
1

Using Abduction for Induction
of Normal Logic Programs
(XHAIL system presentation)

Oliver Ray

Department of Computing
Imperial College London

AIAI'06 (August 29th, 2006)

Motivation: Nonmonotonic ILP

• Inductive Logic Programming (ILP) [MD94]

– expressive, understandable
–

• Utility of Negation as Failure (NAF) [Cla78]

– compact, non-monotonic
–

• Nonmonotonic ILP (NM-ILP) [Sak05]

– lack of effective tool support
– In practice use Horn systems like Progol5 and Alecto

Application: Learning Action theories

• Recent focus on inducing domain axioms in
temporal formalisms like the Event Calculus
[MM99, Moy02] and Situation Calculus [Otr05]

– 2 sessions on learning action descriptions at ILP06
– previously used to learn robot navigation programs

• Exposes limitations of existing ILP systems
such as Progol [Mug95] and Alecto [Moy04]

– limited ability to reason with negation when computing
the head atoms of a hypothesis; unsound

– hence cannot be applied to emerging problems like
the extraction of requirements from scenarios [ARRU06]

Approach: Abductive-Inductive Learning

• Abductive Logic Programming (ALP) [KKT92]

– hypothetical reasoning under incomplete information
– given T,G,IC,A find θ ,Δ⊆A such that T∪Δ |= ∃Gθ & ∀IC
– formal correspondence between NAF and ALP [EK’88]

• Extend the mode-directed framework of Hybrid
Abductive Inductive Learning (HAIL) [Ray05]

– uses ALP to overcome several limitations of Progol5
and Alecto in the Horn clause case

– already includes a full ALP interpreter with support
for negation

– core techniques of constructing and generalising
Kernel Sets lifts to the nonmonotonic case

(eXtended) Hybrid Abductive Inductive Learning

Abduction1

Deduction2

Δ =
a1
:

an

K=
a1 ← d1 d2 … dm1
:

an ← d1 d2 … dmn

Find a set of (head) atoms that
abductively explain the positive
and negative examples:

Find a set of (body) literals that
deductively follow from the prior
knowledge:

Find a compressive theory that
theta-subsumes the Kernel Set
and explains the examples

Given:
B, E, M

Return:
H

1 1 1

n n n

Induction3

H=
A1 ← D1 D2 … Dm1
:

An ← D1 D2 … Dmn

1 1 1

n n n

n
mn

1
1 dd| B i.e. ∧∧= K

E|a B i.e. n1 a =∧∧∧ K

E| H B andK H i.e. =∧≥

Example: Requirements Engineering
• Background Knowledge (B):

holdsAt(F,T) ← happens(A,T'), T' < T, initiates(A,F,T'), not clipped(T',F,T).
clipped(T',F,T) ← happens(A,T''), T' ≤ T'' < T, terminates(A,F,T'').
happens(A,T) ← attempt(A,T), not impossible(A,T).

fluent(pumpOn). fluent(methane)

initiates(turnOn,pumpOn,T). terminates(turnOff,pumpOn,T).
initiates(leakGas,methane,T). terminates(ventGas,methane,T).
attempt(leakGas,0). attempt(turnOn,1).
attempt(ventGas,1). attempt(turnOff,3).

• Examples (E):
not holdsAt(pumpOn,1). holdsAt(methane,1).
not holdsAt(pumpOn,2). holdsAt(methane,2).
not holdsAt(pumpOn,3). not holdsAt(methane,3).
holdsAt(pumpOn,3). not holdsAt(methane,3).

• Mode Declarations (M):
modeh(*, impossible(turnOn,+int)).
modeb(*, holdsAt(#fluent,+int)). modeb(*, not holdsAt(#fluent,+int)).

2

Abductive Phase
• Abducibles (A)

– ground instances of a head declaration

• Theory (T)
– definite background clauses

• Integrity Constraints (IC)
– negative background clauses

• Goals (G)
– positive and negative examples

Deductive Phase
• Abducibles (A)

– none

• Theory (T)
– definite background clauses

• Integrity Constraints (IC)
– negative background clauses

• Goals (G)
– each instance of a body declaration with input variables

substituted by input terms from each head atom in Δ

Inductive Phase
• Abducibles (A)

– use/2

• Theory (T)
– definite background clauses plus theory K’ (see next

slide) that encodes the search as an ALP problem

• Integrity Constraints (IC)
– negative background clauses

• Goals (G)
– positive and negative examples

Inductive Phase Translation

Conclusion

• XHAIL provides a (sable model) semantics and
proof procedure for NM-ILP

• It uses mode declarations in the construction of a
Kernel Set to reduce generalisation search space

• It has been applied in a requirements engineering
example where existing systems are inapplicable

• It supports the hypothesis that abduction and
induction can be usefully integrated

	Using Abduction for Induction �of Normal Logic Programs��(XHAIL system presentation)
	Motivation: Nonmonotonic ILP
	Application: Learning Action theories
	Approach: Abductive-Inductive Learning
	(eXtended) Hybrid Abductive Inductive Learning
	Example: Requirements Engineering
	Abductive Phase
	Deductive Phase
	Inductive Phase
	Inductive Phase Translation
	Conclusion
	END
	ProLogICa: the abductive engine

