of learning from interpretations
[3].

The update mechanism depends of the ongoing hypothesis H , the ongoing
examples E+ and E−, and the new example e. There are three possible cases:

– e is positive and H covers e, or e is negative and H does not cover e. No
update is needed, H is already complete and coherent with E ∪ {e}.

32

– e is positive and H does not cover e: e is denoted as a positive counterexample
of H . Then we seek to generalise in turn the terms h of H . As soon as a
correct generalisation h′ = lgg(h, e) is found, h′ replaces h in H . If there
is a term that is less general that h′, it is discarded. If no generalisation is
correct (meaning here coherent), H ∪ lgg(e) replaces H .

– e is negative and H covers e: e is denoted as a negative counterexample of
H . Each term h covering e is then discarded from H and replaced by a set of
terms {h′

1,, h
′
n} that is, as a whole, coherent with E−∪{e} and that covers

the examples of E+ uncovered by H −{h}. Terms of the final hypothesis H

that are less general than others are discarded from H .

Note that this mechanism tends to both make a minimal update of the current
hypothesis and minimise the number of terms in the hypothesis, in particular
by discarding terms less general than other ones after updating a hypothesis.

Mapping summary. The following table summarizes the correspondence be-
tween our formal model and the inductive framework.

Formal Model Inductive framework

Supporting language propositional (LP) over a set of atoms A
Possible hypotheses H any prototype p (conjunction of atoms)
Belief base (Ai) set of prototype {p1, . . . , pm}
Working hypothesis (hi) disjunction of prototype in Ai (hi)
Observations (O) Examples : label + description (set of atoms)
Observation set (Oi) Example memory Ei = E+

i ∪ E−
i

Prior common knowledge (F) none
Consistency relation (Consα(h, O)) completeness and coherence (Consind(h, E))
Internal revision mechanism (µ or Eh) inc. bottom-up learning process (h′ = µ(E, h, e))

Example. We give here an example of propagation with 4 agents, connected
as shown below.

a1

a2

a3

a4

The propositional language has an atom for each letter in the alphabet.
Examples are set of letter (words, but without order nor redundancy). Positives
examples are examples that contains either a or oc. We consider the system
after several learning turn. The example memory of the agents are the following:
E1 = {hat+}
E2 = {boc+}
E3 = {rot−, bat+}
E4 = { }
The previous deliberation has lead the system to adopt the common hypothesis
h = h1 = h2 = h3 = h4 = at ∨ boc.

33

Now, agent a4 receives a new example toc+, that is inconsistent with h. He
triggers the global revision mecanism MP as detailed below:

MP (a4, 0)

CA(a4)
4→2 request-link
2→4 accept-link
4→3 request-link
3→4 accept-link

a1

a2

a3

a4

MU (a4, a2)
4→2 propose(t∨boc)
2→4 accept
OUT: 2→4 acceptdirect

Post

h4 = t ∨ boc unchanged
E4 unchanged

4→2 propagate(0)

MP (a2, 0)

CA(a2)
2→3 request-link
3→2 reject-link
2→1 request-link
1→2 accept-link

a1

a2

a3

a4

MU (a2, a1)
2→1 propose(t∨boc)
1→2 accept
OUT: 1→2 acceptdirect

Post

h2 = t ∨ boc unchanged
E2 unchanged

2→1 propagate(0)

MP (a1, 0)

CA(a1)
1→3 request-link
3→1 reject-link

a1

a2

a3

a4

OUT: 1→2 strong-accept

2→2 propagate(1)

MP (a2, 1)
OUT: 2→4 strong-accept

OUT: 2→4 strong-accept

4→4 propagate(1)

MP (a4, 1)

MU (a4, a3)
4→3 propose(t ∨ boc)
3→4 contre-exemple(rot)
4→3 propose(oc)
3→4 contre-exemple(bat)
4→3 propose(oc ∨ bat)
3→4 accepte
OUT: 3→4 acceptindirect

Post

h4 = oc ∨ bat changed
E4 = E4 ∪ {rot−, bat+}

OUT: 4→4 hyp-changed

OUT: 4→4 hyp-changed

4→4 propagate(0)

34

MP (a4, 0)

MU (a4, a2)
4→2 propose(oc∨bat)
2→4 accept
OUT: 2→4 acceptdirect

Post

h4 = oc ∨ bat unchanged
E4 unchanged

4→2 propagate(0)

MP (a2, 0)

MU (a2, a1)
2→1 propose(oc∨bat)
1→2 contre-exemple(hat)
2→1 propose(oc∨at)
1→2 accept
OUT: 1→2 acceptindirect

Post

h2 = oc ∨ at changed
E2 = E2 ∪ {hat+}

OUT: 2→4 hyp-changed

MU (a4, a2)
4→2 propose(oc∨bat)
2→4 contre-exemple(hat)
4→2 propose(oc∨at)
2→4 accept
OUT: 2→4 acceptindirect

Post

h4 = oc ∨ at changed
E4 = E4 ∪ {hat+}

OUT: 4→4 hyp-changed

4→4 propagate(0)

MP (a4, 0)

MU (a4, a2)
4→2 propose(oc∨at)
2→4 accept
OUT: 2→4 acceptdirect

Post

h4 = oc ∨ at unchanged
E4 unchanged

4→2 propagate(0)

MP (a2, 0)

MU (a2, a1)
2→1 propose(oc∨at)
1→2 accept
OUT: 1→2 acceptdirect

Post

h2 = oc ∨ at unchanged
E2 unchanged

2→1 propagate(0)

MP (a1, 0)
OUT: 1→2 strong-accept

2→2 propagate(1)

MP (a2, 1)
OUT: 2→2 strong-accept

OUT: 2→4 strong-accept

4→4 propagate(1)

MP (a4, 1)

MU (a4, a3)
4→3 propose(oc∨at)
3→4 accept
OUT: 3→4 acceptdirect

Post

h4 = oc ∨ at unchanged
E4 unchanged

4→3 propagate(0)

MP (a3, 0)

CA(a3)
3→2 request-link
2→3 reject-link
3→1 request-link
1→3 reject-link

a1

a2

a3

a4

OUT: 3→4 strong-accept

4→4 propagate(2)

MP (a4, 2)
OUT: 4→4 strong-accept

OUT: 4→4 strong-accept

OUT: 4→4 strong-accept

35

4.2 Abduction framework

Formal machinery. We present here the adaptation of our formal model to an
abductive framework, inspired from Poole’s Theorist system. We consider a first
order language L1. O stands for the predefined set of possible observations that
can possibly be made in any instance of the described system. (In representing
this set, we shall use non-ground schemes where any term with a capital letter
denotes a variable, and all variables are universally quantified. It then represents
all its ground instances in a given Herbrand universe.) Each agent ai is modeled
as a slightly modified version of an instance of a Theorist system [11]:

〈F ,H,�, Oi, Θi, hi〉

where

– F a set of facts, closed formulae taken as being true in the domain;
– H a set of abducible predicates which act as conjectures, possible hypotheses

common to all agents;
– � is the preference relation, a (complete) pre-order on the hypotheses that

we assume common to all agents.
– Oi ⊆ O is a set of grounded formulae representing the observations made so

far by the agent. Each agent knows every observation in this set to be true,
as its sensors are considered perfect;

– Θi is the set of selected hypotheses, which will be defined below;
– hi is the favourite hypothesis of the agent, that it assumes to be true, and

that serves as a basis for deriving its belief set.

F ,H,� are common to all agents. F represents prior knowledge of the agent on
the environment and its rules. We first recall a number of basic definitions, used
for defining Θi, from which hi is taken.

Definition 6 (Scenario [11]). A scenario of (F ,H) is a set θ of ground in-
stances of elements of H such that θ ∪ F is consistent (that is θ ∪ F 6|= 2).

Definition 7 (Explanation of a closed formulae [11]). If g is a closed
formula, then an explanation of g from (F ,H) is a scenario θ of (F ,H) that
(with F) implies g (that is θ ∪ F |= g).

We now introduce a couple of further notions that proved to be appropriate
in our context. Events occurring in the world and observed by the agents may
or may not be explained, or contradicted, by the agent model.

Definition 8 (Positive observation). A positive observation of (F ,H) is an
observation o ∈ O such that there exists an explanation of o from (F ,H)

Definition 9 (Negative observation). A negative observation of (F ,H) is
an observation o ∈ O such that there exists an explanation of ¬o from (F ,H)

36

In the following, we shall note P (O) to refer to the set of all positive observa-
tions of (F ,H) in O ⊆ O, and N(O) to refer to the set of all negative observations
of (F ,H) in O ⊆ O. Note that this is not necessarily a partition: some observa-
tions may have no explanation, while some others may be explained and have
at the same time their negation explained. Moreover, if o ∈ O and ¬o ∈ O, then
o positive iff ¬o negative, and reciprocally.

Definition 10 (Explanation of an observation set). If O ⊆ O is a set of
observations, an explanation of O from (F ,H) is an explanation θ of P (O) from
(F ,H) such that θ ∪ F ∪ N(O) is consistent (which implies the consistency of
θ ∪ O). That is: θ ∪ F |= P (O) and θ ∪ F ∪ N(O) 6|= 2.

In the following, we shall also refer to the conjunction h of the elements of θ

as the hypothesis associated to this explanation.

Definition 11 (Irredundant explanation). An irredundant explanation of O

from (F ,H) is an explanation such that if any element of its associated hypothe-
sis set θ is removed from it, it is no longer an explanation of O. In other words,
an irredundant explanation is an explanation that is minimal wrt. set inclusion.

Typically, as suggested by the aforementioned model, different explanations
will exist for a given formula. What should be the preference relation between
explanations? Clearly there can be many different ways to classify preferred
explanations. In our framework, we shall use three classical options (the two first
being borrowed to [11], and the last one being trivially based on cardinality).

1. minimal explanation— prefer the explanations that make the fewest (in
terms of set inclusion) assumptions. This is what we have defined as irredun-
dant explanation to avoid confusion with the minimal explanations according
to the preference relation, borrowing a term from set-cover based abduction
[10];

2. least presumptive explanation— an explanation is less presumptive than an-
other explanation if it makes fewer assumptions in terms of what can be
implied from this explanation. An explanation ξ1 is less presumptive that
another explanation ξ2 iff ∀g s.t. ξ1 |= g, it is the case that ξ2 |= g. There-
fore, a least presumptive explanation is an explanation which is not less
presumptive than any other explanation.

3. minimal cardinality— is self-explanatory, and prefers explanations that con-
tains the fewest terms as possible.

Based on this system, we can now define precise the definition of Θi and hi:

– Θi, the set of selected hypotheses associated with each irredundant explana-
tions of the observation set Oi. Θi = {

∧
p∈θ p|θ is an irredundant explanation

of Oi from (F ,H) }. For a given set of observation Oi, EΘ, the explanation
function returns the set of all hypotheses associated with an irredundant
explanation of Oi from (F ,H).

37

– hi is the favourite hypothesis used as a working hypothesis. It is an element
of Θi chosen by the agent among minimal hypothesis according to the pref-
erence relation �p, that is hi ∈ min�p

(Θi). We can then abstract away all
these elements in the hypothesis formation function: Eh associates any set of
observation Oi with an hypothesis hi ∈ min�p

(EΘ(Oi)).

The instanciation of the consistency relation for this abductive setting
Consabd(h, O) is then defined as the combination of two properties:

– coherence, that is ∀o ∈ N(O), {h}∪F 6|= ¬o (which implies ∀o ∈ O, {h}∪F 6|=
¬o)

– completeness, that is ∀o ∈ P (O), {h} ∪ F |= o.

Note that this definition of consistence corresponds to the logical definition of
abductive explanation. We have: Consabd(h, O) iff h is an abductive explanation
of O for the theory F . Our definition of Eh ensures these properties, and so
enables each agent to guarantee its internal consistence.

Example. We consider several agents trying to diagnose together which disease
affects some person. They share the same medical knowledge F about diseases
and symptoms, but each of the agent has only observed some incomplete part of
the symptoms affecting the person. Observations would be the observable symp-
toms (effects or manifestations of the diseases), abducible predicates correspond
to diseases (causes of the symptoms), and the facts are the rules linking diseases
and symptoms. Hypotheses could then be conjunction of abducible predicates.

O = { Fever(X), Cough(X), Mucus(X), ThroatAche(X), SwallowsEasily(X),
¬Fever(X),¬Cough(X),¬Mucus(X),¬ThroatAche(X),¬SwallowsEasily(X)}

H = { Flu(X), Bronchitis(X), Angina(X), HayFever(X)}

and

F = { Flu(X) ⇒ Fever(X),
F lu(X) ⇒ Cough(X),
Bronchitis(X) ⇒ Cough(X),
Bronchitis(X) ⇒ Mucus(X),
Bronchitis(X) ⇒ ThroatAche(X),
Angina(X) ⇒ Fever(X),
Angina(X) ⇒ ThroatAche(X),
Angina(X) ⇒ ¬SwallowsEasily(X),
HayFever(X) ⇒ Mucus(X)}

Note that Fever(X), Cough(X), Mucus(X) and ThroatAche(X)
and ¬SwallowsEasily(X) are positive observation schemes, whereas
SwallowsEasily(X), ¬Fever(X), ¬Cough(X), ¬Mucus(X), and
¬ThroatAche(X) are negative observation schemes.

Now suppose that agent a1 has observed O1 =
{Fever(Tom),¬ThroatAche(Tom)}.

38

From these observations, it can deduce two explanations : θu = {Flu(Tom)} and
θuh = {Flu(Tom), HayFever(Tom)}. But θuh is not irredundant (as θu ⊂ θuh

is also an explanation). Therefore, Θ1 = {Flu(Tom)} and h1 = Flu(Tom).

Suppose in addition that agent a2 has observed O2 =
{Cough(Tom), Mucus(Tom)}.
From these observations, it can deduce two explanations : θb =
{Bronchitis(Tom)} and θuh = {Flu(Tom), HayFever(Tom)}, as well as other
redundant explanation such has {Flu(Tom), HayFever(Tom), Angina(Tom)},
etc. Therefore, Θ2 = {Bronchitis(Tom), F lu(Tom)∧ HayFever(Tom)}.
Our preference relation prefers explanations with minimal cardinality (as it
seems more likely that someone has one disease rather that several). It thus
selects h2 = Bronchitis(Tom).

Now if these two agents were to communicate using the Bilateral Hypothesis
Exchange Protocol, we would get the following dialogue:

a1 sends to a2 propose(F lu(Tom))
a2 sends to a1 counter-example(Mucus(Tom))
a1 sends to a2 propose(F lu(Tom) ∧ HayFever(Tom))
a2 sends to a1 counter-propose(Bronchitis(Tom))
a1 sends to a2 counter-example(¬ThroatAche(Tom))
a2 sends to a1 propose(F lu(Tom) ∧ HayFever(Tom))
a1 sends to a2 accept

Note that in this case, the agents were not consistent before receiving a single
new information. Hypothesis Exchange protocols can then restore consistency
between two agents even if each of them did receive several new observations
since they were consistent.

Mapping summary. We report in the following table the correspondence be-
tween our formal model and the abductive framework used here.

Formal Model Abductive framework

Supporting language first order logic (L1)
Possible hypotheses H set of abducible predicates H
Belief base (Ai) favourite explanation of Oi from (F ,H)
Working hypothesis (hi) conjunction of grounded abducibles predicates of Ai (hi)
Observations (O) set of possible observations, grounded formulae (O)
Observation set (Oi) observation set Oi, contains P (Oi) and N(Oi)
Prior common knowledge (F) set of facts (F)
Consistency relation (Consα(h, O)) compl. for P (O), coherence with N(O) (Consabd(h, O))
Internal revision mechanism (µ or Eh) Theorist based hyp. formation func. (h′ = Eh(O))

39

5 Related Works

This paper extends our previous work by setting up an abstract framework for
hypothesis refinement under communication constraints, that can be instanti-
ated with abductive or inductive reasoning agents. More specifically, [2] was
concerned with a specific dynamic abductive application where different types
of mechanisms were experimented, while [2] mainly experimented one specific
mechanism in the context of distributed learning. This paper abstract away from
these applications and proposes a detailed catalogue of generic mechanisms for
hypothesis refinement. Now if we consider the specific contexts of abductive or
inductive reasoning, some interesting links can be made with other works.

The problem of multiagent diagnosis has been studied by Roos and colleagues
[12], where a number of distributed entities try to come up with a satisfying
global diagnosis of the whole system. They show in particular that the num-
ber of messages required to establish this global diagnosis is bound to be pro-
hibitive, unless the communication is enhanced with some suitable protocol. This
approach, however, does not consider any specific constraint governing agents’
interactions. One other piece of work connected to the trend of agent-oriented
computational logic that seems particularly relevant to our approach is that of
Gavanelli et al. [6]. They identify under which circumstances some notion of
global or local consistency (the counterparts of our mutual MAS and internal
consistency) can be achieved. However, they abstract away from any specific
protocol in their study, concentrating on the definition of what it semantically
means for a group to reason abductively. There is also a growing body of work
related to distributed learning, but as far as we know, none of these works are
specifically oriented on the design of suitable protocols for hypothesis refinement.

6 Conclusion

The main objective of this paper has been to set up the foundations of a frame-
work allowing the study of the properties of different protocols for hypothesis
refinement. We have investigated how (under what conditions) convergence to a
consistent state can be guaranteed at global levels: (i) between two agents; (ii)
in a clique of agents; and (iii) in general in a society of agents. In particular, we
have shown how this approach can be instantiated in the context of abductive
or inductive tasks; and provided different examples illustrating our approach.
We regard this problem as a crucial element for the development of applications
involving a distributed knowledge.

Now the concrete assessment of these protocols is very much dependent of
the actual domain where they are eventually implemented. In a first companion
paper [2], those aspects have been experimentally investigated in the context of
incremental inductive supervised concept learning. Especially the effectiveness
in term of accuracy and efficiency in term of redundancy were evaluated for pro-
tocol Mn

C . In a second companion paper [1], the efficiency and effectiveness of

40

such protocols have been studied in the very different context of a critical situ-
ation (hence involving a dynamic communication network) involving a number
of agents aiming at escaping from a burning building. In this abductive appli-
cation, agents observe the evolving environment and communicate observations
and hypothesis. The results reported in these papers indeed emphasize the im-
portance of the application domain for protocol design. We observed for instance
in this last application that the efficiency of hypothesis exchange (as opposed to
a mere observation exchange) depends very much on the type of map represent-
ing the building. There are of course many ways to elaborate on the proposal
put forward in this paper. On the longer term, one very significant but highly
challenging departure from the framework developed here would be to relax the
assumption of compositionality of the consistency relation.

Acknowledgments. We would like to thank Henry Soldano whose detailed com-
ments helped to greatly improved the paper.

References

1. Gauvain Bourgne, Gael Hette, Nicolas Maudet, and Suzanne Pinson. Hypothe-
ses refinement under topological communication constraints. In Proceedings of
AAMAS-2007. ACM Press, 2007.

2. Gauvain Bourgne, Amal El Fallah Seghrouchni, and Henry Soldano. Smile : Sound
multi-agent incremental learning ;-). In Proceedings of AAMAS-2007. ACM Press,
2007.

3. Luc De Raedt. Logical settings for concept-learning. Artif. Intell., 95(1):187–201,
August 1997.

4. Peter Flach. Abduction and induction: Syllogistic and inferential perspectives. In
Proceedings of the Workshop on Abductive and Inductive Reasoning, 1996.

5. Johannes Fürnkranz. A pathology of bottom-up hill-climbing in inductive rule
learning. In ALT, volume 2533 of LNCS, pages 263–277. Springer, 2002.

6. Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. An abductive
framework for information sharing in multi-agent systems. In Proceedings of the 4th
International Workshop on Computational Logic in Multi-Agent Systems (CLIMA-
IV), LNAI 3259, pages 34–52. Springer, 2004.

7. M’hammed Henniche. MGI: an incremental bottom-up algorithm. In IEEE Aust.
and New Zealand Conference on Intelligent Information Systems, pages 347–351,
1994.

8. Sébastien Konieczny and Ramón Pino Pérez. Propositional belief base merging or
how to merge beliefs/goals coming from several sources and some links with social
choice theory. European Journal of Operational Research, 160(3):785–802, 2005.

9. Marcus A. Maloof and Ryszard S. Michalski. Incremental learning with partial
instance memory. Artificial Intelligence, 154(1-2):95–126, 2004.

10. Y. Peng and J. Reggia. Abductive Inference Models for Diagnostic Problem Solving.
Springer Verlag, 1990.

11. D. Poole. Explanation and prediction: An architecture for default and abductive
reasoning. Computational Intelligence, 5(2):97–110, 1989.

12. N. Roos, A. ten Tije, and C. Witteveen. A protocol for multi-agent diagnosis
with spatially distributed knowledge. In Proceedings of AAMAS03, pages 655–661,
2003.

41

Logic-statistic modeling and analysis of
biological sequence data: A Research Agenda

Henning Christiansen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: henning@ruc.dk

Abstract. We describe here the intentions and plans of a newly started,
funded research project in order to further the dialogue with the inter-
national research in the field. The purpose is to obtain experiences for
realistic applications of flexible and powerful modeling tools that inte-
grate logic and statistics, as exemplified by the PRISM system. As part
of this, we will develop systematic and automatic optimizations, and the
overall goal is to see how far it is possible to promote such techniques in
computational biology.

1 Introduction

We describe the background and intentions of a newly started, funded research
project. The primary project goal is to promote the application of logic-statistic
modelling tools for the analysis of biological sequence data, where we use the
PRISM system developed by Sato and Kameya [1, 2] as a starting point. Com-
pared with traditional models based on HMMs and SCFGs, the techniques in
consideration lift the expressive power to, in principle, Turing-complete lan-
guages. However, the price of the additional expressibility is comptuational com-
plexity. In this project we will approach these computational problems with
state-of-the-art program analysis and transformation techniques, including to
see how existing and optimized implementations for traditional models can be
integrated. This research is combined with investigations of biological problems
which in themselves are relevant and provide good test cases. The project group
include researchers in Computer Science and in Biochemistry from a number of
unversities as well as industrial partners representing a major supplier of probi-
otic products for the dietary supplement industry, Chr. Hansen, plus a leading
supplier of bioinformatics software, CLC bio; the project runs 2007–2011 and
includes funding for several PhDs and postdocs, plus workshops etc.

There is an emerging trend in applying logic-based learning techniques for
computational biology that we shall not review here, and in the present project
we are especially interested in technologies based on logic programming as the
central modeling paradigm. As is well known, logic programming is superior for
modeling many linguistic phenomena due to elegance and flexibility, but not
always with respect to efficiency.

42

We consider the abductive potential in such techniques. An overall model of
the relationship between biological properties (understood in a very wide sense)
and its encoding in a sequence (a protein, a genome, . . .) is described as a
model expressed as a statistic-logic program; known and already investigated
sequences are used for training the model, i.e., for learning probabilities for its
random variables; and with the learned probabilities, the model can be used for
prediction of the “best” proposal for the biological properties encoded in a given
sequence. This is quite analogous to the paradigm of linguistic discourse analysis
as abduction [3] which we have studied in a logic programming context [4].

As test cases, we may use eukariotic problems from the literature for press-
ing complexity, but the main biological applications reflect the project group’s
expertise and practical needs in prokaryotic biochemistry. This include gene find-
ing in health promoting bacteria, phylogenetic gene prediction, and prediction
of gene function.

In section 2, we give an introduction to PRISM by a biologically inspired ex-
ample which leads us to some observations why these techniques may be suited
for biological sequence analysis. Section 3 describes our first nontrivial applica-
tion for sequence data, which, however, does not involve prediction at its present
state. Section 4 indicates some the computational problems that we intend to
approach, and section 5 suggest possible extensions to the present PRISM, and
section 6 provides a conclusion and discussion of a few specific points.

2 Working with sequence data in PRISM

Syntactically, PRISM extends the Prolog language with discrete, random vari-
ables, called msw for multi-valued switch. The following declarations, which are
part of the model we describe below, define two singleton variables and two
parameterized, and in principles, infinite classes of variables.

values(moreInBetween,[stop,continue]).
values(moreGlue,[stop,continue]).
values(which(_),[a,c,g,t]).
values(which(_,_),[a,c,g,t]).

Executing a call msw(moreInBetween,X) within a PRISM program will, by a
random choice, assign one of X=stop or X=continue. As shown by [5], Prolog’s
traditional Herbrand model semantics generalizes immediately to a probabilistic
semantics when probabilities are given for each random variable (provided that a
few restrictions are respected on how msw is used in the program). In other words,
such a PRISM program is a probabilistic model in the sense that it provides a
probability distribution for all events that can be formulated in the program’s
logical language.

The following example program models a simple loop structure in a sequence;
it is inspired by protein folding but apart from that it is completely artificial and
has nothing to do with biology. If a sequence has the following form,

---------gggctgg-----------------------------gggctgg------

43

where a “-” indicates a random letter, a loop structure can arise assuming
that each letter tend to glue to an identical letter as indicated by the following
drawing.

gg
gc
tg
g

gg
gc
tg
g

Let us arbitrarily assume that the actual gluing zones can be relevantly described
by a first order Markov model, and the stuff in between by a second order; in
other words, we indicated that the two kinds of substrings are characterized by
their own distribution of letters and other regularities. The following program
defines a model for such sequences which captures these assumptions. Notice
that random variables are used to generate the first copy of the gluing string,
which then is repeated as a verbatim copy. Random variables moreInBetween
and moreGlue determine the length of each subsequence. A goal sequence(G,S)
means that sequence S has a loop glued together by the substring G.

sequence(G,S):-

inBetween(-,S,S1),

glue(G,-,-, S1,S2),

inBetween(-,S2,S3),

glueCopy(G, S3,S4),

inBetween(-,S4,[]).

inBetween(L,S1,S2):- msw(moreInBetween,YN), inBetween2(L,S1,S2,YN).

inBetween2(_,S,S,stop).

inBetween2(L1,[L|S1],S2, continue):- msw(which(L1),L), inBetween(L,S1,S2).

glue(G,L1,L2,S1,S2):- msw(moreGlue,YN), glue2(G,L1,L2,S1,S2,YN).

glue2([],_,_,S,S,stop).

glue2([L|G],L1,L2,[L|S1],S2, continue):-

msw(which(L1,L2),B), glue(G,L2,L,S1,S2).

glueCopy([],S,S).

glueCopy([L|G],[L|S1],S2):- glueCopy(G,S1,S2).

With fixed probabilities, this program can generate sets of samples which reflect
the probabilistic semantics. PRISM can also learn probabilities from files of sam-
ples, which we can imagine represent sequences whose actual structure has been
recorded in the laboratory. Assuming that the model is really appropriate for the
sequences in questions, the detailed probabilities learned express regularities or
structures within the substrings that may be new for the biological researcher,
and in this way there is a flavour of induction. We can assume a file of training
date as follows. The dominance of letters g and c in the gluing strings holds
throughout the file; the use of bold face is for emphasis only and not part of the
file.

44

sequence([g,g,g,c,t,g,g],[a,g,g,g,c,t,g,g,a,a,t,c,a,a,a,t,c,t,
t,t,a,a,c,g,g,g,c,t,g,g,a,g,a,c,t,a,t,g,t,t,a,g,a,a,a,a]).

sequence(......,).
sequence(....,).
...

With the probabilities learned from these samples, PRISM can do Viterbi com-
putations in order to predict, for a given sequence, the most likely glue substring
out of the “logically” possible; this process can be compared with probabilistic
abduction. See the following example, where the preferred gluing string (out of
several possible) has similar high frequencies of g and c as the training data.

?- viterbig(sequence(G,[t,a,t,a,g,c,g,c,t,a,t,a,g,c,g,c,t,a,t,a])).
G = [g,c,g,c]

While being extremely simplistic, this example illustrates the qualities of PRISM
that has motivated us to take it as initial platform for our research project:

– The clean semantics of the system ensures the we can accept a program as
a formalized model of a phenomenon.

– Known probabilistic models, e.g., HMM, SCFG, Bayes’ networks, etc. can
be expressed in straightforward ways and, not least, combined while still
maintaining a coherent model.

– Arbitrary data structures and auxiliary variables can be introduced whenever
convenient without destroying the clean semantics.

– Compared with other linguistically oriented models, PRISM lifts to in princi-
ple Turing-complete languages (as opposed to regular (HMM) or context-free
(SCFG)); the model above is based on a non-context-free language.

– The same model (= PRISM program) can be used for learning, sample gen-
eration, and prediction which gives a theoretically sound basis for comparing
the different phases.1

3 Logic-statistic modeling for testing gene finders

Here we describe what seems to be the first non-trivial application of PRISM
for a biological sequence problem. In a recent paper [6], we describe a partial
model for genome sequences, which is used for the problem of producing artificial
test data for testing existing gene finder programs; this problem is relevant since
production of authentic test data is very expensive and sparsely available. The
idea of using artificial test data for this purpose has been applied before [7, 8].
Basically, these works applied HMMs combined with ad hoc principles and it
can be questioned [6] how “natural” the produced date are. Our aim of using
PRISM is, of course, to provide a more detailed and reliable model, and thus
better test data.
1 Occationally it may be needed to use a few low-level Prolog hacks to have the

program perform efficiently for the different phases, but done in a disciplined way,
this may not destroy the semantics.

45

The model is defined for the intergenic subsequences capturing GC islands,
occurrences of various sorts of repeat strings, and mutations. Probabilities were
learned from the a set of sequences that were marked up using existing mapping
tools. Since a full model was not available which also covers genes, we pasted
together artificially produced intergenic subsequences with authentic genes. The
conclusion from testing three different gene finders was that they all predicted
too many genes and different genes. We shall not go into details here with this
model, but only mention some distinct features of it that shows the flexibility
a modeling tool which is based on a general and elegant programming language
such as Prolog.

– Using PRISM’s parameterized random variables, we defined a multi-level
model, the top-level describing GC island, and embedding it in an abstract
data type, each random variable and probability defined for the lower levels,
exists in two versions for being in or outside of a GC island. The remaining
part is a two-level Markov model, one level determining the alternation of
different substring types (different sorts repeat strings, plain coloured noise,
etc.) and the lowest level how these substring are built from letters.
— This is a quite complicated model, but which by an experienced logic
programmer can be organized in a readable way.

– A fairly large catalogue of named repeater strings were added, encoded from
existing resources as a binary predicate; still this respects a reasonable se-
mantics.

– To reduce complexity in handling mutations, we added a preprocessing phase
for the training data, which uses a best match algorithm to produce exactly
one detailed mark-up of the mutations that are supposed to have taken place
when a (section of) a repeater string was copied into the sequence.

– Using a 64 bit version of PRISM we could, without any further optimizations,
train from sequences of a total length up to a million in minutes.

However, it is important to notice that the problem of generating test data
has been chosen carefully as our first exercise, as it is far less computationally
complex than using the model for prediction of genes or other structures. We
discuss consequences of this observation in the concluding section.

4 Computational problems considered in the project

A major problem in using PRISM “as is” for large sequences is storage consump-
tion. First of all the sequences themselves which, when represented as Prolog
lists, take up far too much space and, parodically, in the application described
above we needed to upgrade to a 64 bit architecture, which means the data
size doubles so that one letter in a sequence occupies 24 bytes as opposed to
1 byte or even down to 2 bits in a traditionally programmed architecture for
sequence analysis. Secondly, PRISM uses an explanation graph which may grow
to the size of the input data or worse; we would need to identify when a model
or part thereof can do with simpler learning principles, e.g., simple counting in

46

some cases. There exist techniques for compact representation of trees which
may inspire to similar methods for graphs.

An automatic analysis may identify when a model resembles, say a HMM, so
that the system can switch to a specialized implementation. The project group
includes developers for competitive HMM based software [9] so we have the
possibility to interface with existing software.

Execution time may also become a problem since PRISM calculates all prob-
abilities as correct as possible, which means that it will trace all possible ex-
planations for a given observation, including those with such a small probability
that it does not contribute in any significant way. The project group includes ex-
pertise in automatic program analysis and semantics preserving transformation
of logic programs. However, for programs with a probabilistic semantics and a
very high complexity, some sort of pruning is necessary. Thus, new techniques
are in demand which produce not necessarily correct results, but results which
are guaranteed not to deviate less than some epsilon from the true results.

One possible way to reduce complexity seems to be by splitting the sequence.
Analysis of a sequence typically takes time which is a steep function of the length
of the sequence. Splitting it into pieces analyzed separately and combining results
is a way of reducing time consumption. Analysis of a model may indicate where
“good” split points may be identified and what is the loss of precision.

Pre-processing and additional annotation of data. Models are often trained
from previously marked-up sequences, and pre-processing the sequences by adding
additional annotations can reduce complexity of the training phase. As an ex-
ample, in the application described in section 3 and described in further detail
in [6], we applied a best-match algorithm to produce unique descriptions of
the mutation errors in occurrences of repeat strings. This technique made the
training time roughly proportional to the sequence length. Such preprocessing
mechanisms should be studied further and generalized.

5 Proposals for enhanced expressibility

We have identified until now two dimensions where it can be relevant with ad-
ditional expressibility compared to PRISM.

The first one concerns numerical distributions. Using a random variable for
each letter to determine whether to continue generating or stop, results in a
geometric distribution of (sub-) sequence lengths, and this principle is inherent
in Markov based models as well as our example in section 2. However, a geometric
distribution gives a relatively high probability to short sequences which in many
cases is not appropriate to characterize the lengths of substrings of a given
kind. For the genomic sequence model described in section 3 we coped with this
problem for GC islands by assuming a fixed minimum length followed by a tail
generated by a geometric distribution; this is a hack also often applied with
HMMs. This is a very inelegant solution and in most cases it does not give a
reliable model. We consider extending with facilities so that normal distributions

47

or perhaps a sort of “generic smooth distribution” can be described and learned
from observational data.

The second topic concerns constraints and is more difficult. A stochastic se-
quence model in PRISM (or an HMM or SCFG) typically describes a distribution
of what is possible, but have difficulties in capturing that some of these strings
are not desired. Consider, for example, the model for intergenic subsequences
described in section 3; here the random choices may also capture patterns that
represent genes by accident, so to speak. This may happen more frequently that
one would expect since the repeat substrings that occur may contain (mutated
and fragmented) remains of obsolete genes.

It can obviously be a problem for an application that generates data. In-
tuitively, a possible solution might be to analyze the sequences produced with
a new model that captures undesired patterns so that they can be discarded.
However, the theoretical justification of this approach may be problematic as it
indicates subtle dependencies between the random variables of the model.

6 Conclusion and discussion

In this paper, we have presented a research project whose intention is to study
how biological sequence analysis may be improved using advanced logic-statistic
modeling and machine learning techniques based on logic programming. This
involves both getting more experience in using and developing such models as
well as improving the modeling facilities andtheir implementation.

At time of writing, the project is just about starting up, so we have only few
and early results to report, obtained from an experiment in generating artificial
test data for gene finding in eukariotic genomic sequences. There is a biological
focus on prokaryotic genetics in the project, which means that sequences are
measured in thousands as opposed to millions, so we may hope to get biologically
interesting results even if not all computational problems that we identified, have
been solved.

As we noticed in section 3, the task of generating artificial sequences seems
computationally far less complex than the task of prediction, which is to iden-
tify the most probable structure of an observed sequence, For this reason, the
models applied for gene prediction tend to tune down the level of sophistication;
most gene finders are based on HMMs. The general lower complexity of data
generation (including the preceding learning phase) means that it is appropriate
in general to use much more fine-grained and hopefully more reliable models
for this part. This may suggest a methodology for development of gene finders,
starting from (a) a detailed model, as can be developed in PRISM or other tools
of similar expressibility, and from it develop (b) a model biased towards efficient
implementation. During this process (a) can be applied continually to test (b)
and get an indication of how much precision is sacrificed. We may also hope that
our project may lead to a reduction of the distance between models of the (a)
and (b) types.

48

Acknowledgement: This work is supported by the project “Logic-statistic
modelling and analysis of biological sequence data” funded by the NABIIT pro-
gram under the Danish Strategic Research Council, and the CONTROL project,
funded by Danish Natural Science Research Council.

References

1. Sato, T., Kameya, Y.: Statistical abduction with tabulation. In Kakas, A.C., Sadri,
F., eds.: Computational Logic: Logic Programming and Beyond. Volume 2408 of
Lecture Notes in Computer Science., Springer (2002) 567–587

2. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res. (JAIR) 15 (2001) 391–454

3. Hobbs, J.R., Stickel, M.E., Appelt, D.E., Martin, P.A.: Interpretation as abduction.
Artif. Intell. 63(1-2) (1993) 69–142

4. Christiansen, H., Dahl, V.: Meaning in Context. In Dey, A., Kokinov, B., Leake, D.,
Turner, R., eds.: Proceedings of Fifth International and Interdisciplinary Conference
on Modeling and Using Context (CONTEXT-05). Volume 3554 of Lecture Notes in
Artificial Intelligence. (2005) 97–111

5. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: ICLP. (1995) 715–729

6. Christiansen, H., Dahmcke, C.M.: A machine learning approach to test data gen-
eration: A case study in evaluation of gene finders. In: International Conference on
Machine Learning and Data Mining MLDM’2007, Leipzig/Germany. Lecture Notes
in Artificial Intelligence, Springer (2007) To appear.

7. Burset, M., Guigó, R.: Evaluation of Gene Structure Prediction Programs. Genomics
34(3) (1996) 353–367

8. Guigó, R., Agarwal, P., Abril, J.F., Burset, M., Fickett, J.W.: An Assessment of
Gene Prediction Accuracy in Large DNA Sequences. Genome Res. 10(10) (2000)
1631–1642

9. http://www.clcbio.com/.

49

Reconsideration of Circumscriptive Induction
with Pointwise Circumscription �

Koji Iwanuma1, Katsumi Inoue2, and Hidetomo Nabeshima1

1 University of Yamanashi
4-3-11 Takeda, Kofu-shi,Yamanashi 400-8511, Japan
{iwanuma,nabesima}@iw.media.yamanashi.ac.jp

2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ki@nii.ac.jp

Abstract. Explanatory induction and descriptive induction are main
frameworks for induction in logic. The both frameworks, however, have
own some serious drawbacks; the explanatory induction often causes in-
ductive leap problem and descriptive induction sometimes fail to explain
given observations. Circumscriptive induction is a new framework in-
tended to overcome these difficulties by unifying explanatory induction
and descriptive induction. In this paper, we study and improve some
aspects of circumscriptive induction. First, we enlarge the concept of
inductive leaps. Secondly we clarify the sufficient condition for conser-
vativeness with respect to generalised induction leaps, which shows that
every correct solution for circumscriptive induction must be strongly con-
servative. Moreover we propose a new tractable induction framework,
called pointwise circumscriptive induction. The pointwise induction just
uses first-order logic with equality in the formulation, and does not de-
mand any second-order computation. Pointwise induction enables us to
derive some interesting hypotheses by the ordinary resolution performed
in a mechanical way.

1 Introduction

There are two major frameworks for induction in logic, that is, explanatory in-
duction and descriptive induction . Explanatory induction [18, 12] is the infer-
ence intended to induce general rules, called hypotheses, which explain the given
observation under background knowledge. Descriptive induction [4, 12] induces
hypotheses describing regularities confirmed by observations. Descriptive induc-
tion is increasing its own importance in the context of data mining. These two
traditional frameworks have strength and weakness which are complementary
to each other. For example, one of the most serious drawbacks in explanatory
induction is inductive leaps, which deduce new facts not stated in given observa-
tions. Descriptive induction, on the other hand, often fails to induce hypotheses
which can explain given observations.
� This research was partially supported by the Grant-in-Aid from The Ministry of

Education, Science and Culture of Japan ((B)(1) No.17300051)

50

Inoue and Saito [6] proposed a novel induction framework, called circumscrip-
tive induction, for integrating explanatory induction and descriptive induction.
Circumscriptive induction is intended to possess two important properties: com-
pleteness for explaining given observations and conservativeness for causing no
induction leaps.

In this paper, we study circumscriptive induction and its several aspects.
Firstly we extend and reformulate the concept of inductive leaps, Secondly we
simplify the sufficient condition for conservativeness relative to the generalized
induction leaps. Moreover we show that a correct solution [6] to circumscriptive
induction never involves induction leaps, which means that every correct solution
must be conservative.

Circumscription, however, uses a second-order formulation, so is highly in-
tractable for computing. As one approach for this computation problem, we
propose a new tractable framework, called pointwise circumscriptive induction.
Pointwise circumscription proposed by Lifschitz [13, 15] is a first-order approx-
imation of circumscription. Thus pointwise circumscription induction never de-
mands any second-order computation and often generates interesting hypothesis
just with the ordinary resolutions.

This paper is organised as follows: Section 2 is preliminaries. In Section 3,
we improve some aspects of circumscriptive induction. Section 4 is dedicated to
pointwise circumscription and induction. Section 5 is for conclusion and future
works.

2 Preliminaries

In this paper, we consider a second-order language L with the first-order equal-
ity [13]. We suppose L has predicate variables, but no function variables. We use
a λ-notation for convenience to denote predicate expressions. An n-ary predicate
expression is an expression of the form λx̄.A(x̄), where x̄ is a tuple of n individ-
ual variables x1, . . . , xnand A(x̄) is a formula possibly involving free occurrences
of variables from x̄. If α is an n-ary predicate expression λx̄.A(x̄) and t̄ is a
tuple of n terms t1, . . . , tn, then the expression α(t̄) stands for the formula A(t̄).
We identify a predicate constant P with the predicate expression λx̄.P (x̄), and
similarly for predicate variables.

Definition 1. Let P1, . . . , Pn be predicate constants, and α1, . . . , αn be pred-
icate expressions such that Pi and αi are of the same arity (1 ≤ i ≤ n).
A[P1/α1, . . . , Pn/αn] is the formula obtained from a formula A by simultaneously
replacing each occurrence Pi(t) in A by the term αi(t) (for each i = 1, . . . , n).

A clause is a disjunction of literals

¬A1 ∨ · · · ∨ ¬Am ∨ Am+1 ∨ · · · ∨ An

where each Ai is an atom. Any variable in a clause is assumed to be universally
quantified at the front. A clause is also written as:

A1 ∧ · · · ∧ Am ⊃ Am+1 ∨ · · · ∨ An

51

A clausal theory is a finite set of clauses. A clausal theory is identified with the
conjunction of the clauses in it, and is also simply called a formula.

Let B, E and H be all clausal theories, where B, E and H are called a
background knowledge, an observation and a hypothesis, respectively.

Definition 2 (explanatory induction [18, 12]). Given background knowl-
edge B and an observation E, the task of explanatory induction is to infer a
hypothesis H such that

B ∧ H |= E,

where B ∧ H is consistent.

Definition 3 (descriptive induction [4, 12]). Given background knowledge
B and an observation E, the task of descriptive induction is to infer a hypothesis
H such that

Comp(B ∧ E) |= H,

where Comp(B ∧ E) denotes the predicate completion of B ∧ E relative to all
predicates.

Example 1 (Inoue and Saito [6]). Let us consider the following background
knowledge B1 and the observation E1:

B1 : Bird(a) ∧ Bird(b);
E1 : Flies(a).

The explanatory induction can generate the following hypothesis H1:

H1 : ∀x(Bird(x) ⊃ Flies(x)).

The hypothesis H1 satisfies B1 ∧ H1 |= E1, but causes an inductive leap, that
is, B1 ∧ H1 |= Flies(b). On the other hand, descriptive induction produces the
hypothesis H2:

H2 : ∀x(Flies(x) ⊃ Bird(x)).

The hypothesis H2 never realizes an induction leap, i.e., B1∧H2 �|= Flies(b). But
H2 fails to deduce E1, i.e., B1 ∧ H2 �|= E1. These clearly show that explanatory
induction and descriptive induction have their own strength and weakness which
are complementary to each other.

Inoue [6] studied these difficulties, and proposed a new approach, called cir-
cumscriptive induction to overcome these shortages.

2.1 Circumscriptive Induction

Firstly we give the definition of circumscription in second-order language as
follows: For any two predicate constants P and Q with the same arity, (P ≤ Q)
is an abbreviation for ∀x(P (x̄) ⊃ Q(x̄)), where x̄ is a tuple of distinct variables.
Suppose P̄ = P1, . . . , Pn and Q̄ = Q1 . . . , Qn are tuples of predicate constants
such that Pi and Qi have the same arity for i = 1, . . . , n. Then, P̄ ≤ Q̄ stands
for P1 ≤ Q1 ∧ · · · ∧ Pn ≤ Qn, and P̄ < Q̄ stands for (P̄ ≤ Q̄) ∧ ¬(Q̄ ≤ P̄).

52

Definition 4 (parallel circumscription[13, 16]). Let A(P̄ , Z̄) be a formula
containing tuples P̄ and Z̄ of predicate constants P1, . . . , Pm and Z1, . . . , Zn,
respectively. Suppose that pi and zj are predicate variables of the same arity as
Pi and Zj , respectively, for i = 1, . . . ,m and j = 1, . . . , n. If we denote the tuple
p1, . . . , pm by p̄ and z1, . . . zn by z̄, the circumscription CIRC[A; P̄ ; Z̄] of P̄ with
Z̄ varied is defined as:

A(P̄ , Z̄) ∧ ¬∃pz(A[P̄ /p̄, Z̄/z̄] ∧ (p̄ < P̄)).

Predicates P1, . . . , Pm are called minimised predicates, and Z1, . . . , Zn are called
variable predicates. When Z̄ is empty, the circumscription is denoted as CIRC[A; P̄].

In this paper, we consider only standard models for the equality. A structure
M consists of a non-empty set |M |, called the domain of individuals , functions
from |M |n to|M | representing n-ary function constants, and subsets of |M |n
representing n-array predicate constants. We write |K|M to denote the extension
of a (function or predicate) constant K in a structure M . The extension of a
predicate expression λx̄.A(x̄) in a structure M is also denoted as |λx̄.A(x̄)|M .
The equality = is interpreted as the identity relation on |M |. A structure M is
a model of a formula A, denoted as M |= A, if M satisfies A. Moreover, |= A
denotes that M |= A for every structure M .

Definition 5. Let A be a formula, and P̄ and Z̄ be tuples of predicates P1, . . . , Pm

and Z1, . . . , Zn, respectively. For any two models M and N of A, we write
M ≤P̄ ;Z̄ N if:

1. |M | = |N |;
2. |Pi|M ⊆ |Pi|N for every Pi in P̄ ;
3. |K|M = |K|N for every predicate/function constant K not in P̄ nor in Z̄.

The relation ≤P̄ ;Z̄ is a partial order. The expression M =P̄ ;Z̄ N denotes the case
where both M ≤P̄ ;Z̄ N and N ≤P̄ ;Z̄ M hold. A model M of A is ≤P̄ ;Z̄-minimal
if there is no model N such that N ≤P̄ ;Z̄ M and M �=P̄ ;Z̄ N .

For any formula B, we have [13, 16]

CIRC[A; P̄ ; Z̄] |= B if and only if B is satisfied by every ≤P̄ ;Z̄-minimal models
of A.

Obviously, CIRC[A; P̄ ;Z] |= ∧
Pi∈P̄ CIRC[A;Pi]. The following is a well-known

property:

Proposition 1 (well-foundedness [3]). Any universal formula A is well-
founded with respect to the order ≤P̄ ;Z̄ , i.e., there is a ≤P̄ ;Z̄-minimal model
for any universal formula A.

Definition 6 (circumscriptive induction problem and correct solution [6]).
Let B and E be clausal theories, and P̄ and Z̄ be disjoint tuples of predicates
appearing in B and E. Then, a circumscriptive induction problem is defined as a
quadruple 〈B,E, P̄ , Z̄〉, where B and E represent background knowledge and an

53

observation, respectively. A formula H is a correct solution to the circumscriptive
induction problem 〈B,E, P̄ , Z̄〉 if

CIRC[B ∧ E; P̄ ; Z̄] |= H (1)

and
B ∧ H |= E, (2)

where B ∧ H is consistent.

Example 2 (continue). Reconsider the background knowledge B1 and the ob-
servation E1 in Example 1. Inoue and Saito [6] showed that circumscriptive
induction allows us to generate the following hypothesis:

H3 : ∀x(Bird(x) ∧ x �= b ⊃ Flies(x)).

This hypothesis is a correct solution, that is, H3 can explain E.

Remark 1. In the above example, if an additional fact Bird(c) is added to the
background knowledge B1, then we can also deduce Flies(c) with the hypothesis
H3. So the hypothesis H3 is surely inductive.

Definition 7 (inductive leap, conservativeness and completeness [6]).
Let A be a formula and P be a predicate constant. The test set of inductive leaps
TS(A,P) relative to A and P is

TS(A,P) = {C | A |= C, and C is a ground atom whose predicate is P}.
Given a background B, an observation E and a hypothesis H, the hypothesis H
realizes an inductive leap if there is a predicate P occurring positively in E such
that

TS(B ∧ H,P) �⊆ TS(B ∧ E,P).

Otherwise, a hypothesis H is said to be conservative. A hypothesis H is said to
be complete if for any predicate occurring positively in E, the following holds:

TS(B ∧ E,P) ⊆ TS(B ∧ H,P).

Note that the hypothesis H3 in Example 2 is conservative and complete,
whereas the hypothesis H1 generated by explanatory induction in Example 1 is
complete but not conservative. Moreover H2 generated by descriptive induction
is conservative but not complete.

Inoue and Saito [6] gave the following theorem of conservativeness just for
solitary formulas.

Definition 8 (solitary formulas [13]). A formula A(Z̄) is solitary in a tuple
Z̄ of predicates if A(Z̄) can be written in the form of

Neg(Z̄) ∧ (K̄ ≤ Z̄),

where Neg(Z̄) is a formula not containing any predicate in Z̄ positively, and K̄
is a tuple of predicates not containing any predicate in Z̄.

54

Variable predicates Z̄ in a solitary formula A(Z̄) can be eliminated in cir-
cumscription. That is, for any solitary formula A(Z̄) = Neg(Z̄) ∧ (K̄ ≤ Z̄), the
following holds [13]:

|= CIRC[A(Z̄); P̄ ; Z̄] ≡ A(Z̄) ∧ CIRC[Neg(K); P̄].

Theorem 1 (Conservativeness for solitary formulas [6]). Let B and E
be formulas such that B ∧ E is solitary in predicates Z̄. Suppose that H is a
correct solution to the circumscriptive induction problem 〈B,E, P̄ , Z̄〉. Then, H
is conservative, i.e., H does not realize an inductive leap.

3 Strong Conservativeness for Circumscriptive Induction

In this section we strengthen Theorem 1 in three aspects: the first is to enlarge
the underlying vocabulary set of inductive leaps; the second is simplification
of the sufficient condition for conservativeness of a circumscriptive hypothesis.
This simplification leads to the guarantee of conservativeness for every correct
solutions.

Definition 9 (general inductive leaps, strong conservativeness and com-
pleteness). Let P̄ and Z̄ be disjoint tuples of predicate constants. We define
L(P̄−; Z̄) as the set of all formulas including no negative occurrences of any
predicate in P̄ nor no occurrences of any predicate in Z̄. Suppose A is a formula.
The general test set of inductive leaps GTS(A; P̄ ; Z̄) relative to A, P̄ and Z̄ is

GTS(A; P̄ ; Z̄) = { C ∈ L(P̄−; Z̄) | A |= C }.
Let 〈B,E, P̄ , Z̄〉 be a circumscriptive induction problem and H be a formula. If

GTS(B ∧ H; P̄ ; Z̄) �⊆ GTS(B ∧ E; P̄ ; Z̄),

then we say, a hypothesis H realizes a general inductive leap. Otherwise, a hy-
pothesis H is said to be strongly conservative. A hypothesis H is said to be
strongly complete if for any predicate occurring in E, the following holds:

GTS(B ∧ E,P) ⊆ GTS(B ∧ H,P).

Compared with TS(A, P̄ , Z̄), the general test set GTS(A; P̄ ; Z̄) may contain
various forms of formulas, For example, the following disjunctive formulas are
belong to the underlying set L(P̄−, Z̄):

D1 : P1(t1) ∨ · · · ∨ P1(tk),
D2 : P1(s) ∨ P2(s),

where the terms t1, . . . , tk and s may possibly contain variables. Thus, if D1

and D2 are logical consequences of A, then D1,D2 ∈ GTS(A; P̄ ; Z̄). These non-
ground disjunctive formulas can not be treated by TS(A; P̄ ; Z̄) at all.

Next we clarify the sufficient condition for strong conservativeness.

55

Theorem 2 (A sufficient condition for strong conservativeness). Let
〈B,E, P̄ , Z̄〉 be a circumscriptive induction problem, and H be a formula. If

CIRC[B ∧ E; P̄ ; Z̄] |= H,

then H is strongly conservative, i.e.,

GTS(B ∧ H; P̄ ; Z̄) ⊆ GTS(B ∧ E; P̄ ; Z̄).

Proof. Let C be an arbitrary formula belonging to GTS(B ∧H; P̄ ; Z̄). From the
assumption CIRC[B ∧ E; P̄ ; Z̄] |= H, the formula B ∧ H is true on all ≤P̄ ;Z̄-
minimal model of B ∧ E. Therefore, C is also true on any ≤P̄ ;Z̄-minimal model
of B ∧ E. Since B ∧ E is a well-founded theory, every model M of B ∧ E has
a ≤P̄ ;Z̄-minimal model N such that N ≤P̄ ;Z̄ M . For these models M and N of
B ∧ E, we have

1. C is true on N ;
2. |Pi|N ⊆ |Pi|M for any Pi ∈ P̄ ;
3. |Q|N = |Q|M for any predicate Q not belonging to P̄ nor Z̄.

The formula C consists of only positive occurrences of predicates in P̄ and oc-
currences of predicates Q not in P̄ nor Z̄. Therefore, it is obvious that C is true
on M . Thus C ∈ GTS(B ∧ E; P̄ ; Z̄). ��

Note that if a hypothesis H is strongly conservative, the H is also conservative
in the sense of Definition 7. The following is the first main theorem.

Theorem 3 (Strong conservativeness of correct solutions). Let 〈B,E, P̄ , Z̄〉
be a circumscriptive induction problem. Any correct solution H of 〈B,E, P̄ , Z̄〉
is strongly conservative and complete for B and E.

Proof. According to the definition 6 and 9, any correct solution H is obviously
complete to B and H. Conservativeness is an immediate consequence of Theo-
rem 3. ��

Note that Theorem 3 holds for any given background B and any observation
E and any correct solution H. Hence Theorem 4 is really a proper extension of
Theorem 1.

4 Pointwise Circumscription: An Approximation Method

Circumscription is a very powerful tool, but is rather intractable for computing
because it uses a second-order formulation. Many researches have been con-
ducted on mechanical computation of circumscription [2, 8–11, 13, 14, 16, 20].
Inoue [6] investigated the computation problem of circumscriptive induction,
and proposed two mechanical methods: the first one is to apply some equivalent
transformation methods of circumscription into first-order formulas [2, 8, 10, 11,

56

16] and successively apply first-order theorem provers [5] to the resulting first-
order formulas; the second one is to directly use some explanatory induction
provers [7, 18] and apply native circumscriptive theorem provers [10, 20] succes-
sively. In this paper, we propose a new third method, i.e., an approximation
method based on pointwise circumscription.

Pointwise circumscription was proposed by Lifschitz [14, 15] as a first-order
approximation of parallel circumscription without variable predicates. Although
many extended versions were proposed [10], we present here the most basic form
of pointwise circumscription [13] for simplicity for discussion.

Let s̄ and t̄ be tuples s1, . . . , sn and t1, . . . , tn of n terms, respectively. We
write s̄ = t̄ to denote the conjunction

∧n
i=1(si = ti). The expression s̄ �= t̄ stands

for ¬(s̄ = t̄).

Definition 10 (pointwise circumscription [14, 15]). Let A be a sentence,
P be an n-ary predicate constant and x̄ be a tuple of n individual variables
not appearing in A. The pointwise circumscription PWC[A;P] of P in A is the
first-order sentence

A ∧ ∀x̄
[
P (x̄) ⊃ ¬

(
A[P/λū(P (ū) ∧ ū �= x̄)]

)]
.

The subformula ¬(A[P/λu(P (ū)∧ ū �= x̄)]) in PWC[A;P] is called the pointwise
definition formula, denoted as Pwf[A;P ; x̄].

We have clearly
|= CIRC[A;P] ⊃ PWC[A;P].

The formula PWC[A;P] semantically states that it is impossible to obtain a
model of A by eliminating exactly one element from the extension of P . The
formula PWC[A;P] behaves as an elementary approximation 3 of CIRC[A;P].
Moreover PWC[A;P] logically implies some extended forms of predicate com-
pletion. 4

Although pointwise circumscription can not treat with variable predicates
variables directly, several variable predicates Z̄ in CIRC[A; P̄ ; Z̄] can be elimi-
nated. That is, CIRC[A; P̄ ; Z̄] can be equivalently transformed into CIRC[A′; P̄]
sometimes. In Appendix, we will give some new methods for eliminating variable
predicates from parallel circumscription over a positive/negative solitary formula
relative to variable predicates. Moreover we have, for any CIRC[A; P̄ ; Z̄],

|= CIRC[A; P̄ ; Z̄] ⊃ CIRC[A; P̄].

Thus, together with |= CIRC[A;P] ⊃ PWC[A;P], we have generally

|= CIRC[A; P̄ ; Z̄] ⊃ PWC[A; P̄].
3 The formula PWC[A; P] can be regarded as a first-order approximation of circum-

scription. Even in the framework of first-order logic, more elaborate approximation
formulas can be considered. Such approximation can be regarded as higher-oder
approximation formulas. See [10] for the detail.

4 See [17] for Horn theories, and [8] for arbitrary first-order theories.

57

Therefore pointwise circumscription can be regarded as a first approximation for
parallel circumscription even if it involves variable predicates.

Therefore, we next define a new induction framework and a correct solution
etc. with pointwise circumscription.

Definition 11 (pointwise induction problem). Let B and E be formulas,
and P̄ be a tuple of predicates appearing in B and E. Then, a pointwise induction
problem is defined as the triple 〈B,E, P̄ 〉, where B and E represent background
knowledge and an observation, respectively.

Definition 12 (correct solution and conservativeness). Given an induc-
tion problem 〈B,E, P̄ 〉, a formula H is a correct solution to the pointwise induc-
tion problem if ∧

Pi∈P̄

PWC[B ∧ E; P̄i] |= H (3)

and
B ∧ H |= E, (4)

where B ∧H is consistent. Moreover, we say, a hypothesis H realizes an general
inductive leap if

GTS(B ∧ H; P̄ ;φ) �⊆ GTS(B ∧ E; P̄ ;φ).

Otherwise, a hypothesis H is said to be strongly conservative.

Theorem 4. Let 〈B,E, P̄ 〉 be a pointwise induction problem, and H be a for-
mula. If ∧

Pi∈P̄

PWC[B ∧ E;Pi] |= H,

then H is strongly conservative, i.e.,

GTS(B ∧ H; P̄ ;φ) ⊆ GTS(B ∧ E; P̄ ;φ).

Proof. This theorem can be proved in a quite similar way to Theorem 2. We
shall omit the proof here. ��

The following corollary clarifies that pointwise induction can be regarded as
an approximation of circumscriptive induction.

Corollary 1. Let B and E be formulas. Suppose that H is a correct solution to
the pointwise induction problem 〈B,E, P̄ 〉. Then, H is a correct solution to the
circumscriptive induction problem 〈B,E, P̄ , φ〉.
Proof. Since |= CIRC[B ∧ E; P̄] ⊃ ∧

Pi∈P̄ PWC[B ∧ E; P̄], this is obvious. ��
Remark 2. For Pi ∈ P̄ , since CIRC[B∧E; B̄; Z̄] |= PWC[B∧E;Pi] and PWC[B∧
E;Pi] |= E hold, PWC[B∧E;Pi] is always guaranteed to be a correct solution to
circumscriptive induction problem 〈B,E, B̄, Z̄〉. The formula PWC[B ∧ E;Pi],
however, contains E as its subformula (see Definition 10), so it should be a
meaningless as a hypothesis, or at least, not an interesting solution.

58

Next, we consider a conservative and/or correct hypothesis H for pointwise
circumscription. At first, we clarify a relationship between Clark’s predicate
completion [1] and Pwf[A;P ;x].

Definition 13 (minimal extension formulas [8]). Let A be a conjunction
A1 ∧ . . . ∧ Am of formulas, P be an n-ary predicate constant and x̄ be a tuple
of n individual variables not appearing in A. The minimal extension formula
Min[A;P ; x̄] of P in A is the formula ¬B, where B is obtained from A by
replacing every positive occurrence of P in A as follows:

1. if an occurrence P (t̄) is in a definite clause Ai, then we replace the occurrence
P (t̄) by x̄ �= t̄.

2. Otherwise, we replace the occurrence P (t̄) with P (t̄) ∧ (x̄ �= t̄).

The following lemma is valuable for simplifying the minimal extension for-
mula.

Lemma 1 (Iwanuma et. al.[8]). Let A be a conjunction A1 ∧ . . . ∧ An, P̄ be
a tuple of predicate constants P1, . . . , Pm. SimP̄ (A) is defined as the conjunction
obtained from A by eliminating any conjuncts Ai not containing any positive
occurrences of a predicate in P̄ . We have

1. |= CIRC[A; P̄] ≡ A ∧ CIRC[SimP̄ (A); P̄];
2. |= PWC[A;Pi] ≡ A ∧ PWC[Sim{Pi}(A);Pi].

Example 3. Let B2 and E2 be formulas as follows:

B2 : Bird(a) ∧ Bird(b) ∧ Bird(c)
E2 : Flies(a) ∧ Flies(b)

The formula Min[SimBird(B2 ∧ E2);Bird;x] is as follows:

x = a ∨ x = b ∨ x = c.

The formula Min[SimFlies(B2 ∧ E2);Flies;x] is

x = a ∨ x = b.

Example 4. Let B3 be the disjunctive formula:

Bird(a) ∨ Bird(b).

Suppose E2 is the same one as in Example 3. The formula Min[SimBird(B3 ∧
E2);Bird;x] is

(Bird(a) ⊃ x = a) ∧ (Bird(b) ⊃ x = b).

Lemma 2 ([8]). Let A be a first-order formula and P be a predicate constant.
We have

1. A |= ∀x̄(Min[A;P ; x̄] ⊃ P (x̄));

59

2. |= ∀x̄(Pwf[A;P ; x̄] ⊃ Min[A;P ; x̄]).

Therefore, we have

1. |= PWC[A;P] ⊃ ∀x̄(P (x̄) ≡ Pwf[A;P ; x̄]);
2. |= PWC[A;P] ⊃ ∀x̄(P (x̄) ≡ Min[A;P ; x̄]).

The minimal extension formula may often be valuable to generate a conserva-
tive/complete hypothesis for pointwise induction. Let us consider two examples.

Example 5. Let B2 and E2 be formulas in Example 3. Consider the minimal
extension formulas with respect to PWC[A;Bird;x] and PWC[A;Flies;x]. The
formula

∀x(Bird(x) ≡ Min[SimBird(B2 ∧ E2);Bird;x])

is the conjunction of the following clauses:

C1 : x = a ⊃ Bird(x).
C2 : x = b ⊃ Bird(x).
C3 : x = c ⊃ Bird(x).
C4 : Bird(x) ⊃ (x = a ∨ x = b ∨ x = c).

On the other hand, the equivalence formula

∀x(Flies(x) ≡ Min[SimFlies(B2 ∧ E2);Flies;x])

is the conjunction of the following clauses:

C5 : x = a ⊃ Flies(x).
C6 : x = b ⊃ Flies(x).
C7 : Flies(x) ⊃ (x = a ∨ x = b).

All of the clauses shown above are logical consequences from PWC[SimBird(B2∧
E2);Bird;x] and PWC[SimFlies(B2 ∧ E2);Flies;x]. We resolve the clause C4
with the clauses C5 and C6 successively, and obtain the resolvent (Bird(x) ⊃
Flies(x) ∨ x = c), which is equivalent to

C8 : Bird(x) ∧ x �= c ⊃ Flies(x).

This formula is not only a correct solution to the pointwise circumscriptive
induction problem 〈B2, E2, {Bird, F lies}〉, but also is a correct solution to the
circumscriptive induction problem 〈B2, E2, {Bird, F lies};φ〉.
Remark 3. The clauses C5 and C6 are logically equivalent to the formula E2

itself. Thus the clause C8 is indeed a correct solution to the circumscriptive
(or pointwise circumscriptive) induction problem 〈B2, E2, {Bird}, φ〉. Another
important fact is that C8 can be derived only by performing the ordinary reso-
lution, where no special computation mechanism is needed. Inoue and Saito [6]
derived a similar formula from circumscriptive induction, by hand and by using
some heuristics. Such a derivation task is not so simple nor easy. This shows the
superiority of pointwise circumscription with respect to tractability.

60

Example 6. Let B3 be a disjunctive formula in Example 3 and E3 be the unit
clause

E3 : Flies(a).

The formula ∀(Bird(x) ≡ Min[SimBird(B3 ∧E3);Bird;x]) is the conjunction of
the following clauses:

C9 : [(Bird(a) ⊃ x = a) ∧ (Bird(b) ⊃ x = b)] ⊃ Bird(x).
C10 : Bird(x) ∧ Bird(a) ⊃ x = a.

C11 : Bird(x) ∧ Bird(b) ⊃ x = b.

All of these clauses are logical consequences from PWC[SimBird(B3∧E3);Bird;x].
On the other hand, the observation E3 is equivalent to the clause C5. Thus, we
resolve the clause C10 with the clause C5, and obtain the resolvent

C12 : Bird(x) ∧ Bird(a) ⊃ Flies(x).

Clearly we have PWC[B3∧E3;Bird] |= C12, but unfortunately, B3∧C12 �|= E3.
That is, the hypothesis C12 is strongly conservative, but is not complete. The
formula C12 should be regarded as a conditional solution, because C12 refers the
case when the predicate Bird entails Flies(a), that is, the case when Bird(a)
is true. Therefore, abduction seems to be an appropriate method for continuing
further inference computation. In other words, circumscriptive induction plays
a role of clarifying which part of knowledge should be handled by abduction.

5 Conclusion

In this paper, we studied circumscriptive induction and elaborated its some as-
pects. We extended the concept of inductive leaps, and give a simple sufficient
condition for conservativeness with respect to the general induction leaps. More-
over we propose a new tractable framework, pointwise circumscriptive induction
instead of circumscriptive one. The pointwise induction needs first-order logic
with equality, and does not demand any second-order computation, so is rather
tractable for computing.

One of the most interesting future-work is to extend pointwise circumscrip-
tion framework to a more sophisticated one such as extended pointwise circum-
scription given in [10]. Another interesting work is a conditional solution, which
seems to be closely relative to abductive computation, and is inevitable for treat-
ing disjunctive background theories and observations.

References

1. Keith L. Clark: Negation as failure. In: H. Gallaire and J. Minker, editors, Logic
and Data Bases, pp.119–140, Plenum Press (1978)

2. P. Doherty, W. �Lukaszewicz and A. Sza�las: Computing circumscription revisited:
Preliminary report, in: Proc. of Inter. Joint Conf. on Artificial Intelligence ’95
1502–1507 (1995)

61

3. D. Etherington: Reasoning with Incomplete Information (Pitman, London, 1988).

4. Nicolas Heft: Induction as nonmonotonic inference. Proc. of KR’89. pp.149–156
(1989)

5. Katsumi Inoue: Linear resolution for consequence finding, Artificial Intelligence ,
56, 301–353 (1992)

6. Katsumi Inoue and Haruka Saito: Circumscription Polices for Induction. Proc. of
the 14th Intern. Conf. on Inductive Logic Programming (ILP), Lecture Notes in
Artificial Intelligence. 3194, pp.164–179 (2004)

7. Katsumi Inoue: Induction as consequence finding. Machine Learning , 55, pp.109–
135 (2004).

8. Koji Iwanuma, Masateru Harao and Shoichi Noguchi: Reconsideration of Pointwise
Circumscription. Proc. of Inter. Conf. on Information Technology Harmonising
with Society (InfoJapan’90) pp.147–154 (1990)

9. Koji Iwanuma: Conservative query normalization on parallel circumscription, in:
Proc. of 12th Inter. Conf. on Automated Deduction (CADE-12), Lecture Notes in
Artificial Intelligence 814 296-310 (1994)

10. Koji Iwanuma, Kazuhiko Oota: An extension of pointwise circumscription. Artifi-
cial Intelligence 86, pp.291–402 (1996)

11. P.G. Kolaitis and C.H. Papadimitriou: Some computational aspects of circumscrip-
tion, Journal of the ACM 37(1), 1–14 (1990)

12. Nicolas Lachiche: Abduction and induction form a non-monotonic reasoning per-
spective. In: P.A. Flach and A. Kakas, editors, Abduction and Induction: Essay on
their Relation and Integration, Kluwer Academic (2000)

13. Vladimir Lifschitz: Computing circumscription. Proc. of the 9th Inter. Joint Conf.
on Artificial Intelligence, pp.122-127 (1985)

14. Vladimir Lifschitz: Pointwise circumscription: preliminary report, in: Proc. of
AAAI-86 , 406-410 (1986)

15. Vladimir Lifschitz: Pointwise circumscription, in: M.L. Ginsberg editors., Readings
in Nonmonotonic Reasoning 179-193 (Morgan Kaufman Pub., 1988)

16. Vladimir Lifschitz: Circumscription. In: D.M. Gabbay C.J. Hogger and J.A. Robin-
son, editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
Vol.3, pp.298–352, Oxford University Press (1994)

17. Y. Moinard and R. Rolland, Circumscription and definability, in: Proc, of Inter.
Joint Conf. on Artificial Intelligence ’91 , 432-437 (1991)

18. Stephen Muggleton: Inverse entailment and Progol. New Generation Computing.
13, pp.245–286 (1995)

19. Hans. J. Ohlbach: SCAN—elimination of predicate quantifies. Proc. of the 13th
Inter. Conf. on Automated Deduction (CADE’1996) Lecture Notes in Artificial
Intelligence , 1104, pp.161–165 (1996)

20. T.C. Przymusinski, An algorithm to compute circumscription, Artificial. Intelli-
gence. 38 (1989) 49-73.

Appendix: Variable Predicate Elimination Method for Positive/Negative
Solitary Formulas

We show a new method for eliminating variable predicates from parallel
circumscription over extended solitary formulas. The following is a key property.

62

Lemma 3. Let A(Z̄) be a formula containing a tuple Z̄ of predicate constants
Z1, . . . , Zn. Suppose that Wi is a predicate expression of the same arity as Zi for
i = 1, . . . , n, and we denote the tuple W1, . . . Wn by W̄ . If

|= A(Z̄) ⊃ A[Z̄/W̄],

then we have, for any tuple P̄ of predicate constants,

|= CIRC[A(Z̄); P̄ ; Z̄] ≡ A ∧ CIRC[A[Z̄/W̄]; P̄ ; Z̄].

Proof. Firstly we prove the “if” part. Suppose M is a ≤P̄ ;Z̄-minimal model
of A[Z̄/W̄] and M is also a model of A(Z̄). Then M must be ≤P̄ ;Z̄-minimal
among all models of A(Z̄). If not so, there is a model N of A(Z̄) such that
N ≤P̄ ;Z̄ M and N �=P̄ ;Z̄ M . Since |= A(Z̄) ⊃ A[Z̄/W̄], the model N is also a
model of A[Z̄/W̄]. This contradicts the ≤P̄ ;Z̄-minimality of M among the models
of A[Z̄/W̄].

Next we prove the “only if” part. Suppose M is a ≤P̄ ;Z̄-minimal model of
A(Z̄). Then M is also a model of A[Z̄/W̄]. If M is not ≤P̄ ;Z̄-minimal among the
models of A[Z̄/W̄], then there exits a model N of A[Z̄/W̄] such that N ≤P̄ ;Z̄ M
and N �=P̄ ;Z̄ M . For these models M and N , we have

1. |N | = |M |;
2. |Pi|N ⊂ |Pi|M for every Pi ∈ P̄ ;
3. |K|N = |K|M for every function/predicate constant K not in P̄ nor in Z̄.

We construct a new structure K from N such that

1. |K| = |N |;
2. |Zi|K = |Wi|N for every Zi in Z̄;
3. |K|K = |K|N for all function/predicate constants other than Z1, . . . , Zn.

The structure K should be a model of A(Z̄), because N is a model of A[Z̄/W̄].
Moreover, the following hold:

1. |K| = |M |;
2. |Pi|K ⊂ |Pi|M for every Pi ∈ P̄ ;
3. |K|N = |K|M for every function/predicate constant K not in P̄ nor in Z̄.

This contradicts the minimality of M among the models of A(Z̄). ��
If A[Z̄/W̄] has no occurrences of predicates in Z̄, then CIRC[A[Z̄/W̄]; P̄ ; Z̄]

can obviously be reduced into CIRC[A[Z̄/W̄]; P̄] by eliminating variable predi-
cates Z̄. In this case, CIRC[A(Z̄); P̄ ; Z̄] itself can eventually be transformed to
A ∧ CIRC[A[Z̄/W̄]; P̄].

Definition 14 (positive/negative solitary formulas). We call the solitary
formula given in Definition 8 an positive solitary formula. A negative solitary
formula is the dual of a positive solitary formula, that is, a formula in the form
of

Pos(Z̄) ∧ (Z̄ ≤ K̄),

where Pos(Z̄) is a formula not containing any predicate in Z̄ negatively, and K̄
is a tuple of predicates not containing any predicate in P̄ .

63

Obviously, we have

|= [Neg(Z̄) ∧ (K̄ ≤ Z̄)] ⊃ [Neg(K̄) ∧ (K̄ ≤ K̄)].
|= [Pos(Z̄) ∧ (Z̄ ≤ K̄)] ⊃ [Pos(K̄) ∧ (K̄ ≤ K̄)].

Therefore, according to Lemma 3, the following elimination of variable predicates
from parallel circumscription is available. Notice that the first one is well-known
result given by Lifschitz [13].

Corollary 2 (Variable elimination from positive/negative solitary for-
mulas). Let A be a formula, and P̄ and Z̄ be disjoint tuples of predicate con-
stants. We have:

1. (Lifschitz [13]) If A is a positive solitary formula Neg(Z̄) ∧ (K̄ ≤ Z̄), then
we have

|= CIRC[A; P̄ ; Z̄] ≡ A ∧ CIRC[Neg(K̄); P̄];

2. If A is a negative solitary formula Pos(Z̄) ∧ (Z̄ ≤ K̄), then we have

|= CIRC[A; P̄ ; Z̄] ≡ A ∧ CIRC[Pos(K̄); P̄].

64

Nonmonotonic Abductive Inductive Learning

Oliver Ray1

University of Bristol
United Kingdom

oray@cs.bris.ac.uk

Abstract. Inductive Logic Programming (ILP) is concerned with the
generalization of examples with respect to prior knowledge expressed in
a logic program formalism. Negation as Failure (NAF) is a key logic
programming feature that can enable the representation and learning of
defaults and exceptions. But most ILP research has been aimed at the
special case of Horn programs and has so far failed to exploit the full
potential of NAF. By contrast, Abductive Logic Programming (ALP),
a closely related task concerned with explaining observations relative to
a background theory, has been extensively studied and applied in the
context of normal clauses. This paper shows how ALP can be used to lift
practical ILP methods from Horn theories to normal logic programs. In
particular, it formalises an approach called eXtended Hybrid Abductive
Inductive Learning (XHAIL) that integrates ALP and ILP in a common
reasoning framework driven by language and search bias. The utility of
XHAIL is shown by a nonmonotonic Event Calculus (EC) case study
where NAF is used to model the persistence of properties through time.

1 Introduction

Inductive Logic Programming (ILP) [22] is a branch of Artificial Intelligence
(AI) concerned with the generalization of positive and negative examples with
respect to prior background knowledge expressed in a logic program formalism.
Compared to other AI representations, logic programs are expressive and easy to
understand. Moreover, Negation as Failure (NAF) [3] gives logic programming a
nonmonotonic inference mechanism for reasoning with defaults and exceptions
under incomplete information. Since incompleteness is an inherent feature of any
learning problem, effective utilization of NAF is potentially a major strength of
the ILP paradigm.

To date, most ILP research has been aimed at pure Horn clause programs
without NAF. Some approaches have been proposed for normal programs with
NAF such as [2, 10, 4, 14, 16, 7, 30, 8] and more recently in [29, 23]. But these can
only be used in rather restricted cases or they lack efficient strategies for guiding
the computation. Because many of the pruning techniques successfully used in
the Horn clause setting are not applicable in the presence of NAF, it is essential
for nonmonotonic ILP to make full use of available language and search bias.
But, while effective mechanisms have been developed in the Horn case, these
have yet to be satisfactorily applied in the general case.

65

This work aims to develop a practical nonmonotonic ILP method by lifting
successful methods of language and search bias from Horn clauses to normal
programs. The proposal exploits techniques from a closely related branch of AI,
called Abductive Logic Programming (ALP) [12], which grew from attempts to
provide a semantics and proof procedure for NAF [5]. Simple forms of abductive
reasoning have already been used in ILP for learning rules with predicates not
mentioned in the examples [21, 18]. Here, the idea is to also exploit the relation
between ALP and NAF to enable the learning of normal logic programs.

This paper formalises the method of eXtended Hybrid Abductive Inductive
Learning (XHAIL) which lifts the Hybrid Abductive Inductive Learning (HAIL)
approach of [27] from Horn clauses to normal programs. The technique is based
on the construction and generalization of a preliminary ground hypothesis called
a Kernel Set [26] that serves to bound the search space in accordance with
user specified bias. The result is a three stage process whereby abduction and
deduction are used compute the head and body literals of a Kernel Set, which
is then generalised by an inductive subsumption-based search procedure.

The rest of the paper is structured as follows. Section 2 introduces the key
notation and background information. Section 3 describes the XHAIL approach
and shows how all three phases can be implemented using an ALP interpreter
to handle NAF while exploiting language and search bias. Section 4 illustrates
XHAIL on a case study involving a nonmonotonic Event Calculus (EC) [13]
framework for reasoning about action and change. This paper extends the earlier
abstract in [25] by providing a more detailed description of XHAIL, further
discussion of related work, and a larger biologically motivated case study.

2 Background

This section introduces the key notation and terminology used in the paper.
Section 2.1 reviews some basic definitions of logic programs [15], defines the
stable model semantics [9], and outlines the task of ALP [12]. Section 2.2 recalls
the language bias mechanism of mode declarations [20] and describes the task
of ILP [22]. Section 2.3 summarises the HAIL approach [27] for Horn clauses.

2.1 Abductive Logic Programming (ALP)

This paper assumes a first order language (without equality) containing at least
one constant and function symbol. An atom is a predicate p (of arity n) followed
by an n-tuple of terms (t1, . . . , tn). A literal is an atom a (a positive literal)
or its negation not a (a negative literal). A (normal) clause is an expression
of the form a ← l1, . . . , lm where a is an atom (called the head atom) and
the li are literals (called body literals). A constraint is a clause of the form
⊥ ← l1, . . . , lm where ⊥ is an atom denoting logical falsity. A (logic) program
is a set of clauses and constraints. A program is Horn iff all of its literals are
positive and is normal otherwise. A (Herbrand) interpretation is a set of ground
atoms. An interpretation I satisfies a positive ground literal l = a iff a ∈ I and

66

it satisfies a negative ground literal l = not a iff a 6∈ I. It satisfies a set of ground
literals iff it satisfies each ground atom in the set. It satisfies a ground clause iff
it satisfies the head atom or fails to satisfy at least one body literal.

A (Herbrand) model M of a program P is an interpretation I that satisfies
every ground instance of every clause C in P . A model M is minimal if no strict
subset is a model of P . Moreover, it is stable if M is the unique minimal model
of the Horn program PM obtained from the ground instances of P by removing
all clauses with a negative literal not satisfied in M and removing all negative
literals from the remaining clauses. A program P satisfies a set of ground atoms
G if a stable model of P satisfies G. The satisfaction of G in a stable model of
P is denoted P |= G. 1 A clause C is said to (θ-)subsume a clause D iff there
is a substitution θ such that the head atom of D is the head atom of Cθ and
each body literal in D is contained in Cθ. A program P is said to (θ-)subsume
a program Q iff every clause in Q is subsumed by a clause in P .

ALP seeks to compute the conditions under which a goal G can be made to
succeed from a theory T . In this paper it suffices to consider the case when G is
a set of literals, T is a set of clauses, and the task of ALP is to compute a set of
ground atoms ∆, called an explanation, together with a ground substitution θ,
called an answer substitution, such that T ∪∆ |= Gθ. The atoms in ∆ are usually
restricted to a set A of predicates called abducibles, which identify predicates for
which only partial information is available in the theory (e.g., potential faults in
a diagnosis task or possible actions in a planning domain). In this case, the pair
(∆, θ) is called an abductive solution of G wrt. T and A. Hereafter, the notation
ALP (T,G,A, r) will represent the set of all abductive solutions of G wrt. T and
A that are computable within r resolution steps.

An explanation ∆ is minimal if no strict subset of ∆ is an explanation.
Many ALP systems can compute such explanations, but this paper assumes
an efficient variant of the prominent Kakas-Mancarella (KM) procedure [12]
called ProLogICA [28]. This exploits the basic KM approach of by interleaving
abductive and consistency computations, but includes several pruning techniques
that greatly improve the efficiency of the procedure.

2.2 Inductive Logic Programming (ILP)

ILP seeks to compute a set of hypotheses H that explain a set of (positive and
negative) examples E with respect to a background theory B. In this paper it
suffices to consider the case when E is a set of ground (positive and negative)
literals, and B and H are programs. Given B and E as inputs, the task of ILP is
to compute a set of clauses H such that B∪H |= E. The clauses in H are usually
constrained by some form of domain dependent language bias. This paper uses
a well known form of language bias called mode declarations. As defined in [20]
and briefly recalled below, a set M of mode declarations defines a language or
hypothesis space LM within which H ⊆ LM must fall.

1 Note that, if P is a consistent Horn Program, then |= coincides with the classical
first order entailment relation.

67

In brief, a mode declaration m is either a head declaration modeh(r, l) or
a body declaration modeb(r, s) where r is an integer (the recall) and s is a
ground literal (the scheme) possibly containing so-called placemarker terms of
the form #type, +type and −type, where type is a type predicate. Schemes can
be seen as ‘templates’ with placemarkers standing for constants, input variables
and output variables, respectively. The distinction between input and output
variables is given by the restriction that any input variable in a body literal
must be an input variable in the head or an output variable in some preceding
body literal. This is consistent with standard logic programming usage whereby
input (resp. output) variables are bound before (resp. after) a goal is called.

In this way, a set M of mode declarations is associated with a set of clauses
LM , called the language of M , such that C = a ← l1, . . . , ln ∈ LM iff the
head atom a (resp. each body literal li) is obtained from some head (resp. body)
declaration in M by replacing all # placemarkers with constants and by replacing
all + (resp. −) placemarkers with input (resp. output) variables. For any mode
declaration m, pred(m) denotes the predicate p at the front of the scheme s,
schema(m) denotes the literal obtained from s by replacing all placemarkers
with distinct variables X1, . . . ,Xn, and type(m) denotes the sequence of literals
t1(X1), . . . , tn(Xn) such that ti is the type predicate of the placemarker replaced
by the variable Xi. For any set of mode declarations M , M+ is the set of head
declarations in M , and M− is the set of body declarations in M .

As explained in [20], and used in Section 3, the mode declaration recall is
used to bound the number of times the scheme is used, and the types are used
to restrict the terms that replace a placemarker during hypothesis construction.
The symbol ∗ is used to indicate an arbitrarily large recall and a default predicate
any is assumed for any placemarker where the type is omitted. In addition to the
satisfying language bias specified by a set of mode declarations, ILP hypotheses
are often required to satisfy additional criteria. This paper uses a heuristic called
compression which embodies the principle of Occam’s Razor (which advocates
choosing the simplest hypothesis that fits the data), in this case, by preferring
hypotheses containing the fewest number of literals [20].

2.3 Hybrid Abductive Inductive Learning (HAIL)

HAIL is a mode-directed approach for finding compressive ILP hypotheses in
the Horn case (when B and H are NAF free). Given a background theory B,
an example or set of examples E, and mode declarations M , it computes a
hypothesis H ⊆ LM containing as few literals as possible such that B ∪H |= E.
To solve this task, XHAIL uses the language bias M to construct and generalise
a preliminary ground hypothesis K called a Kernel Set of B and E.

The idea is to construct H in three stages by returning three progressively
more complex hypotheses In essence: stage 1 first produces a set of ground atoms
∆ that collectively entail E when added to B; stage 2 then produces a set of
ground clauses K whose head atoms are those in ∆ and whose body atoms
are entailed by B; and finally stage 3 produces a (consistent and compressive)
hypothesis H that subsumes K.

68

Intuitively, the head atoms of K are a set of atoms that, if true, would entail
E,. By contrast, the body atoms of K are atoms that are already known to be
true. Thus, the Kernel Set K entails E with respect to B; and so does any theory
H that subsumes K. Importantly, it is easier to invert subsumption than it is
to invert entailment. The trick is to efficiently exploit the mode declarations M
when computing ∆, K and H. For this, HAIL uses a multi-clause generalisation
of the widely used Progol methodology [20, 21].

– In stage 1, HAIL computes a set of ground atoms

∆ =

α1

...
αn

such that B ∪ ∆ |= E and each atom αi in ∆ is a well-typed ground in-
stance of a clause in the language LM+ of the head declarations M+. These
atoms are computed by an abductive procedure that returns an explanation
∆ of the goal E wrt. the program B augmented with a set of type clauses
extracted from the head declarations.

– In stage 2, HAIL computes a set of ground clauses

K =

α1 ← δ1
1 , . . . , δm1

1

...
αn ← δ1

n, . . . , δmn

n

such that B |= δj
i for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ←

δ1
i , . . . , δmi

1 in K is a well-typed ground instance of a clause in LM . The
body literals of each clause are computed by a deductive procedure that
finds the successful ground instances of the queries obtained by substituting
a set of input terms into the + placemarkers of the body declaration schemas.

– In stage 3, HAIL computes a set of clauses

H =

a1 ← d1
1, . . . , d

m′

1

1

...

an ← d1
n, . . . , d

m′

n

n

such that B ∪H |= E and each clause ai ← d1
i , . . . , d

m′

i

i in H is in LM and
subsumes the corresponding clause αi ← δ1

i , . . . , δmi

1 in K. This is done by
(greedily) generalising each Kernel Set clause, in turn, using a top down A*
like search of the subsumption lattice to find a maximally compressive clause
that is in the language of M and is consistent with the other clauses.

69

3 eXtended Hybrid Abductive Inductive Learning (XHAIL)

This section introduces XHAIL, which lifts the HAIL methodology from Horn
clauses to normal programs. Like its predecessor, the underlying idea of XHAIL
is to use language and search bias to guide the computation by constructing and
generalising a preliminary ground Kernel Set. The key issue is how to generalise
the abductive, deductive, and inductive phases to handle NAF.

The approach described below is based on transforming each phase into a
separate ALP task. The advantages of this approach are that (i) implementation
is simplified by having a single primary reasoning engine, (ii) all three phases
benefit from efficiency enhancements to the underlying engine, (iii) other NAF
semantics can easily be supported by simply using a different ALP system.

The XHAIL algorithm is formalised in Figure 1 below. The inputs consist
of a program B (background theory), a set of ground literals E (positive and
negative examples) a set mode declarations M (language bias), and two integers
d and r (depth and resolution bounds). The output is a compressive program H
(hypothesis) such that B ∪H |= E and H ∈ LM .

Like HAIL, XHAIL computes the hypothesis in three phases. Each phase
contains one or more statements (each marked with an asterix in Figure 1)
which are choice points where backtracking may be necessary to find an optimal
solution. Each of the three phases are described in more detail below and the
key differences with respect to the Horn case are discussed.

3.1 Abductive Phase

As in the Horn case, the first stage of XHAIL must compute a set of ground
unit program ∆ =

⋃n

i=1
αi such that B ∪ ∆ |= E and each atom αi is a well-

typed ground instance of a clause in LM+ . The only difference is that a full ALP
system must be used that supports NAF. Because each abduced atom will go in
the head of a Kernel Set clause, the abducibles A1 are obtained from the set of
predicates appearing p/n at the front of some head declaration scheme. But, to
ensure any abduced atoms satisfy the language bias, for each such predicate, a
clause is created of the form p(X1, . . . ,Xn) ← p∗(X1, . . . ,Xn), p′(X1, . . . ,Xn)
containing two fresh predicates p∗/n and p′/n. In effect, p∗ identifies the ground
instances of a that satisfy the head declarations. This is done by adding one
clause of the form schema∗(m) ← type(m) for each head declaration m ∈M+.
2 The other predicate p′ is just an abducible proxy for the original predicate p.
As soon as a set X of abducibles is computed, any occurrence of p′ is replaced
by p to give a well-formed hypothesis ∆. One hypothesis must be chosen before
proceeding to the next stage. The number of choices is greatly reduced by only
considering minimal explanations. This is also a useful heuristic as it results in
Kernel Sets with the fewest number of clauses — which are easier to construct
and generalise and are likely to result in compressive hypotheses.

2 An almost identical set of typing clauses is used by Progol.

70

INPUTS:
program B (background theory), ground literals E (examples),
mode declarations M (bias), integers d and r (depth bounds)

% abductive phase %
let A1 be the set of predicates containing one fresh predicate p′/n for each predicate

p/n = pred(m) at the front of the scheme of some head declaration m ∈M+

let T1 be the set of clauses obtained by adding to B one clause p(X1, . . . , Xn) ←
p′(X1, . . . , Xn), p∗(X1, . . . , Xn) for each predicate p′/n ∈ A1 and one clause
p∗(X1, . . . , Xn) ← t1(X1), . . . , tn(Xn) for each head declaration m ∈ M+ with
schema p(X1, . . . , Xn) and types t1(X1), . . . , tn(Xn)

∗let X be any explanation in ALP (T1, E, A1, r)
let ∆ be the set of ground atoms obtained by replacing each atom p′(t1, . . . , tn) ∈ X

with the corresponding atom p(t1, . . . , tn)

% deductive phase %
let A2 be the empty set ∅
let T2 be the set of clauses B
for each atom αi ∈ ∆

∗let mi be any head declaration in M whose schema subsumes αi

set ni to the set of terms in αi corresponding to + placemarkers in mi

set ki to the unit clause αi ←
repeat up to d times

let Q be the set of goals of the form type(m), schema(m)φ where m ∈ M−

is a body declaration and φ is a substitution binding all variables in
schema(m) that replaced a + placemarker to a term in ni

let R be the set of ground literals of the form schema(m)φθ where
schema(m)φ appears in a goal G ∈ Q such that the computation
ALP (T2, G, A2, r) succeeds with the answer substitution θ (and an empty
set of assumptions)

∗let S be any subset of R
add to the body of ki all literals in S (not already in ki)
add to ni all (new) terms in S corresponding to − place-markers in M

let k′ be the set of clauses obtained from k by replacing all distinct terms
corresponding to + and − placemarkers with fresh variables

let K be the set of clauses {k1, . . . , kn}
let K′ be the set of clauses {k′

1, . . . , k
′

n}

% inductive phase %
let A3 be the set of predicates {use}
let T3 be the set of clauses obtained by adding to B two clauses try(I, J, C) ←

not use(I, J) and try(I, J, C) ← use(I, J), C along with one clause of the form
α′

i ← try(i, 1, δ′
1

i), . . . , try(i, mi, δ
′mi

i) for each ki = α′

i ← δ′
1

i , . . . , δ
′mi

i ∈ K′

∗let Y be any explanation in ALP (T3, E, A3, r)
let H be the set of clauses obtained from K by removing every body atom δj

i for which
the corresponding abducible use(i, j) is not contained in Y

OUTPUT:
program H (hypothesis)

Fig. 1. XHAIL proof procedure (∗showing choice points)

71

3.2 Deductive Phase

As in the Horn case, the second stage of XHAIL must compute a ground program
K =

⋃n

i=1
αi ← δ1

i , . . . , δmi

i where B |= δj
i for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi and

each clause αi ← δ1
i , . . . , δmi

1 is a well-typed ground instance of a clause in
LM . To do this, each head atom is then taken, in turn, and saturated with
body literals by means of a nonmonotonic generalisation of the level saturation
procedure used by Progol [20]. For this purpose, the ALP system is made to
behave as a deductive query answering procedure by declaring an empty set ∅ of
abducibles (so that only negative literals may be assumed). 3 Each head atom is
then processed by choosing a head declaration mi to initialise a growing reservoir
of input terms ni which are substituted into the + placemarkers of any body
declarations m to generate a set of goals Q whose successful ground instances,
ALP (B,G, ∅, r), result in a set of literals R which can be added into the body of
the clause ki with head atom αi. Some subset S of R must then be added to ki

and any output terms added to ni. The clause ki resulting from each abducible
αi is then added to the Kernel Set K.

It is interesting to note that, unlike the the Horn case, it does not necessarily
follow that B∪K |= E. For this to hold, all of the body literals in K would need
to be true in the same model of B and they would also have to be true in some

model of B∪∆. 4 To ensure the second condition is satisfied, the ALP interpreter
was modified to recognise a set of declarations of the form consistent(αi) for each
atom αi ∈ ∆. Not allowing a consistency computation to succeed by assuming
the negation of these atoms means that the body atoms in K are all true in a
stable model of B and remain true in some stable model of B∪∆. To ensure the
first condition is satisfied, it is sufficient to accumulate the assumptions made as
each body atom is computed. In this way, the head atoms will be supported by a
set of body literals that are true before and after K is added to B. In Example 1
below, K1 satisfies this condition and is a correct hypothesis, but K2 and K3

violate this condition and are not.
Enforcing these two conditions reduces the number and size of candidate

Kernel Sets and thereby makes the generalisation task easier. Relaxing them
has the opposite effect, and is simply a way of weakening the Kernel Set bias.

Example 1. Let

B =

a ← not e
b ← e
c

and E =
{

e
}

= ∆

and

K1 =
{

e ← c
}

and K2 =
{

e ← b
}

and K3 =
{

e ← a
}

3 As noted in [5] the ALP treatment of NAF is often superior to SLDNF used in most
Prolog systems as the former performs caching on negative literals which can avoid
repeated computations and avoid infinite loops through negative recursion.

4 In the Horn case, the first condition is guaranteed because there is only one stable
model and the second condition is satisfied because of monotonicity. In the non-
monotonic case, both of these may no longer be true.

72

3.3 Inductive Phase

As in the Horn case, the third stage of XHAIL computes a program H =
⋃n

i=1
ai ← d1

i , . . . , d
m′

i

i such that B ∪H |= E and each clause ai ← d1
i , . . . , d

m′

i

i

is in LM and subsumes the corresponding clause αi ← δ1
i , . . . , δmi

i in K. Strictly,
the hypothesis H should not subsume the Kernel Set K, but should subsume
the set of clauses K ′ obtained from K by replacing all input and output terms
with variables. This essentially amounts to deleting as many body literals from
K ′ as possible. Two syntactic transformations prepare the ALP system for this
task through the introduction of two new predicates try/3 and use/2. First,
two clauses try(I, J, C) ← not use(I, J) and try(I, J, C) ← use(I, J), C are

created. Then, each body literal δ′
j
i in K ′ is wrapped inside a meta-predicate of

the form try(i, j, δ′
j
i). Applying an ALP procedure to the resulting theory, with

the goal E and one abducible predicate use, returns a set Y of ground atoms of
the form use(i, j), which indicate that the corresponding literals δ′

j
i should be

included in H and the others should not.
In other words, the literal use(i, j) means use the jth literal in the ith clause

of K ′. The intuition underlying this approach is that in order to use a head
atom α′

i from K ′ in some derivation of E, the ALP procedure must solve each of

the body atoms try(i, j, δ′
j
i). By the two rules added to K ′, each such atom can

be solved in one of two ways: either by assuming not(use(i, j)); or by abducing

use(i, j) and solving δ′
j
i . The former effectively ignores δ′

j
i as if it were not

there, while the latter solves δ′
j
i as if it were part of the clause. In this way, each

explanation records which atoms from K ′ should be included in H and which
should not. One such explanation must be chosen and used to determine the
final hypothesis H. Minimal abductive explanations correspond 1-1 to maximally
compressive inductive generalisations. If the correct linking of input and output
variables is required, then additional constraints would be needed, as illustrated
in Example 2 below, but these are omitted from Figure 1.

Example 2. If

K ′ = p(X) ← q(X,Y), q(Y,Z) and M =

{

modeh(∗, p(+))
modeb(∗, q(+,−))

}

then the clause

p(X) ← try(1, 1, q(X,Y)), try(1, 2, q(Y,Z))

is constructed along with the constraint

⊥ ← use(1, 2), not use(1, 1)

stating we cannot use the 2nd atom if we do not also use the 1st atom.

Soundness of XHAIL follows from the soundness of the ALP procedure used
in the inductive phase. Termination of XHAIL is ensured by the depth bounds
d and r. Note that, in the non-monotonic case, (a) an incremental approach can
not be used to generalise one seed example at a time and (b) Horn clause pruning
techniques cannot be used in the inductive phase.

73

4 Learning Event Calculus (EC) Domain Theories

This section illustrates the ability of XHAIL to learn normal programs using a
temporal model of lactose metabolism in the bacterium E. coli [11]. The model
is based on a nonmonotonic EC [13] framework for reasoning about action and
change. This paper employs the Simplified EC formalisation of [31] stating how
the truth of certain fluents (properties) change as certain events (actions) occur.
This framework is used to model how lactose metabolism is regulated by the
presence of the sugars lactose and glucose in the E. coli growth medium. In brief,
E. coli prefers to feed on glucose but can also feed on lactose by producing extra
enzymes that essentially break down lactose into glucose. In order to conserve
energy, the bacterium only produces these enzymes when lactose is available
as a food source but glucose is not. The aim is to learn this mechanism from a
narrative stating how the lactose metabolism is enabled and disabled in response
to the addition and subtraction of lactose and glucose from the growth medium.

The inputs to XHAIL are shown in Figure 2. The theory B consists of four
parts: the core EC axioms, the type predicates, a partial domain theory, and
a narrative. The first 3 lines in B are the core EC axioms. They state that, a
fluent F is true (holdsAt) at a time T2 if (i) an event E occurred (happened)
at some earlier time T1 which caused F to become true (initiated) and no
intervening event falsified (clipped or terminated) F , or (ii) F was originally
(initially) true and was not clipped in the mean time. 5 The next 5 lines declare
the time-points used in the model as well as the events (whether lactose/glucose
is added/subtracted) and the fluents (whether lactose/glucose is present and
whether lactose is being metabolised). The next 4 lines define a partial domain
theory. They state that adding (resp. subtracting) lactose/glucose at any time T
is sufficient to ensure the presence (resp. absence) of lactose/glucose. 6 The last
8 lines specify the fluents that initially hold, and the events which then occur.

The examples E state at which time points lactose metabolism was known
to hold. The aim is to learn the initiating and terminating conditions for lac-
tose metabolism. This amounts to completing the initial domain axioms. Hence,
the mode declarations M state that hypothesized clauses may have atoms of
the form initiates(e, f, T) and terminates(e, f, T) in their head, where e and
f are constants (fluents and events) and T is a variable (a time); and literals
of the form holdsAt(f, T) and not holdsAt(f, T) in their bodies where f is a
fluent and T is a variable in the head. Note that, for simplicity, this exam-
ple only uses one event per time point and it provides a complete scenario for
the fluent meta(lact). However, the XHAIL methodology also works for more
complex examples involving concurrent actions and partial scenario. By adding
head declarations for initially and/or happens the method can also be used for
incomplete narratives.

Consider now the result of applying XHAIL to the inputs in Figure 2.

5 Note that NAF is necessary to model the persistence of fluents through time i.e. a
fluent is assumed to remain true if there is no evidence it was clipped.

6 Note that by the axioms in Figure 1, the truth of any fluents initiated or terminated
by an action at time T will only change at the next time point T + 1.

74

%— Background Knowledge (B)—%

holdsAt(F,T2) ← happens(E,T1), T1<T2, initiates(E,F,T1), not clipped(T1,F,T2).

holdsAt(F,T2) ← initially(F), not clipped(0,F,T2).

clipped(T1,F,T2) ← happens(E,T), T1<T, T<T2, terminates(E,F,T).

time(0). time(1). time(2). time(3). time(4).

time(5). time(6). time(7). time(8). time(9).

event(add(gluc)). event(add(lact)). event(sub(gluc)). event(sub(lact)).

fluent(pres(lact)). fluent(pres(gluc)). fluent(meta(lact)).

initiates(add(gluc),pres(gluc),T).

initiates(add(lact),pres(lact),T).

terminates(sub(gluc),pres(gluc),T).

terminates(sub(lact),pres(lact),T).

initially(pres(gluc)).

happens(add(lact),1).

happens(sub(gluc),2).

happens(sub(lact),3).

happens(add(lact),4).

happens(add(gluc),5).

happens(sub(lact),6).

happens(sub(gluc),7).

%— Examples (E)—%

not holdsAt(meta(lact),1),

not holdsAt(meta(lact),2),

holdsAt(meta(lact),3),

not holdsAt(meta(lact),4),

holdsAt(meta(lact),5),

not holdsAt(meta(lact),6),

not holdsAt(meta(lact),7),

not holdsAt(meta(lact),8).

%— Mode Declarations (M)—%

modeh(*,initiates(#event,#fluent,+time)).

modeh(*,terminates(#event,#fluent,+time)).

modeb(*,holdsAt(#fluent,+time)).

modeb(*,not holdsAt(#fluent,+time)).

Fig. 2. XHAIL Inputs

75

The abductive phase results in the addition of the type clauses

initiates(A,B,C) ← initiates∗(A,B,C), initiates′(A,B,C).
terminates(A,B,C) ← terminates∗(A,B,C), terminates′(A,B,C).
initiates∗(A,B,C) ← event(A), f luent(B), time(C).
terminates∗(A,B,C) ← event(A), f luent(B), time(C).

along with the abducibles

initiates′ and terminates′

and returns exactly one minimal explanation

X =

initiates′(sub(gluc),meta(lact), 2),
terminates′(sub(lact),meta(lact), 3),
initiates′(add(lact),meta(lact), 4),
terminates′(add(gluc),meta(lact), 5).

which, after removing primes, results in the hypothesis

∆ =

initiates(sub(gluc),meta(lact), 2),
terminates(sub(lact),meta(lact), 3),
initiates(add(lact),meta(lact), 4),
terminates(add(gluc),meta(lact), 5).

The deductive phase results in the addition of the declarations

consistent(initiates(sub(gluc),meta(lact), 2)),
consistent(terminates(sub(lact),meta(lact), 3)),
consistent(initiates(add(lact),meta(lact), 4)),
consistent(terminates(add(gluc),meta(lact), 5)).

so, saturating the first head atom initiates(sub(gluc),meta(lact), 2), gives

ni = {2}

Q =

{

fluent(F), holdsAt(F, 2)
fluent(F), not holdsAt(F, 2)

}

R =

holdsAt(pres(lact), 2)
holdsAt(pres(gluc), 2)
not holdsAt(meta(lact), 2)

whereupon, choosing S = R, produces

k1 = initiates(sub(gluc),meta(lact), 2) ← holdsAt(pres(lact), 2),
holdsAt(pres(gluc), 2),
not holdsAt(meta(lact), 2).

76

which results in

k′

1 = initiates(sub(gluc),meta(lact),X) ← holdsAt(pres(lact),X),
holdsAt(pres(gluc),X),
not holdsAt(meta(lact),X).

so that, saturating the remaining atoms in the same way, finally gives

K ′ =

initiates(sub(gluc),meta(lact),X) ← holdsAt(pres(lact),X),
holdsAt(pres(gluc),X),
not holdsAt(meta(lact),X).

terminates(sub(lact),meta(lact),X) ← holdsAt(pres(lact),X),
not holdsAt(pres(gluc),X).

initiates(add(lact),meta(lact),X) ← not holdsAt(pres(lact),X),
not holdsAt(pres(gluc),X).

terminates(add(gluc),meta(lact),X) ← holdsAt(pres(lact),X),
not holdsAt(pres(gluc),X).

The inductive phase results in the addition of the clauses

initiates(sub(gluc),meta(lact),X) ← try(1, 1, holdsAt(pres(lact),X)),
try(1, 2, holdsAt(pres(gluc),X)),
try(1, 3, not holdsAt(meta(lact),X)).

terminates(sub(lact),meta(lact),X) ← try(2, 1, holdsAt(pres(lact),X)),
try(2, 2, not holdsAt(pres(gluc),X)).

initiates(add(lact),meta(lact),X) ← try(3, 1, not holdsAt(pres(lact),X)),
try(3, 2, not holdsAt(pres(gluc),X)).

terminates(add(gluc),meta(lact),X) ← try(4, 1, holdsAt(pres(lact),X)),
try(4, 2, not holdsAt(pres(gluc),X)).

try(X,Y,Z) ← not use(X,Y).

try(X,Y,Z) ← use(X,Y), Z.

along with the abducible

use

and returns exactly one minimal hypothesis

Y = {use(1, 1), use(3, 2)}

corresponding to the maximally compressive hypothesis

77

H =

initiates(sub(gluc),meta(lact), T) ← holdsAt(pres(lact), T).
terminates(sub(lact),meta(lact), T).
initiates(add(lact),meta(lact), T) ← not holdsAt(pres(gluc), T).
terminates(add(gluc),meta(lact), T).

This example illustrates several key features of XHAIL:

– it performs non-Observation Predicate Learning (non-OPL) [21] as none of
the predicates defined in H are defined in E;

– it reasons through negations as the 4th literal in E yields the 2nd atom in
∆ via a negated clipped literal;

– it uses language bias effectively as it bounds the search space using a set K
of just 4 clauses containing only 13 literals in total;

– it performs true multiple predicate learning as all of the clauses in K are
searched in parallel to produce an H defining two predicates.

Moreover, the XHAIL framework in Figure 1 is clearly parametric on the
choice of ALP algorithm. This means that the ALP algorithm can be chosen to
suit a particular application. In this paper it was assumed that the ALP system
behaves according to the stable model semantics. However, it is equally possible
to use an ALP procedure designed for any other preferred model semantics such
as the perfect or well-founded models. In this sense the XHAIL framework is
also parametric on the choice of logic program semantics. In fact, the XHAIL
methodology has also been implemented using an answer set solver. Preliminary
experiments suggest that an answer solver is considerably more efficient than
ALP when applied to the inductive phase of the procedure. 7

5 Related Work

Moyle [17] describes an application of Alecto to the learning of domain specific
EC axioms similar to the case study above. Unlike XHAIL, Alecto requires sev-
eral transformations to ‘decouple’ the learning of the initiates and terminates
predicates by artificially generating integrity constraints from the observations
to represent the fact that certain fluents are not clipped [18]. Unfortunately, we
were unable to verify these results since the Alecto semantics (described in [18])
and the only publicly available proof procedure (included in [32]) apply to just
Horn programs.

Moyle and Muggleton [19] describe an application of Progol5 to the same
problem of learning of domain specific EC axioms. In addition to the decou-
pling transformations mentioned above, the limitations of Progol5’s abductive
reasoning procedure also necessitate a rewriting of the EC axioms to express the
initiates and terminates predicates into one flips predicate with reified truth

7 In order to apply the answer set solver, typing literals have to be added to all program
clauses and the meta-predicate try must be rewritten using the technique in [25]

78

values. While this just leaves a single negated clipped atom in the theory, The
inability of Progol5 to reason abductively through negation means that it can
only solve a restricted class of problems (and, in particular, cannot solve the
case study presented in this paper).

Otero [24] has shown that some temporal induction problems (in a variation
of the Situation Calculus) can be reduced to monotonic reasoning by exploiting
causal structure. Otero [23] considers the task of nonmonotonic induction under
the skeptical stable model semantics. He gives necessary and sufficient conditions
for the existence of a stable model solution and describes a method for comput-
ing the corresponding stable models. But, his method only returns grount unit
hypotheses (i.e., complete sets of ground atoms) and does not utilise any form
of language or search bias.

Sakama [29] proposes an nonmonotonic ILP methodology (for extended logic
programs) based on the sceptical stable model semantics. However the method is
restricted to OPL learning (where hypothesis and example predicates coincide)
and it requires that the example predicates appear nowhere in the theory. As
mentioned in [29], overcoming these restrictions would necessitate the use of
abductive techniques, and this is exactly what XHAIL achieves. The procedure
in [29] does use the notions of ‘relevance’ and ‘involvement’ to constrain the
search space, but it does not exploit bias to the same extent as XHAIL. Unlike
XHAIL, which generalizes all of the examples in one go, the procedure in [29]
considers examples one by one which introduces a dependency on the order in
which examples are presented to the system and forces additional restrictions
on the interdependencies among example predicates. Also, [29] is restricted to
learning rules that are ‘negative cycle free’.

Esposito et al [6] describe a system INTHELEX which applies abductive and
inductive operators to learn hierarchical datalog programs under the so-called
‘object identity assumption’. In principle, INTHELEX can be used to perform
non-monotonic induction. However, after rewriting our case study into a suitable
form (to exclude function symbols and built-in predicates) we were unable to
learn the required hypothesis using INTHELEX.

A survey of other related nonmonotonic ILP is provided in [29] that includes
[2, 10, 4, 14, 16, 7, 30, 8] Although a detailed comparison remains to be carried
out, it is clear that for certain problems XHAIL overcomes some of the practical
limitations of these systems.

Alrajeh et al [1] have applied XHAIL to the learning of operational system
requirements from scenarios. They use an EC formalism augmented to represent
multiple scenarios and event preconditions.

6 Conclusions

This paper formalised the XHAIL framework for learning normal logic programs,
and illustrated this approach on a biologically motivated case study using the
EC formalism for reasoning about action and change. Since it is likely that such
calculi will become more important in biological and other applications, effective

79

(nonmonotonic) techniques for inferring domain theories are much needed. Un-
like other approaches for nonmonotonic ILP, XHAIL uses language and search
bias to bound the search space by constructing and generalising a preliminary
Kernel Set. It was shown how abductive techniques can be used to implement
all three phases of the XHAIL approach. This shows that abductive reasoning
can be usefully exploited in nonmonotonic induction procedures and it provides
a methodology that may be of use in other learning problems. However, the
limitations of XHAIL need to be studied more closely and it remains to validate
the method on a more realistic case study.

Acknowledgments

I am grateful to Dalal Alrajeh, Krysia Broda, Antonis Kakas and Alessandra
Russo for useful discussions. This work was supported by a Research Councils
UK fellowship in Exabyte Informatics.

References

1. D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Extracting Requirements from
Scenarios with ILP. In Proc. 16th Int. Conf. on ILP, volume 4455 of LNCS, pages
63–77. Springer, 2007.

2. M. Bain and S. Muggleton. Non-monotonic learning. In Mach. Intel. 12, pages
105–119. OUP, 1991.

3. K. L. Clark. Negation as failure rule. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, 1978.

4. Y. Dimopoulos and A. Kakas. Learning non-monotonic logic programs: Learning
exceptions. In Proc. 8th Europ. Conf. on Mach. Learn., volume 912 of LNAI, pages
122–138. Springer, 1995.

5. K. Eshghi and R.A. Kowalski. Abduction compared with negation by failure. In
Proc. 6th Int. Conf. on Logic Programming, pages 234–254. MIT Press, 1989.

6. F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Revision:
Induction and Abduction in INTHELEX. Mach. Learn., 38(1/2):133–156, 2000.

7. M. Nicosia G. Ruffo F. Bergadano, D. Gunetti. Learning logic programs with nega-
tion as failure. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 107–123. IOS Press, 1996.

8. L. Fogel and G. Zaverucha. Normal programs and multiple predicate learning. In
Proc. 8th Int. Workshop on ILP, pages 175–184. Springer, 1998.

9. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. 5th Int. Conf. on Logic Programming, pages 1070–1080. MIT Press, 1988.

10. K. Inoue and Y. Kudoh. Learning extended logic programs. In Proc. 15th Int.
Joint Conf. on AI, volume I, pages 176–181. Morgan Kaufmann, 1997.

11. F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins.
Journal of Molecular Biology, 3:318–356, 1961.

12. A. Kakas, R. Kowalski, and F. Toni. Abductive Logic Programming. Journal of
Logic and Computation, 2(6):719–770, 1992.

13. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

80

14. E. Lamma, F. Riguzzi, and L. Pereira. Strategies in combined learning via logic
programs. Mach. Learn., 38(1-2):63–87, 2000.

15. J. Lloyd. Foundations of Logic Programming. Springer, 1987.
16. L. Martin and C. Vrain. A three-valued framework for the induction of general

logic programs. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 219–235. IOS Press, 1996.

17. S. Moyle. Using theory completion to learn a robot navigation control program. In
Proc. 12th Int. Workshop on ILP, volume 2583 of LNAI, pages 182–197. Springer,
2002.

18. S. Moyle. An investigation into theory completion techniques in inductive logic
programming. PhD thesis, University of Oxford, UK, 2003.

19. S. Moyle and S. Muggleton. Learning programs in the event calculus. In Proc. 7th
Int. Workshop on ILP, volume 1297 of LNAI, pages 205–212. Springer, 1997.

20. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13(3-
4):245–286, 1995.

21. S. Muggleton and C. Bryant. Theory Completion Using Inverse Entailment. In
Proc. 10th Int. Conf. on ILP, volume 1866 of LNCS, pages 130–146. Springer,
2000.

22. S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and Meth-
ods. Journal of Logic Programming, 19,20:629–679, 1994.

23. R. Otero. Induction of Stable Models. In Proc. 11th Int. Conf. on ILP, volume
2157 of LNAI, pages 193–205. Springer, 2001.

24. R. Otero. Embracing Causality in Inducing the Effects of Actions. In Proc. 10th
Conf. of the Spanish Association of AI, volume 3040 of LNAI, pages 291–301.
Springer, 2004.

25. O. Ray. Using abduction for induction of normal logic programs. In Proc. ECAI’06
Workshop on Abduction and Induction in AI and Scientific Modelling, pages 28–31,
2006.

26. O. Ray, K. Broda, and A. Russo. Hybrid Abductive Inductive Learning: a Gener-
alisation of Progol. In Proc. 13th Int. Conf. on ILP, volume 2835 of LNAI, pages
311–328. Springer, 2003.

27. O. Ray, K. Broda, and A. Russo. A hybrid abductive inductive proof procedure.
Logic Journal of the IGPL, 12(5):371–397, 2004.

28. O. Ray and A. Kakas. ProLogICA: a practical system for Abductive Logic Pro-
gramming. In Proc. 11th Int. Workshop on Non-monotonic Reasoning, pages 304–
312, 2006.

29. C. Sakama. Induction from answer sets in nonmonotonic logic programs. ACM
Transactions on Computational Logic, 6(2):203–231, 2005.

30. J. Seitzer. Stable ILP: exploring the added expressivity of negation in the back-
ground knowledge. In Proc. IJCAI’95 Workshop on Frontiers of ILP, 1997.

31. M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, 1997.

32. A. Srinivasan. The Aleph Manual (version 4), 2003.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/index.html.

81

Equivalence Issues in Abduction and Induction

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. This paper discusses several equivalence issues in abduction and in-
duction. Three different problems: equivalence of background theories, equiv-
alence of explanations, and equivalence of observations are considered in the
context of first-order logic and nonmonotonic logic programming. Necessary and
sufficient conditions for those problems, and computational complexity results
are provided.

1 Introduction

Suppose a multiagent society where individual agents have their own knowledge bases.
To solve problems cooperatively, agents must share their information in the society. It
is likely to happen, however, that the same information is represented in different ways
by each agent. To evaluate information contents and to identify different information
sources, the notion of equivalence relation between theories/programs is utilized. The
equivalence relation between theories/programs is also important in program develop-
ment. Given a specification of a problem, a programmer transforms it into an executable
program which would be further optimized to increase efficiency. In every step, a pro-
gram is requested to be semantically equivalent to the original specification.

There is a number of ways for identifying different logical theories. In classical
logic, two first-order theories are equivalent if they have the same logical consequences.
In logic programming, two logic programs are equivalent if they have the same seman-
tics [9]; and a stronger notion of equivalence is used under the name of strong equiv-
alence [8]. These equivalence relations compare capabilities of deductive reasoning
between theories/programs. On the other hand, considering intelligent agents that can
perform commonsense reasoning, it is necessary to have a framework of comparing ca-
pabilities of non-deductive reasoning like abduction and induction. This motivates the
studies by Inoue and Sakama [6, 7, 13] which introduce several criteria for identifying
abductive/inductive theories/programs.

Abduction and induction have analogous inference mechanisms: they both produce
hypotheses to explain observations using background theories [2]. Thus, there are at
least three parameters in this task: background theories, explanations, and observations.
Several equivalence issues are then considered:

82

Equivalence of background theories : Two background theories are considered equiv-
alent if they produce the same explanations for any observation. This equivalence
measure is useful for comparing “information contents” of different background
theories.

Equivalence of explanations : Two explanations are considered equivalent if they ac-
count for the same observation under a given background theory. This equivalence
measure is useful for comparing “explanation power” of different explanations.

Equivalence of observations : Two observations are considered equivalent if they pro-
duce the same explanations under a given background theory. This equivalence
measure is useful for comparing “evidential power” of different observations.

The conditions for those equivalence issues generally depend on a logic on which
abduction/induction is based. Moreover, those conditions differ among individual ab-
duction/induction algorithms. Inoue and Sakama [6, 7] study the problem of equiva-
lence of background theories in abduction under first-order logic and abductive logic
programming. Sakama and Inoue [13] study the corresponding problem in induction
and compare conditions for different algorithms in inductive logic programming (ILP).
On the other hand, equivalence issues with respect to explanations/observations have
not been studied so far.

The purpose of this paper is to discuss several equivalence issues for abduction and
induction. We first review the results of [6, 7, 13] on the equivalence of background
theories in Section 2. We then investigate the remaining two problems; equivalence of
explanations in Section 3 and equivalence of observations in Section 4. We provide re-
sults under two logics, first-order logic and (nonmonotonic) logic programming, which
are two most popular logics used in the literature of abduction/induction. Section 5
analyzes the results of this paper, Section 6 summarizes the paper.

2 Equivalence of Background Theories

2.1 Abductive Equivalence in First-Order Logic

In this section, we first consider the case that the underlying logic is first-order logic. As
stated in Section 1 we capture both abduction and induction as a process of hypothesis
generation given a background theory and observations. To understand two inference
mechanisms in a unified framework, we define abduction in a general setting.

Definition 2.1. (abductive theory) An abductive (first-order) theory is defined as a
pair (B,H) where B and H are sets of first-order formulas, respectively representing a
background theory and a candidate hypothesis. An abductive theory is called proposi-
tional if both B and H are finite propositional theories.

Let O be any formula representing an observation. Then, a set E ⊆ H is an expla-
nation of O if

– B ∪ E |= O, and

– B ∪ E is consistent.

83

An explanation is called ground if it contains no variable.

Note that the above definition also characterizes induction. A typical induction prob-
lem is: given a finite set G of observations and a background knowledge B, find a
hypothesis E such that B∪E |= G where B∪E is consistent.3 A finite set G of obser-
vation is represented as a single formula O =

∧
g∈G g. When candidate hypothesis H

is not specified in advance, we can put H = F with the set F of all first-order formulas
in the language. So in this paper we discuss equivalence issues in abduction hereafter,
but the same results hold for induction as well.

Remark: In induction problems, negative observations are often considered as well as
positive ones. For any negative observation G, the condition B ∪ E �|= G is requested
for any explanation E. To handle negative observations, the notion of anti-explanations
in the context of extended abduction is usable [4]. Equivalence problems in this paper
are extended to handle negative observations as well. For simplicity reasons, we handle
positive observations only in this paper.4

To argue equivalence issues in abductive logic, Inoue and Sakama [6] introduce two
different criteria of abductive equivalence.

Definition 2.2. (explainable equivalence) Two abductive theories (B1,H1) and (B2,H2)
are explainably equivalent if, for any observation O, there is an explanation of O in
(B1,H1) iff there is an explanation of O in (B2,H2).

Definition 2.3. (explanatory equivalence) Two abductive theories (B1,H1) and (B2,H2)
are explanatorily equivalent if, for any observation O, there is an explanation E1 of O
in (B1,H1) iff there is an explanation E2 of O in (B2,H2) such that E1 ≡ E2.

Explainable equivalence requires that two abductive theories have the same explain-
ability for any observation. By contrast, explanatory equivalence assures that two ab-
ductive theories have the same explanation contents for any observation. Explanatory
equivalence is stronger than explainable equivalence and the former implies the latter.

Example 2.1. Consider two abductive theories (B1,H1) and (B2,H2) such that

B1 : grass is wet ⊃ shoes are wet,

rained last night ⊃ grass is wet,

sprinkler was on ⊃ grass is wet.

H1 : rained last night, sprinkler was on .

B2 : grass is wet ⊃ shoes are wet,

rained last night ⊃ grass is wet.

H2 : rained last night, sprinkler was on.

Then, (B1,H1) and (B2,H2) are explainably equivalent, but not explanatory equiva-
lent. That is, every observation explainable in (B1,H1) is also explainable in (B2,H2),

3 This type of induction is called explanatory induction [2].
4 Equivalence of background theories in extended abduction is discussed in [7].

84

and vice versa. On the other hand, the observation O = shoes are wet has the expla-
nation E = { sprinkler was on } in (B1,H1), but E does not explain O in (B2,H2).

In the above example, (B1,H1) has the cause-effect knowledge sprinkler was on ⊃
grass is wet, but (B2,H2) does not. This means that if it is later known that it was
not rained last night (¬ rained last night), (B2,H2) cannot explain the observation
O = shoes are wet anymore. As a result, (B1 ∪ {¬ rained last night },H1) and
(B2 ∪ {¬ rained last night},H2) are not explainably equivalent.

Thus, two equivalence relations compare explanation power of abductive theories
in different ways. Inoue and Sakama [6] provide necessary and sufficient conditions for
each equivalence relation. In the following, Th(Σ) denotes the set of logical conse-
quences of a set Σ of first-order formulas.

Definition 2.4. (extension) Let (B,H) be an abductive theory. An extension of (B,H)
is defined as Th(B∪S) where S is a maximal subset of H such that B∪S is consistent.
The set of all extensions of (B,H) is denoted by Ext(B,H).

Theorem 2.1. [6] Let (B1,H1) and (B2,H2) be two abductive theories. Then,

1. (B1,H1) and (B2,H2) are explainably equivalent iff Ext(B1,H1) = Ext(B2,H2).
2. (B1,H1) and (B2,H2) are explanatorily equivalent iff B1 ≡ B2 and H ′

1 = H ′
2

where H ′
i = {h ∈ Hi | Bi ∪ {h} is consistent } for i = 1, 2.

Since any element in Hi\H ′
i is of no use for explaining observations, two abductive

theories are assumed to have a common hypothesis set H for explanatory equivalence.
The next theorem states the computational complexity of each equivalence prob-

lem.5

Theorem 2.2. [6]

1. Deciding explainable equivalence of two (propositional) abductive theories is ΠP
2 -

complete.

2. Deciding explanatory equivalence of two (propositional) abductive theories is coNP-
complete.

2.2 Abductive Logic Programming

Next, we consider the case that the underlying logic is abductive logic programming
(ALP) [1]. In contrast to first-order logic, in ALP a background theory is given as a
nonmonotonic logic program in general.

A logic program considered in this paper is the class of general extended disjunctive
program (GEDP) [5], which is a set of rules of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; not Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln

5 Throughout the paper, complexity results are stated in terms of the size of background theories
and candidate hypotheses, unless stated otherwise.

85

(n ≥ m ≥ l ≥ k ≥ 0), where each Li is a positive/negative literal, i.e., A or ¬A for
an atom A, and not is negation as failure. notL is called an NAF-literal. The symbol
; represents disjunction. The left-hand side of the rule is the head, and the right-hand
side is the body. For each rule r of the above form, head+(r), head−(r), body+(r) and
body−(r) denote the sets of literals {L1, . . . , Lk}, {Lk+1, . . . , Ll}, {Ll+1, . . . , Lm},
and {Lm+1, . . . , Ln}, respectively. Also, not head−(r) and not body−(r) denote the
sets of NAF-literals {notLk+1, . . . , not Ll} and {not Lm+1, . . . , not Ln}, respectively.
A disjunction/conjunction of (NAF-)literals in a rule is identified with its corresponding
sets of (NAF-)literals. A rule r is often written as

head+(r) ; not head−(r) ← body+(r), not body−(r)

or head(r) ← body(r) where head(r) = head+(r) ∪ not head−(r) and body(r) =
body+(r) ∪ not body−(r). A rule L ← is identified with a literal L. A program P is
basic if head−(r) = body−(r) = ∅ for every rule r in P . A program P is an extended
disjunctive program (EDP) if head−(r) = ∅ for every rule r in P . A program, rule, or
literal is ground if it contains no variable. A program P with variables is a shorthand
of its ground instantiation Ground(P), the set of ground rules obtained from P by
substituting variables in P by elements of its Herbrand universe in every possible way.

A semantics of a GEDP is given by the answer set semantics [3, 5]. Let Lit be the
set of all ground literals in the language of a program. Suppose a program P and a set of
literals S(⊆ Lit). Then, the reduct PS is the program which contains the ground rule
head+(r) ← body+(r) iff there is a rule r in Ground(P) such that head−(r) \ S = ∅
and body−(r) ∩ S = ∅. Given a basic program P , Cn(P) denotes the smallest set of
ground literals which is (i) closed under P , i.e., for every ground rule head+(r) ←
body+(r) in Ground(P), body+(r) ⊆ Cn(P) implies head+(r) ∩ Cn(P) �= ∅; and
(ii) logically closed, i.e., it is either consistent or equal to Lit. Given a GEDP P and a
set S of literals, S is an answer set of P if S = Cn(PS). A program has none, one, or
multiple answer sets in general. An answer set is consistent if it is not Lit. A program
is consistent if it has a consistent answer set; otherwise it is inconsistent. Throughout
this paper, a program is assumed to be consistent unless stated otherwise. The set of
all answer sets of a program P is denoted by AS(P). When P is an EDP, AS(P)
becomes an anti-chain set, i.e., no element S ∈ AS(P) is a proper subset of another
element T ∈ AS(P). This is not the case for GEDPs in general (see Example 2.2). A
conjunction L1, . . . , Lm, not Lm+1, . . . , not Ln of ground (NAF-)literals is satisfied
in an answer set S if {L1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln } ∩ S = ∅.

A literal L is a consequence of skeptical reasoning (resp. credulous reasoning) in
a program P if L is included in every (resp. some) answer set of P . For a consistent
program P , define

skp(P) =
⋂

S∈AS(P)

S and crd(P) =
⋃

S∈AS(P)

S.

Clearly, skp(P) ⊆ crd(P) holds for any consistent program P .
Two programs P1 and P2 are (weakly) equivalent if AS(P1) = AS(P2). P1 and

P2 are strongly equivalent if AS(P1 ∪ Q) = AS(P2 ∪ Q) for any program Q [8]. By
the definition, strong equivalence implies weak equivalence, but not vice versa. Given

86

a set R of rules, P1 and P2 are strongly equivalent with respect to R if AS(P1 ∪ Q) =
AS(P2 ∪ Q) for any Q ⊆ R (this equivalence is called relative equivalence). Strong
equivalence is a special case of relative equivalence where R is the set of all rules in the
language.

Proposition 2.3 Let P1 and P2 be two programs. If P1 and P2 are (weakly) equivalent,
skp(P1) = skp(P2) and crd(P1) = crd(P2).

The converse of the above proposition does not hold in general.

Example 2.2. Consider two programs:

P1 : p ← not q,

q ← not p.

P2 : p ← q,

q ; not q ←
where AS(P1) = {{p}, {q}} and AS(P2) = {∅, {p, q}}. Then, skp(P1) = skp(P2) =
∅ and crd(P1) = crd(P2) = {p, q}.

An abductive program is defined as a pair 〈P,A〉 where P and A are GEDPs
respectively representing a background theory and a candidate hypothesis. In particular,
an abductive program 〈P,A〉 is called an abductive EDP if both P and A are EDPs.
An abductive program 〈P,A〉 is called an abductive definite program if both P and
A are definite logic programs, i.e., sets of definite Horn clauses. Any element in A is
called an abducible. An abductive program 〈P,A〉 is called propositional if both P
and A are finite ground programs.

Definition 2.5. (belief sets) Let 〈P,A〉 be an abductive program. For any E ⊆ A, a
consistent answer set S of P ∪ E is called a belief set of 〈P,A〉 (with respect to E).

In abductive logic programming, we define an observation as a ground literal.

Definition 2.6. (credulous/skeptical explanation) Let 〈P,A〉 be an abductive pro-
gram, and O an observation. A set E ⊆ A is a credulous explanation of O in 〈P,A〉
if O is included in some belief set of 〈P,A〉 (with respect to E). A set E ⊆ A is a
skeptical explanation of O in 〈P,A〉 if O is included in every belief set of 〈P,A〉
(with respect to E).

A credulous/skeptical explanation is called ground if it contains no variable. Abduc-
tion for credulous/skeptical explanations is also called credulous/skeptical abduction.

Remark: In the literature of abductive logic programming, abducibles are usually re-
stricted to (ground) literals. Any abductive program 〈P,A〉 which contains rules in
A is transformed to a semantically equivalent abductive program in which abducibles
contain only literals. Given an abductive program 〈P,A〉, let

P ′ = (P \ A) ∪ {head(r) ← body(r), Nr | r ∈ A} ∪ {Nr ←| r ∈ A ∩ P },
A′ = {Nr | r ∈ A},

87

where Nr is a newly introduced atom (called the name of r) uniquely associated with
each rule r in A. With this setting, for any observation there is a 1-1 correspondence
between explanations in 〈P,A〉 and those in 〈P ′,A′ 〉 [12].

Without loss of generality, we assume an observation O as a ground literal. If an ob-
servation O is given as a conjunction of ground (NAF-)literals to an abductive program
〈P,A〉, O is transformed to the rule G ← O where G is a new ground atom appearing
nowhere in P ∪A. With this setting, O is satisfied by an answer set of P ∪E for E ⊆ A
iff G is included in an answer set of P ∪{G ← O }∪E. Then G has an explanation in
an abductive program 〈P ∪ {G ← O },A〉.
Example 2.3. Let 〈P,A〉 be an abductive program such that

P : watch-TV ; sleeping ← holiday, not busy ,

working ← holiday, busy ,

holiday ← .

A : busy .

The observation O1 = watch-TV has the empty set E1 = ∅ as the credulous explana-
tion. The observation O2 = working has the skeptical explanation E2 = { busy }.

Definition 2.7. (explainable/explanatory equivalence) Two abductive logic programs
〈P1,A1 〉 and 〈P2,A2 〉 are explainably equivalent if, for any observation O, there is
a credulous/skeptical explanation of O in 〈P1,A1 〉 iff there is a credulous/skeptical
explanation of O in 〈P2,A2 〉. On the other hand, 〈P1,A1 〉 and 〈P2,A2 〉 are explana-
torily equivalent if, for any observation O, there is a credulous/skeptical explanation E
of O in 〈P1,A1 〉 iff there is a credulous/skeptical explanation E of O in 〈P2,A2 〉.

Note that in logic programming the meaning of rules depends on their syntax in
general. So two explanations E1 = { p ← ¬ q } and E2 = { q ← ¬ p } have different
meanings. This is in contrast to the case of first-order abduction.

In [6] necessary and sufficient conditions for explainable/explanatory equivalence
in credulous abduction are given. In [13] a necessary and sufficient condition for ex-
planatory equivalence in skeptical abduction is given in the context of inductive logic
programming (ILP). We summarize those results below, together with new results.

Theorem 2.4. Let 〈P1,A1 〉 and 〈P2,A2 〉 be two abductive programs. Then,

1. 〈P1,A1 〉 and 〈P2,A2 〉 are explainably equivalent in credulous abduction iff
⋃

E∈A1

crd(P1 ∪ E) =
⋃

F∈A2

crd(P2 ∪ F)

where P1 ∪ E and P2 ∪ F are consistent.

2. 〈P1,A1 〉 and 〈P2,A2 〉 are explainably equivalent in skeptical abduction iff there
is a set E ⊆ A1 and F ⊆ A2 satisfying

skp(P1 ∪ E) = skp(P2 ∪ F)

where P1 ∪ E and P2 ∪ F are consistent.

88

3. 〈P1,A1 〉 and 〈P2,A2 〉 with A1 = A2 = A are explanatorily equivalent in cred-
ulous/skeptical abduction iff P1 and P2 are strongly equivalent with respect to A.

Proof. The results of 1 and 3 are due to [6, 13]. Here we show 2. By the definition,
〈P1,A1 〉 and 〈P2,A2 〉 are explainably equivalent in skeptical abduction iff for any
observation O, O ∈ skp(P1 ∪ E) with some E ⊆ A1 such that P1 ∪ E is consistent
and O ∈ skp(P2 ∪ F) with some F ⊆ A2 such that P2 ∪ F is consistent. Hence, the
result holds. ��

Theorem 2.5. 1. Deciding explainable equivalence of two (propositional) abductive
programs is ΠP

2 -hard in both credulous and skeptical abduction.

2. Deciding explanatory equivalence of two (propositional) abductive programs is
ΠP

2 -complete in both credulous and skeptical abduction.

Proof. The result of (1) in credulous abduction is due to [6]. To see the result in skepti-
cal abduction, the problem contains the case that the abducibles are empty. In this case,
the problem reduces to deciding equivalence of skeptical consequences between two
background programs. This is done by checking whether any literal is included in ev-
ery answer set of two programs. This is known as a ΠP

2 -complete task [5]. Hence, the
result holds. The result of (2) in credulous abduction is due to [6]. Since the necessary
and sufficient condition of explanatory equivalence in skeptical abduction is the same
as that of credulous abduction by Theorem 2.4(3), the result holds. ��

3 Equivalence of Explanations

Next we turn our attention to the problem of equivalence of explanations.

Definition 3.1. (equivalent explanation) Given an abductive theory (B,H), two ex-
planations E1 and E2 are equivalent if, for any observation O, E1 is an explanation of
O in (B,H) iff E2 is an explanation of O in (B,H).

The notion of equivalent explanations provides a method for identifying different
explanations which are abduced for an arbitrary observation in a background knowl-
edge. The next result holds for first-order abduction.

Theorem 3.1. Let (B,H) be an abductive theory. Then, two explanations E1 and E2

are equivalent iff B ∪ E1 ≡ B ∪ E2.

Proof. E1 and E2 are equivalent
iff B ∪ E1 |= O ⇔ B ∪ E2 |= O for any formula O
iff B ∪ E1 ≡ B ∪ E2. ��

The above theorem states that in first-order abduction explanations are equivalent
if and only if B ∪ E1 and B ∪ E2 are logically equivalent. In other words, logically
different formulas can become an equivalent explanation depending on the context of
B.

89

Example 3.1. Given B = { p ⊃ q, q ⊃ p, p ∧ q ⊃ r } and H = { p, q }, E1 = { p },
E2 = { q }, and E3 = { p, q } are all equivalent explanations.

In the context of abductive logic programming, the notion of equivalent explana-
tion is defined in the same manner by replacing an abductive theory (B,H) with an
abductive program 〈P,A〉 in Definition 3.1. Then, the following result holds.

Theorem 3.2. Let 〈P,A〉 be an abductive program. Then, two explanations E1 and E2

are equivalent if AS(P ∪E1) = AS(P ∪E2) where P ∪E1 and P ∪E2 are consistent.
The only-if part also holds for credulous abduction if 〈P,A〉 is an abductive EDP.6

Proof. The if part is obvious for both skeptical and credulous abduction. We show the
only-if part for credulous abduction. Suppose that AS(P ∪ E1) �= AS(P ∪ E2) and
there is a consistent answer set S such that S ∈ AS(P∪E1)\AS(P∪E2). (a) If there is
a finite subset G ⊆ S such that G �⊆ T for any T ∈ AS(P ∪E2), E1 explains G but E2

does not. This contradicts the assumption that E1 and E2 are equivalent. (b) Otherwise,
for every finite subset G ⊆ S, G ⊆ T for some T ∈ AS(P ∪ E2). Then, S ⊆ T holds.
(Otherwise, there is a literal L ∈ S \ T . Then, for a finite subset G′ ⊆ S such that L ∈
G′, G′ �⊆ T . Contradiction.) As S �∈ AS(P ∪E2), S ⊂ T holds (†). Since AS(P ∪E1)
is an anti-chain set, T �∈ AS(P ∪ E1). Then, T ∈ AS(P ∪ E2) \ AS(P ∪ E1). (c)
If there is a finite subset G′ ⊆ T such that G′ �⊆ S′ for any S′ ∈ AS(P ∪ E1), E2

explains G′ but E1 does not. This contradicts the equivalence assumption of E1 and E2.
(d) Otherwise, for every finite subset G′ ⊆ T , G′ ⊆ S′ for some S′ ∈ AS(P ∪ E1).
Then, T ⊆ S′ holds as above. Since T �∈ AS(P ∪ E1), T ⊂ S′ holds. By (†), S ⊂ S′

holds for two answer sets S and S′ of P ∪E1. But this is impossible, since AS(P ∪E1)
is an anti-chain set. ��
Example 3.2. Let 〈P,A〉 be an abductive program such that

P : p ← not q,

q ← not p,

r ← not r.

A : r ← p,

r ← not q.

Then, E1 = { r ← p }, E2 = { r ← not q } and E3 = { r ← p, r ← not q } are
equivalent in both skeptical/credulous abduction.

In skeptical abduction, the condition AS(P ∪ E1) = AS(P ∪ E2) is not necessary
for the equivalence of explanations. For instance, in the abductive program 〈P,A〉
where P = ∅ and A = { p ; q ←, r ; s ←}, two skeptical explanations E1 =
{ p ; q ←} and E2 = { r ; s ←} are equivalent but AS(P ∪ E1) �= AS(P ∪ E2).
A necessary condition for the equivalence of skeptical explanations is skp(P ∪ E1) =
skp(P ∪ E2), which directly follows by the definition.

6 The only-if part holds for GEDPs when a program has a finite number of answer sets. At the
moment, however, we do not complete the proof for GEDPs having infinite answer sets in
general.

90

Deciding logical equivalence of two propositional theories is a coNP-complete task.
The equivalence AS(P ∪ E1) = AS(P ∪ E2) is known by testing the (weak) equiva-
lence of two (propositional) programs P ∪E1 and P ∪E2, which is ΠP

2 -complete [10].
The task of deciding whether a literal is a skeptical consequence of a propositional
GEDP is also ΠP

2 -complete [5]. These facts imply the following results.

Theorem 3.3. The following complexity results holds with respect to the size of back-
ground theories and explanations.

1. Deciding equivalence of two ground explanations in a (propositional) abductive
theory is coNP-complete.

2. Deciding equivalence of two ground explanations in a (propositional) abductive
program is ΠP

2 -complete in both credulous and skeptical abduction.

3. Deciding equivalence of two ground explanations in a (propositional) abductive
definite program is done in polynomial time.

4 Equivalence of Observations

We finally consider the problem of equivalence of observations.

Definition 4.1. (equivalent observation) Given an abductive theory (B,H), two ob-
servations O1 and O2 are equivalent if, for any E ⊆ H , E is an explanation of O1 in
(B,H) iff E is an explanation of O2 in (B,H).

The notion of equivalent observations provides a method for identifying different
evidences which are used for abduction.

Theorem 4.1. Let (B,H) be an abductive theory. Then, two observations O1 and O2

are equivalent iff B ∪ E |= O1 ≡ O2 for any E ⊆ H such that B ∪ E is consistent.

Proof. O1 and O2 are equivalent
iff B ∪ E |= O1 ⇔ B ∪ E |= O2 for any E ⊆ H such that B ∪ E is consistent
iff B ∪ E |= O1 ≡ O2 for any E ⊆ H such that B ∪ E is consistent. ��

The result shows that equivalence of observations depends on an abductive theory.

Example 4.1. Given (B1,H1) = ({ p ⊃ q }, { p, q }), O1 = p and O2 = p ∧ q are
equivalent. On the other hand, O1 and O2 are not equivalent in (B2,H2) = ({ p ∨
q }, { p, q }).

In the above example, the equivalence of O1 and O2 implies that the additional
evidence q in O2 has no effect in constructing explanations in (B1,H1).

The notion of equivalence of observations is defined for abductive logic program-
ming by replacing an abductive theory (B,H) with an abductive program 〈P,A〉 in
Definition 4.1.

Theorem 4.2. Let 〈P,A〉 be an abductive program.

91

1. Two observations O1 and O2 are equivalent in credulous abduction iff

O1 ∈ crd(P ∪ E) and O2 ∈ crd(P ∪ E)

for any E ⊆ A such that P ∪ E is consistent.

2. Two observations O1 and O2 are equivalent in skeptical abduction iff

O1 ∈ skp(P ∪ E) and O2 ∈ skp(P ∪ E)

for any E ⊆ A such that P ∪ E is consistent.

Proof. In credulous abduction, O1 and O2 are equivalent if O1 (resp. O2) is included
in some consistent answer set S (resp. T) of P ∪ E for any E ⊆ A. Then, O1 and
O2 are included in the set of credulous consequences of P ∪E. In skeptical abduction,
O1 and O2 are equivalent if both O1 and O2 are included in every consistent answer
set of P ∪ E for any E ⊆ A. Then, O1 and O2 are included in the set of skeptical
consequences of P ∪ E. ��

Example 4.2. Let 〈P,A〉 be an abductive program such that

P : wet ← rain, not ¬wet,

¬wet ← rain, not wet.

A : rain.

Then, O1 = wet and O2 = ¬wet are equivalent in credulous abduction, but not equiv-
alent in skeptical abduction.

In the above example, the equivalence of O1 and O2 presents a situation that wet or
¬wet could equally happen on the same ground rain.

An abductive program is transformed to a semantically equivalent GEDP [5]. The
task of deciding whether a literal is a credulous (resp. skeptical) consequence of a
propositional GEDP is ΣP

2 -complete (resp. ΠP
2 -complete) [5].

Theorem 4.3. The following complexity results hold with respect to the size of back-
ground theories and candidate hypotheses.

1. Deciding equivalence of two observations in a (propositional) abductive theory is
coNP-complete.

2. Deciding equivalence of two observations in a (propositional) abductive program
is ΣP

2 -complete in credulous abduction and ΠP
2 -complete in skeptical abduction.

5 Discussion

In this section, we compare conditions in different equivalence issues. First, recall the
problem of equivalence of background theories. In first-order abduction, explanatory

92

Table 1. Computational Complexity

Background Theories Explanations Observations
Logic (explainable / explanatory)

FOL (propositional) ΠP
2 -complete / coNP-complete coNP-complete

ALP (credulous) ΠP
2 -hard / ΠP

2 -complete ΠP
2 -complete ΣP

2 -complete
(skeptical) ΠP

2 -hard / ΠP
2 -complete ΠP

2 -complete

equivalence is stronger than explainable equivalence, so that the condition of explana-
tory equivalence is much restrictive; it requires the logical equivalence of two back-
ground theories (Theorem 2.1). By contrast, the task of deciding explanatory equiva-
lence of two abductive theories is easier than the task of deciding explainable equiva-
lence (Theorem 2.2). In abductive logic programming, explainable equivalence is checked
by comparing credulous/skeptical consequences that are computed by belief sets of each
abductive program (Theorem 2.4). Since belief sets are computable using proof proce-
dures of answer set programming, checking explainable equivalence is done on existing
answer set solvers. To guarantee explanatory equivalence, on the other hand, relative
equivalence of two abductive programs is required. At the moment, no sophisticated
procedure is known for testing relative equivalence. Computational cost of checking
each equivalence is generally expensive (Theorem 2.5). As a special case, however,
explainable equivalence of two definite abductive programs, which has a background
theory as a definite logic program, can be decided in polynomial time [6]. This would
be good news for existing ILP systems in which background theories are usually given
as definite logic programs.

Second, consider the problem of equivalence of explanations. In first-order abduc-
tion, the problem is identical to judging logical equivalence of two theories (Theo-
rem 3.1). In abductive logic programming, the problem is identical to the (weak) equiv-
alence of two programs under some restriction on the syntax of a program (Theo-
rem 3.2). Checking equivalence of explanations in abductive logic programming is gen-
erally harder than first-order abduction (Theorem 3.3). In the problem of equivalence
of observations, it is identical to testing the logical equivalence of observations under
an abductive theory in first-order abduction (Theorem 4.1). In abductive logic program-
ming, comparison of skeptical/credulous consequences is requested (Theorem 4.2). It
is observed that abductive logic programming is again harder than first-order abduction
in general (Theorem 4.3). The complexity results are summarized in Table 1.

The equivalence problems considered in this paper also imply the equivalence of
predictions which are deductive consequences of explanations in a background theory.
Formally, given an abductive theory (B,H), if B ∪ E |= G for some E ⊆ H such that
B ∪ E is consistent, G is called a prediction of E in B. When two abductive theories
(or abductive programs) are explainably equivalent, they have the same accountability
for any prediction. By contrast, when two abductive theories are explanatory equiva-
lent, they produce the same predictions by any explanation. On the other hand, given
an abductive theory, if two explanations are equivalent, they produce the same predic-

93

tions in the background theory. Thus, different equivalence relations characterize the
equivalence of predictions from different viewpoints.

Comparing first-order abduction and abductive logic programming, logical equiva-
lence characterizes each problem in first-order abduction. In abductive logic program-
ming, on the other hand, strong equivalence characterizes explanatory equivalence of
background theories, (weak) equivalence characterizes equivalence of explanations, and
equivalence of credulous/skeptical consequences characterizes explainable equivalence
of background theories and equivalence of observations. Thus, different types of equiv-
alence notions are used in different problems. What makes comparison of abductive
programs more complicated is nonmonotonicity in abductive logic programming, which
also makes computational task of equivalence testing harder than first-order abduction
in general.

6 Conclusion

In this paper, we studied different types of equivalences in abduction and induction: ex-
plainable/explanatory equivalence of background theories, equivalence of explanations,
and equivalence of observations. In each case, necessary and sufficient conditions for
equivalence as well as computational complexity results are given, under both classical
logic and nonmonotonic logic programming. These results shed light on the equiva-
lence issue in non-deductive reasoning and apply to a general hypothetico-deductive
framework common to both abduction and induction.

The results of this paper also have an important implication in program develop-
ment in abductive/inductive logic programming. For instance, it is known that some
basic transformations, such as unfolding/folding, do not preserve strong equivalence of
logic programs [11]. This fact, together with the result of this paper, implies that such
basic program transformations are not applicable to optimize background theories in
ALP/ILP. If applied, explanations of abduction/induction may change in general. On the
other hand, those transformations which preserve weak equivalence of logic programs
are used for knowing explainability, since they preserve answer sets of a program and
will not change credulous/skeptical consequences. Program development and optimiza-
tion issues for abductive/inductive theories/programs are left for future research.

References

1. M. Denecker and A. Kakas. Abductive logic programming. In: A. C. Kakas and F. Sadri
(eds.), Computational Logic: Logic Programming and Beyond — Essays in Honour of Robert
A. Kowalski, Part I, Lecture Notes in Artificial Intelligence, vol. 2407, pp. 402–436, Springer-
Verlag, 2002.

2. P. A. Flach and A. C. Kakas (eds.). Abduction and Induction — Essays on their Relation and
Integration, Kluwer Academic, 2000.

3. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9:365–385, 1991.

4. K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory change. In: Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 204–210,
Morgan Kaufmann, 1995.

94

5. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Programming
35:39–78, 1998.

6. K. Inoue and C. Sakama. Equivalence in abductive logic. In: Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence, pp. 472–477, 2005.

7. K. Inoue and C. Sakama. On abductive equivalence. In: Lorenzo Magnani (ed.), Model-
Based Reasoning in Science and Engineering: Cognitive Science, Epistemology, Logic. Stud-
ies in Logic, pp. 333–352, College Publications, London, 2006.

8. V. Lifschitz, D. Pearce and A. Valverde. Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2:526–541, 2001.

9. M. J. Maher. Equivalence of logic programs. In: J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, pp. 627–658, Morgan Kaufmann, 1988.

10. E. Oikarinen and T. Janhunen. Verifying the equivalence of logic programs in the disjunc-
tive case. In: Proceedings of the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence, vol. 2923, pp. 180–193,
Springer-Verlag, 2004.

11. M. Osorio, J. A. Navarro, and J. Arrazola. Equivalence in answer set programming. In:
Proceedings of the 11th International Workshop on Logic Based Program Synthesis and
Transformation, Lecture Notes in Computer Science, vol. 2372, pp. 57–75, Springer-Verlag,
2001.

12. C. Sakama and K. Inoue. An abductive framework for computing knowledge base updates.
Theory and Practice of Logic Programming 3(6):671–715, 2003.

13. C. Sakama and K. Inoue. Inductive equivalence of logic programs. In: Proceedings of the
15th International Conference on Inductive Logic Programming, Lecture Notes in Artificial
Intelligence, vol. 3625, pp. 312–329, Springer-Verlag, 2005.

95

