Using Abduction for Induction
of Normal Logic Programs

(XHAIL system presentation)
Oliver Ray

Department of Computing
Imperial College London

AIAI'06 (August 29th, 2006)

Motivation: Nonmonotonic ILP

* Inductive Logic Programming (ILP) [mpgs]

—expressive, understandable
—H e~ By,...,Bn

« Utility of Negation as Failure (NAF) [clarg]
—compact, non-monotonic
— not flight(london, riva_del_garda)

* Nonmonotonic ILP (NM-ILP) [sakos]
—lack of effective tool support
—In practice use Horn systems like Progol5 and Alecto

Application: Learning Action theories

» Recent focus on inducing domain axioms in
temporal formalisms like the Event Calculus
Mm99, Moyo2] @and Situation Calculus [otros)

— 2 sessions on learning action descriptions at ILP06
— previously used to learn robot navigation programs

» Exposes limitations of existing ILP systems
such as Progol muges) and Alecto [moyos]
— limited ability to reason with negation when computing
the head atoms of a hypothesis; unsound
—hence cannot be applied to emerging problems like
the extraction of requirements from scenarios [ARRU06]

Approach: Abductive-Inductive Learning

» Abductive Logic Programming (ALP) [kkrtoz]
— hypothetical reasoning under incomplete information
— given T,G,IC,A find 6 ,AcA such that TUA |=3G6 & VIC
— formal correspondence between NAF and ALP [Ek'sg]

» Extend the mode-directed framework of Hybrid

Abductive Inductive Learning (HAIL) [rayos]

— uses ALP to overcome several limitations of Progol5
and Alecto in the Horn clause case

— already includes a full ALP interpreter with support
for negation

— core techniques of constructing and generalising
Kernel Sets lifts to the nonmonotonic case

(eXtended) Hybrid Abductive Inductive Learning

Find a set of (head) atoms that
abductively explain the positive
and negative examples:

ie. BAa, A ... AQ |FE

2 Deduction Find a set of (body) literals that
a, « dfdl.. d* deductively follow from the prior
k=1 TR M knowledge:
) nn n
e | e BlediaL.. Ad)
n

m Find a compressive theory that

,,,,,,,,,,,,,,,,,,,,, , 11 1 theta-subsumes the Kernel Set
i ' {1<—KlD2...Km1 uosu

i Return: and explains the examples
i,e. H>K and BAHI|=E

A, < DB} ... Dy,

n

Example: Requirements Engineering

« Background Knowledge (B):
holdsAt(F,T) <— happens(A,T"), T' < T, initiates(A,F,T"), not clipped(T",F,T).
clipped(T',F,T) < happens(A,T"), T' < T" < T, terminates(A,F,T"").
happens(A,T) « attempt(A,T), not impossible(A,T).

fluent(pumpOn). fluent(methane)
initiates(turnOn,pumpOn,T). terminates(turnOff,pumpOn,T).
initiates(leakGas,methane,T). terminates(ventGas,methane,T).
attempt(leakGas,0). attempt(turnOn,1).
attempt(ventGas,1). attempt(turnOff,3).

« Examples (E):
not holdsAt(pumpOn,1). holdsAt(methane,1).
not holdsAt(pumpOn,2). holdsAt(methane,2).
not holdsAt(pumpOn,3). not holdsAt(methane,3).
holdsAt(pumpOn,3). not holdsAt(methane,3).

Mode Declarations (M):
modeh(*, impossible(turnOn,+int)).
modeb(*, holdsAt(#fluent,+int)). modeb(*, not holdsAt(#fluent,+int)).




Abductive Phase

* Abducibles (A)
—ground instances of a head declaration

* Theory (T)
— definite background clauses

* Integrity Constraints (IC)
—negative background clauses

*Goals (G)
— positive and negative examples

A = {impossible(turnOn, 1)}

Deductive Phase

* Abducibles (A)

—hnone

e Theory (T)
— definite background clauses

* Integrity Constraints (IC)
—negative background clauses

*Goals (G)

—each instance of a body declaration with input variables
substituted by input terms from each head atom in A

K = {impossible(turnOn, 1) — holdsAt(methane, 1),
not holds At(pumpOn, 1)}

Inductive Phase

» Abducibles (A)
—use/2

e Theory (T)

— definite background clauses plus theory K’ (see next
slide) that encodes the search as an ALP problem

¢ Integrity Constraints (IC)
—negative background clauses

*Goals (G)
— positive and negative examples

H = {impossible(turnOn, X) «— holdsAt(methane, X )}

Inductive Phase Translation

impossible(turnOn, X) « try(1, 1, [X]), try(1,2, [X]). I

try(1,1,[X]) — not wse(1,1).

K'= ¢ try(1,1,[X]) — use(l,1), holdsAt{methane. X).
try(1,2,[X]) «— nol use(1,2).
try(1,2,[X]) — wse(1,2).not holdsAt(pumpOn, X).

Conclusion

* XHAIL provides a (sable model) semantics and
proof procedure for NM-ILP

« [t uses mode declarations in the construction of a
Kernel Set to reduce generalisation search space

« It has been applied in a requirements engineering
example where existing systems are inapplicable

« It supports the hypothesis that abduction and
induction can be usefully integrated




	Using Abduction for Induction �of Normal Logic Programs��(XHAIL system presentation)
	Motivation: Nonmonotonic ILP
	Application: Learning Action theories
	Approach: Abductive-Inductive Learning
	(eXtended) Hybrid Abductive Inductive Learning
	Example: Requirements Engineering 
	Abductive Phase
	Deductive Phase
	Inductive Phase
	Inductive Phase Translation
	Conclusion
	END
	ProLogICa: the abductive engine

