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Hasty Generalizersand Hybrid Abducers

External Semiotic Anchorsand Multimodal Representations

Lorenzo Magnani

Abstract. First of al | would like to describe inductive and abduc-
tive reasoning in the light of the agent—based framework to the am
of clarifying their fallacious charader and the role of the so-cdled
ided systems (logical and computational). Then | will analyze some
inductive and abductive types of reasoning that in the perspedive of
classcal andinforma logic are defined fallacies. | will describe how
in an agent-based reasoning this kind of fallacious reasoning can in
some cases be redefined and considered as agoodway of reasoning.
Finally, | will illustrate how what | cdl manipulative abdiction can
be interpreted as a form of pradical reasoning a better understand-
ing of which can furnish a description of human beings as hybrid
reasoners in so far they are users of ided and computational agents.

1 BeingsLike-UsasHasty Generalizers

First of al | would like to describe inductive reasoning in the light
of the so—cdled agent—based framework. This analysis will permit
us toexplain the traits of the fallacious charader of induction (and
abduction) and the role of the “idedized” logical systems.

It is well-known that in clasdcal logic agoodargument is asound
argument and, from a semantic point of view, it is a valid argument
based ontrue premises. Even if this conception of goodinferenceis
usually able to model many kinds of argumentation of red human be-
ings, its apped to true premisesisill suited to many contexts which
are often charaderized by the presenceof hypahetical and urcertain
beliefs, by grea disagreement abou what is true and false, by ethical
and aesthetic claimswhich are not easily categorized astrue or false,
and, finaly, by variable contexts in which dramatically different as-
sumptions may be acceted and rejected.

| share with Gabbay and Woods [8] the ideathat logic can be con-
sidered aformalization of what is dore by a cognitive agent. Starting
from this perspedive, logic is agent-based. In this perspedive agent—
based reasoning consists in describing and analyzing the reasoning
occurring in problem solving situations where the agent access to
cogntive resources encourters limitations auch as

- boundkd information
- lack of time
- limited computational cgpadty.

Hence, the “beings-like-us’ that Woods describes in his “Epis-
temic bubHes’ [26] discharge their cogritive agendas under press
of incomplete information, lack of time, and limited computational
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cgpadty. We can consequently say that cogritive performances de-
pend oninformation, time, and computational cgpadty. An agent-
based logic, as adiscipline that furnishes ided descriptions of agent-
based reasoning, returns to be though of as a science of reasoning
and considered agent-centered, task-oriented, and resource-bound
Woods sys:

So, then, a principal function of reasoning is to fadlitate cog-
nition, this means the reasoning agent is also cognitive agent.
If logic is to pressforward as a renewed science of reasoning,
it would do well to refled onwhat cognitive agency is like, on
what it is like to be aknower [26, p. 733.

In deding with these fedures we arive to what has been cdled
the “Actualy Happens Rule” [26] that states that “to seewhat agents
shoud do we shoud have to look first at what they adually do and
then, if thereis particular reasonto do so, wewould haveto repair the
acount”. Thisrule is aparticular attradive assumption about human
cogritive behavior mainly for two reasons. The first is that beings
like us make alot of errors; the other is that cogrition is something
that we ae adually very goodat.

In the following sedion we will discuss tte case of “fallacies’ as
errors thet people make. These arors occur in ways of reasoning
and ading that from some perspedives are goodand from others are
bad. In deding with this matter | will try to give an acourt of fa-
lacies sen from the viewpoaint of agent-based reasoning. | will try
to give some examples of fallacious reasoning treaing bah infor-
mal fallacies (such as the inductive ones like “hasty generalization™)
and formal fallacies (such as abduction). | will trea induction, and
abduction as fallacious ways of reasoning that in spite of their fal-
lacious charader are fruitful for the acogntive agent: away of being
rational throughfallacies.

Abduction can be eaily considered in the perspedive of agent-
based reasoning becaise in abductive reasoning [18] bath the adiv-
ity of guessirg new explanatory hypaheses and the adivity of se-
lecting arealy existing ores, is based onincompleteinformation. In
this case we ded with “normonaonic” inferences: we draw defeasi-
ble conclusions from incompleteinformation. From this perspedive,
abductive reasoning also represents a prototypical case of pradical
reasoning: we aopt deliberations based onincomplete information
and on mrticular abduced hypaheses — guesses — that serve & “rea
sons.”

1.1 Induction asaFallacy in Organic Agents
Reasoning

As drealy nated, people make arors in ressoning. This means thet
in analy zing the beings-lik e-us argumentations we have to faceprob-
lems regarding agent’s access tocognitive resources auch as infor-



mation, time, and computational cgpadty, and logical attributes such
as truth-preservation. It is in this sense that | have previously said
that agents discharge their cognitive agendas under pressof bounded
information, lack of time and limited computational capadty.

The succesgul use of fallacies intomany kinds of reasoning can be
fruitfully acourted for in the framework of agent-based reasoning.
It is undeniable that in human reasoning mistakes are widespreal.
The peadliarity of fallacies sen in the perspedive of agent—based
reasoning is that mistakes thet are atually committed are mistakes
that do nd seem to be mistakes to those who commit them. In some
sense we can say that they are ways of reasoning that are felt truth
preserving for the reasoner but are not considered truth preserving
for the logicians!

A fallacy is apattern of poa reasoning which appeas tobe apat-
tern of good reasoning [13]. Fallacies are forms of reasoning and
argumentation typical of organic agents and in this sense we can say
they are suitably shaped by evolution. Simple inductions and abduc-
tions performed more or less consciously by bah humans and an-
imals are surely two gred results of this evolutionary process Two
main disciplinesrespedively clearly illu strate different kinds of falla-
cies: formal logic, which recognizes and explains “formal fallacies’,
and informal logic, that describes the so-cdled “informal fallacies”.
First of al, we can say that the validity of a deductive agument
depends on its form, consequently, formal falacies are aguments
which have an invalid form and are nat truth preserving (for example
the fallacy of the “affirming the consequent” and d “denying the an-
tecedent”). On the other hand, informal fallacies are any ather invalid
modes of reasoning whosefailing is nat strictly based onthe shape of
the agument (for example the “ad haninem argument” or the “hasty
generalization”).

From the point of view of classcal logic afallacy is a bad argu-
ment that looks good From the paint of view of agent-based reason-
ing a fallacy is not an argument that looks good bu is bad, but an
argument that is bad in some aspeds and goodin some others. Let us
consider the inductive cae of the so-cdled “hasty generalization”,
that can lead the aognitive agent — in spite of its fallacious charader
— to fruitful outcomes.

This fallacy occurs when a person (but there evidenceof it also in
animal cognition, for example in mouses) infers a cnclusion abou
agroup d cases based onamodel that is not large enough It has the
following form:

- Sample S, which is too small, is taken from the group d persons
P.
- Conclusion C'is drawn abou the group P based on S.

It could take dso the form of:

- The person X performs the adion A and hesaresult B.
- Therefore dl the adions A will have aresult B.

The fallacy is committed when na enoughA’s are observed to
warrant the conclusion. If enoughA'’s are observed then the reason-
ing is nat fallacious, at least from the informal point of view. Males,
driving their cars, have probably quarreled with awoman driving her
car and, while quarreling, they have agued (when nat shoued) “all
woman are bad drivers!” That's our case of fallacious reasoning.

Insofar, small samples will be likely to be unrepresentative. An-
other simple case is the following. If we ae asking ore person that
even met alot of Italians what he thinks abou the recently new es-
tablished Italian propational—oriented electoral system, his answer

clearly would not be based on an adeguate sized sample for deter-
mining what Italians ingeneral think abou theissue. This is because
the answer given is based only onareduced experience andthat judg-
ment can na be relevant in deding with a generdlization abou the
matter in question. This means thet this falacious argument implies
that small samples are lesslikely to contain numbers propartiona to
thewhole group d cases.

People often commit hasty generalizations because of bias or prej-
udice. For example, someone who is a sexist might conclude that all
women are urffit to fly jet fighters (or to drive a ca) becaise one
woman crashed in either case. People also commonly commit hasty
generalizations because of lazinessor sloppiness It is very easy to
simply jump to a conclusion and much harder to gather an adequate
sample and draw a justified conclusion. Thus, avoiding this fallacy
requires minimizing the influence of bias and taking care to select a
sample that is large and meaningful enough

111 Casuad Truth—Preserving Inferences

Moreover, we cal recgnize another important occurrence | have
said that people commit errors and are hasty generalizers because of
prejudice, mindlesess bias, and so on What | am trying to under-
lineis that the hasty generalization is not always abad generalization
for two reasons. The first is that, getting true conclusions, hasty gen-
eralization might be goodif the result of the generalization we made
coincideswith theresult of agood generalization in the philosophical
— for example Millian —sense of induction (or in the sense of induc-
tive logics). We cdl this case ‘‘casual” truth preserving feeure of
hasty generdlization. The secondreason is that, in some sense, even
if we do nd reat goodconclusions, nat exploiting the caual truth
preserving fedure, we can say that hasty generalization is goodin
some sense, obviously nat in the dasscal logic one. We will now try
to understand what it can be.

Think of a toddler that for the first time touches a stove in his
kitchen [25, pp. 314-316. His finger is now burned becaise the
stove burns. Starting from this evidence, the hasty generalizer tod-
dler thinks thet al the stoves are hot and deddes not to touch stoves
anymore. This is obviously a hasty generalization:

- X of observed A are B (The stove touched burns).
- Therefore dl A are B (All the stoves burn.)

Or:

- Sample S, which is too small, is taken from the group d persons
P. (The toddler touches the stove and at a first touch the stove
burns).

- Conclusion C' is drawn abou the group P based on S. (When-
ever the todder will touch the stove, it will burn).

1.1.2 Srategic Rationdity

We can also say that this is a cae of bad argument also from the
formal point of view becaise it is nat truth preserving, in the light
of clasdcal logic. However, in the perspedive of agent-based reason-
ing the problem now is: can we say that this argument is goodfrom
some perspedive? Indeal the hasty generalization is sometimes a
“prudent” strategy. It also presents a aogritive eonamy: given the
task of not being bunt for a seandtime, the hasty generalization is
akind of reasoning that is fruitful because, being a prudent strategy,
it embeds the canors of strategic rationality in the sense of the “strife
for survival”. Moreover, it aso involves a cogntive success



First, falacies (hasty generdlization in this case) have some rele-
vant relations with strategic rationality. However, the prudent strat-
egy of “nat touching the stove” is obviously incorred for at least two
reasons. 1) The first reason is that it is not goodto generalize from
only one sample available and 2) from applied natura physics, we
can say that it is a stateof affairs thet a stove does not burn because
a stove is made of iron a some other metals and metals burn orly
if they are overheded. So there is something “bad” in this kind of
reasoning bah from an informal logic point of view and from the
perspedive of natural physica principles of hea. But even if werec
ognize these wrongsteps, thereis an ideaof some rationality embed-
ded in this example due to the fad that the toddler prevents himself
from being burned. It seams that hasty generalization (likein the case
of other fallacies, too, likethefallacy of affirming the cnsequent can
be considered resources thet enter in asort of humansurvival kit [25,
p. 7]. As ©me uncondtioned reflexes, hasty generalization is a re-
sporse (in the form of areasoning andthen of an adion) to something
that the toddeer is involved to. The cogritive result of a hasty gener-
alization is bad but only in the sense that it does not explain the burnt
stove. It is instead aform of goodreasoning because it preserves the
todder from being burnt another time.

Sewnd, hasty generalization also allows the todder to prodwce a
new successfu cogntive information. In the perspedive of the log-
ical tradition, this piece of information is “bad” becaise obtained
throughfallacious reasoning, but in agent-based terms we natice that
the same information contributes to slve the todder’s problem and,
in this sense, can be endowed with “good’ cogritive relevance

| have contended abowe that fallacies are forms of reasoning and
argumentation typica of organic agents and in this sense we have
concluded they are part of a “survival kit” suitably shaped by evolu-
tion. | have dso added that induction and abduction performed more
or lessconsciously by bah humans and animals are surely two grea
results of this evolutionary process Weknow that in the last centuries
humans have dso charaderized induction and abduction in various
“ided” philosophica and logical ways, so gang beyondthe sporta-
neous use of those kinds of thinking | have just illustrated. Already
Mill provided “Methods” for Induction and Peirceintegrated abduc-
tion and induction throughthe famous gy/llogistic framework where
the two non—akductive inferences can be dearly distinguished: it has
to be noted that Mill also said that what he cdled “institutions” rather
than individuals are the red embodment of “inductive logics’. Fol-
lowing this Millian perspedive Gabbay and Woods also add that it
is typical of human individuals to function as practical agents and
that it is typical of “ingtitutions” to function as theoretical agents 8,
p. 14]; moreover, agents tend toward enhancement of cognitive &-
sets when this enables the adiievement of cogrnitive goals previously
unaff ordable or anattainable. Theided agents (logical and computa-
tional) | will describein thefollowing sedions are theoretical agents,
that mimic “ingtitutions’, in Millian sense, more than individuals’
reasoning performances.

To clarify the process ttat underlies the formation of ided induc-
tive and abdctive agents | have to briefly introducein the following
subsedion the distinction between internal and external representa-
tions.

2 External and Internal Representations

2.1 Logic Programsas Agents: External
Observationsand I nternal K nowledge
Asdmilation

As | will illustrate in the following subsedion it is in the aea of
distributed cognition that the importance of the interplay between in-
ternal and external representations has recently aaquired importance
(cf. for example Clark [4] and Hutchins[14]). This perspediveis par-
ticularly coherent with the agent—based framework | have introduced
abowe, as we will see It is interesting to note that a dear attention
to the agent—based nature of cogntion and to its interplay between
internal and external aspeds can be foundin the aeaof logic pro-
gramming. Indedd, logic programs can be seen in an agent-centered,
computationally -oriented and puely syntactic perspedive. Already
in 1994Kowalski [15] in “Logic without model theory” introduced a
knowledge asgmilation framework for rational abductive agents, to
ded with incomplete information and limited computational capac
ity.

“Knowledge asdmilation” is the asdmilation of new information
into a knowledge base, “as an dternative understanding of the way
in which a knawledge base formulated in logic relates to externally
generated input sentences thet describe experience”. The new prag-
matic approac is based on a proof-theoretic assmilation of obser-
vational sentences intoa knowledge base of sentences formulated in
alanguege such as CL.2 Kowalski proposes a pragmatic alternative
view that contrasts with the model-theoretic approach to logic. In
model theory nations such as interpretation and semantic structures
dominate and are informed by the philosophical assumption that ex-
perienceis caused by an independent existing “redity composed of
individuals, functions and relations, separate from the syntax of lan-
guage”

On the ntrary logic programs can be seen as agents endowed
with deductive databases considered as theory presentations from
which logical consequences are derived, both in order to internally
solve problems with the help of theoretical sentences andin order to
asdmilate new information from the external world of observations
(observational sentences). The part of the knowledge base, which in-
cludes observationa sentences and the theoretical sentences thet are
used to derive conclusions that cen be compared with observations
sentences, is cdled world model, considered a completdy syntactic
concept: “World models are tested by comparing the conclusions thet
can be derived from them with other sentences thet record inputs,
which are observational sentences extraded — assmilated — from
experience”. The agent might generate outputs — that are generated
by some plan formation process in the cntext of the egents's “resi-
dent goals” — which affed its environment and which of course can
affed its own and aher agents' future inputs. Kowalski concludes
“The agent will record the output, predict its expeded effed on the
environment using the ‘world model’ and compare its expedations
againgt its later observations’.

The gpistemological consequenceof this approadh is fundamental:
in model theory truth is a static correspondence between sentences
and a given state of the world. In Kowalski’s computational and
“pragmatic” theory, the important is nat the correspondence between
language and experience, but the gopropriate assmilation of an in-
evitable and continuouws flowing input stream of “external” observa-
tional sentences intoan ever changing “internal” knowledge base (of

2 CL, computational logic, refers to the computational approach to logic that
has proved to be fruitful for creaing non-trivial applicationsin computing,
artificial intelli gence, and law.



course the fad that computational resources available are bounded
suggeststo the agent to make the best use of them, for instance avoid-
ing redundant and irrelevant derivation of consequences). The mrre-
sponcknce (we can say the “mirroring”) between an input sentence
and a sentence that can be derived from the knowledge base is con
sidered by Kowalski only alimiting case. Of course the agent might
also generate its own hypdhetical inputs, as in the case of abduction,
induction, and theory formation.

The onceptual framework abowe, that is derived from a
computationally —oriented logic approach that strongy contrasts with
the traditional onein terms of model theory, is extremely interesting.
It streses the atention onthe flowing interplay between internal and
external representations/statements, so epistemologically establish-
ing the importance of the agent—based charader of cogntion. In the
following subsedion | will illustrate that an analogous perspedive is
conwvenient also for depicting human beings' cogntion so far as we
areinterested in studying its esential distributed dyramics.

2.2 Distributed Cognition in Organic Agents:
External and Internal Representations

Even if we can say that alarge portion of the complex environment of
athinking agent is internal, it is widely reagnized that “human” cog-
nitive systems are composed by dstributed cogrition among people
and some “external” objects and technical artifads (cf. for example
Hutchins [14] and Norman [19)]). It is the cae of the human use of
the construction of external diagrams in geometrical reasoning, use-
ful to make observation and experiment to transform one agritive
stateinto another for example to discover new properties and theo-
rems. Or the case of the use of the external representations based on
the ordinary numeration system that eliminates some of the hardest
parts of the adition or the difficult computations in multiplication
when mentally performed. Mind is limited, both from a computa-
tional and an informational point of view: the ac of delegating some
aspeds of cogrition becmes necessary. In is in this sense that we
can say that cogrition is essentially multimodal.®

In addition, we can say that, adopting this perspedive, we can give
an acourt of the complexity of the whole human cogritive systems
as theresult of a complex interplay and coewolution of states of mind,
body, and externa environments suitably endoved with cogritive
significance. An “agent-based” view aims at analyzing the feaures
of “red” human thinking agents by recognizing the fad that a being-
like-us agent functions “at two levels” and“in two ways’. | definethe
two levels as explicit andimplicit thinking. Agent-based perspedive
in logic has the power of recgrizing the importance of bath levels.

We maintain that representations are external and internal. We can

say that

- exerna representations are formed by externa materials that re-
express (through reification) concepts and problems thet are d-

3 Thagard [20, 21] observes, that abductive inference can be visual aswell as
verbal, and consequently adknowledges the sentential, model—based, and
manipulative nature of abduction we will ill ustrate below. Moreover, both
data and hypdheses can be visually represented:

For example, when | see ascratch alongthe side of my car, | can gener-
ate the menta image of grocery cat didinginto the ca and produwcing
the scratch. In this case both the target (the scratch) and the hypahesis
(the colli sion) arevisually represented. [. . .] Itisaninteresting question
whether hypaheses can be represented using al sensory modaliti es.
For vision the answer is obvious, as images and dagrams can clealy
be used to represent events and structures that have caisal effeds[21].

Indeed hypdheses can be dso represented using ather sensory modaliti es.

ready present in the mind or concepts and problems thet do nd
have anatural homein the brain;

- internalized representations are internal re-projections, a kind of
recaitulations, (learning) of external representations in terms of
neural patterns of adivation in the brain. They can sometimes be
“internally” manipulated like external objects and can originate
new internal reconstructed representations throughthe neural ac
tivity of transformation and integration.

This process explains why human beings sem to perform bath
computations of a conredionist type such as the ones involving rep-
resentations as

- (I Level) patterns of neural activation that arise & the result of the
interadion between body and environment (and suitably shaped
by the evolution and the individual history): pattern completion or
image recogrition,
and computations thet use representations as

- (Il Level) derived combinatorial syntax and semantics dynami-
cdly shaped by the various externa representations and reason-
ing devices found o constructed in the environment (for example
geometrical diagrams); they are neurologically represented con
tingently as patterns of neural adivations that “sometimes’ tend
to become stabilized structures and to fix and so to permanently
belongto the | Levd abowe.

The | Level originates those sensations (they constitute a kind of
“face”we think the world has), that provide room for the Il Level to
refled the structure of the environment, and, most important, that can
follow the computations suggested by these external structures. It is
clear we can now conclude that the growth of the brain and espedally
the synaptic and dendritic growth are profoundy determined by the
environment.

When the fixation is readed the patterns of neural adivation no
longer ned a dired stimulus from the environment for their con-
struction. In a cetain sense they can be viewed as fixed internal
records of exernal structures that can exst aso in the esence of
such external structures. These patterns of neural adivation that con-
dtitute the | Level Representations always keep record of the expe-
riencethat generated them and, thus, always carry the Il Level Rep-
resentation asociated to them, even if in a different form, the form
of memory and nd the form of a vivid sensorial experience Now,
the human agent, via neural mechanisms, can retrieve these Il Level
Representations and use them as internal representations or use parts
of them to construct new internal representations very different from
the ones staed in memory (cf. also [10]).

Human beings delegate cogritive fedures to external representa-
tions becaise in many problem solving situations the internal com-
putation would be impaossilde or it would involve avery grea effort
because of human mind's limited cgpadty. First akind of alienation
is performed, secondarecaitulation is acamplished at the neuronel
level by re-representing internally that which was “discovered” out-
side. Consequently only later onwe perform cogritive operations on
the structure of data that synaptic patterns have “picked ug’ in an
analogical way from the environment. We can maintain that inter-
nal representations used in cogritive processs like many events of
meaning creation have adeg origin in the experience lived in the
environment.

| think there ae two kinds of artifads that play the role of ex
ternal objects (representations) adive in this processof disembod-
ment of the mind: creative and mimetic. Mimetic external represen-
tations mirror concepts and problems thet are drealy represented



in the brain and reed to be enhanced, solved, further complicated,
etc. so they sometimes can credively give rise to new concepts and
meanings, playing therole of credive representations.” Inductive and
abductive ideal agents are mimetic artifads in the sense | have just
illu strated.

2.3 Internal, External, and Hybrid Inducers and
Abducers

From the perspedive | have illustrated in the previous sdion the
expansion of the inductive and abductive minds typical of organic
agents isin the meantime a ontinuous processof externalization of
the minds themselves into the material world aroundthem. In this
regard the evolution of the mind is inextricably linked with the evo-
lution of many kinds of large, integrated, material cogritive systems,
like logical and computational systems. In the following | will illus-
trate some feaures of this extraordinary interplay between human
brains and the ideal cogritive systems they make. We aknowledge
that material artifads like for example inductive and abduative log-
ical and computational agents are tools for thoughts as is language:
tools for exploring, expanding, and manipulating our own minds.

The two ways mentioned above ae the external way andthe inter-
na way. In fad inductive and abdvctive logica and computational
systems can be seen as externa representations and tools expressed
throughartificial (in part mathematical) and ardinary language and
the use of suitable artifads. Theseided systems not only mirror and
mimic the internal ways of inferring of the being-like-us reasoners
we have illustrated abowve; they can aso play a creative role. The
adivities of externalizing play a centra role nat just in mirroring
the internal ways of thinking bu also in finding room for concepts
and new ways of inferring which canna be foundinternally “in the
mind”.

In summary, organic agents like human beings are hasty general-
izers and more or lessnaive inducers and abducers but are dso the
credors of sophisticated external cogritive representations thet for
example provide demonstrative/deductive and computational repre-
sentations of those reasoning performances. The interplay between
these “external” tools andthe dready “internaized” templatesof rea
soning certainly redizes a mntinuous improvement of the interna
templates themselves but also expresses the centrality of the hybrid
exploitation of both levels in reasoning.

Let us consider the case of abduction, | have indicated above that
abduction appeas tobe aformal fallacy that can be reagnized from
the dasscal logic point of view: the fallacy of affirming the conse-
quent. However, from the point of view of both everyday and scien-
tific knowledge, abduction is an important kind of inference used to
explain fads and invent hypaheses and theories [1§].

Abduction is the process of inferring certain fads, laws and hy-
pothesis that render some sentences plausible or explain/discover
some eventually new phenomenon a observation. | have maintained
elsewhere that, from the epistemologica perspedive, abdiction has
two main meanings: 1) abduction that only generate plausible hy-
potheses (selective or creaive) and 2) abduction considered as “in-
ference to the best explanation”, which aso evaluates hypatheses.
| have introdwced in [18] the mncept of theoretical abdiction as
a form of neural and besically internal processirg. | maintain that
there are two kinds of theoretical abduction, “sentential”, related to
logic and to verbal/symbadlic inferences, and “ model-based”, related

4 Following this perspedive it is at this point evident that the “mind’ tran-
scendsthe boundxry of theindividual andincludes parts of that individual’s
environment.

to the exploitation of models such as diagrams, pictures, etc. Theo-
retical abduction certainly illustrates much of what is important in
credive ebductive reasoning, in humans and in computational pro-
grams, but fails to acaurt for many cases of explanations occurring
in science when the exploitation of externa environment is crucial.
It fails to acourt for those cases in which there is a kind of “dis-
covering through dang”, cases in which new and still unexpressd
information is codified by means of manipulations of some external
objects | have cdled epistemic mediators [18]. The concept of ma-
nipulative abdtction (seebelow) ceptures alarge part of hypahetical
cogrition where the role of adion is central, and where the feaures
of this adion are often implicit and herd to be dicited. We can con-
clude, following Thagard [21] that abduction is a cognitive processes
constitutively “multimodal” (cf. above footnote 3).

Abduction is of fundamental importancein many agent-based rea
soning situations lik e scientific explanation, scientifi ¢ discovery, and
moral deliberation. We can furnish another reason that stresses the
fruitfulness of abduction in agent-based reasoning: it is a powerful
inferential process able to govern inconsistencies. For example, in
the case of the formation of scientifi ¢ theories epistemologists have
recognized the role played by inconsistencies and anomalies thet vi-
olatethe paradigm-induced expedations derived from previously es-
tablished conceptual frameworks. Logicians have in turn shown that
inconsistencies generated by anomalies are difficult to be managed
in deductive situations: they are unexpeded fads that the rules of
classcal logic are nat able to explain.

Hence, we can oulinetwo different ways of thinking of abduction:
1) from the point of view of classcal logic, abduction is aformal fal-
lacy, nat truth preserving; 2) from the point of view of epistemology;,
abduction is an important kind of reasoning able to discover new hy-
potheses and gve explanation to scientific fads

In delineaing the structure of a new agent-based perspedive of
logic Gabbay and Woods gate that logic has to be considered an
“acoourt of haw thinking agents reason and argue” [8, p. 1]. Their
ideais that logic has to be defined as the disciplined description of
the behavior of red—lif e of logical agents. Logic has to be though
of as an agent-based logic. From this viewpoint, abduction can be
rendered as thet kind of logical reasoning in which the faa of not be-
ing truth preserving (but ignorance-preserving, as they contend) has
to live together with the fad that it is fruitfully used by red logical
agents. In this framework induction is seen as probakility—enharting
and deduction as truth—preserving.

To conclude, the use of abduction is goodfor at least two reasons.
Abductionis nat only asimple formal fallacy, but also a spedfic case
of ignorance-preserving reasoning that can be fruitfully idealized in
theoretical logical agents; onthe gplicative side, abduction is agood
processable provide new hypahesis and gowern inconsistencies.

At this point | hopeit is clear that organic agents are sportaneous
inducers and abduwcers and that they also construct logical and com-
putational systems both able to mimic human inductions and abduc-
tions and to create new “rational” ways of inducing and abducing.
These systems are in turn used by arganic agents: they consequently
have to be seen as hybrid reasorers. In the following sedion | will
illustrate how what | cdled manipulative ebduction can furnish a per-
fed example of this hybridity of human reasoning.

3 Manipulative Abduction and Hybrid Reasoning

| have introduced the concept of manipulative abduction - contrasted
with theoretical abduction [18] - to illu strate situations where we ae
thinking through dang and nd only, in a pragmatic sense, abou do-



ing.

First of al manipulative ebduction is generally related to the suit-
able exploitation of external tools like logical and computational sys-
tems/agents® to the am of generating desired hypcaheses.

Semnd in the cae of the formation of scientific hypaheses the
idea of manipulative ébduction goes beyond the well-known role
of experiments as cgpable of forming new scientific laws by means
of the results (nature's answers to the investigator’'s question) they
present, or of merely playing a predictive role (in confirmation and
in falsification). Manipulative ebduction refers toan extra-theoretical
behavior that aims at creaing communicable acourts of new expe-
riences to irtegrate them into previously existing systems of experi-
mental and linguistic (theoretical) pradices.

In this sense the existence of this kind of extra-theoretical cog-
nitive behavior is also testified by the many everyday situations in
which humans are perfedly able to perform very efficadous (and he-
bitual) tasks without the immediate possilility of redizing their con-
ceptua explanation. In some cases the conceptual acourt for doing
these things was at one point present in the memory, but now has
deteriorated, andit is necessary to reprodiceit, in other cases the ac
court has tobe constructed for thefirst time, like in credive settings
of manipulative ebduction in science

Consequently we facewith at least two cases of manipulative &b-
duction.

1. Thefirst onerefers to the exploitation of external logical and com-
putational abductive — but also inductive — systems/agentsto form
hybrid and multimodal representations and ways of inferringin or-
ganic agents. Doing this they are able to enhance their “rational”
performances (seebelow subsedion 3.1).

2. Thesemndcaserefers to trerole of manipulative ebduction at the
level of scientifi c experiment and d the so—cdled thinking through
doing that in turn can improve our knowledge of induction, andits
distinction from abduction: manipulative ebduction can be consid-
ered as a kind of basis for further meaningful inductive general-
izations .

Further preliminary observations have to be anticipated to favor
the comprehension of the second case. Hutchins [14] illustrates the
case of anavigation instructor that for 3 yeas performed an automa-
tized task involving a complicated set of plotting manipulations and
procedures. The insight concerning the conceptual relationships be-
tween relative and geographic motion came to him suddenly “as lay
in his bunk ore night”. This example explains that many forms of
learning can be represented as the result of the cgability of giving
conceptual and theoretical details to arealy automatized manipula-
tive exeautions. The instructor does nat discover anything new from
the paint of view of the objective knowledge abou the involved skill,
however, we can say that his conceptual awarenessis new from the
locd perspedive of his individuality.

In this kind of adion-based abduction the suggested hypdheses
are inherently ambiguous until articulated into configurations of red
or imagined entities (images, models or concrete apparatus and in-
struments). In these cases only by experimenting we can discrimi-
nate between passililitie s: they are aticulated behaviorally and con-
cretely by manipulations and then, increasingly, by words and pic-
tures.

Goodng [11] refers to this kind of concrete manipulative reason-
ing when heillu strates the role in science of the so-cdled “constru-

5| am referring here to systems — abstrad or pradica/computational — that
are explicitly able to theoreticdly perform abductions and inductions in
themselves thanks to their own knawledge bases, rules, and devices.

als” that embodytacit inferences in procedures thet are often appara-
tus and madine based. They belong to the pre-verbal context of os-
tensive operations, that are pradical, situational, and dten made with
help of words, visualizations, or concrete artifads. The enbodment
is of course an expert manipulation of objectsin ahighly constrained
experimental environment, and is direded by abductive movements
that imply the strategic application of old and new templates of be-
havior mainly conreded with extra-theoretical comporents, for in-
stance anotional, esthetical, ethical, and econamic.

The hypahetical charader of construals is clear: they can be de-
veloped to examine further chances, or discarded; they are provi-
sional credive organization of experience and some of them become
in their turn hypahetical interpretations of experience, that is more
theory-oriented, their referenceis gradually stabilized in terms of es-
tablished observational pradices. Step by step the new interpreta-
tion —that at the beginning is completdy “pradice-laden” — relates
to more “theoretical” modes of understanding (narrative, visual, dia-
grammatic, symbadlic, conceptual, smulative), closer to the construc-
tive dfeds of theoretical abduction.

When the reference is stabilized the dfeds of incommensurabil-
ity with other established observations can become evident. But it
is just the construal of certain phenomena that can be shared by the
sustainers of rival theories. Goodng [11] shows how Davy and Fara-
day could seethe same dtradive and repulsive adions at work in
the phenomenathey respedively produced; their discourse and prac-
tice as to the role of their construals of phenomena dearly demon-
stratethey did not inhabit different, incommensurable worlds in sme
cases. Moreover, the experience is constructed, reconstructed, and
distributed acossa social network of negatiations amongthe differ-
ent scientists by means of construals.

These construals aim at arriving to a shared uncerstanding over-
coming al conceptual corflicts. As | said abowe they constitute a
provisional credive organization of experience when they become
in their turn hypdhetical interpretations of experience, that is more
theory-oriented, their referenceis gradually stabilized in terms of es-
tablished and shared olservational pradices that also exhibit a au-
mulative charader. It is in this way that scientists are eble to commu-
nicate the new and urexpeded information acquired by experiment
and adion.

3.1 Organic Hybrid Reasoners and External
Semiotic Anchors

In the perspedive we have illu strated abowve in sedion 2, resorting to
the distinction between internal and external inducersand abducersa
novel perspedive on externa ided logical agents can be envisaged.
Starting from the low—level inferential performances of the kid's
hasty generalization that is a strategic successand a aogntive failure
human beings arrived to the externalization of “theoretical” inductive
and abdictive agents asideal agents, logical and computationdl. It is
in this way that merely successfu strategies are replaced with suc-
cessfu strategies that also tell the “more predse truth” abou things.
These external representations can be usefully re-represented in our
brains (if this is useful and passilde), and they can originate new
improved organic (mentally internal) ways of inferring or suitably
exploited in a hybrid manipulative interplay, as | have said abowe.
From this perspedive human beings are hardwired for survival
and for truth alike so best inductive and abductive strategies can be
built and made explicit, throughself-corredion and re-consideration
(sincefor example thetime of theinductive Mill' smethods). Further-
more human beings are agents that can cognitively behave & hybrid



agents that exploit in reasoning bath internal representations and ex-
ternalized representations and tools, but also the mixture of the two.

Let 's consider the example of the externalization of some inferen-
tial skills in logical demonstrative systems, lik e for example the ones
that are & the basis of logic programming.® They present interesting
cogntive fedures (cf. also Longo[17]) which | believe deserveto be
further analy zed and which can further develop the distinction above
between theoretical and pradical agents:

various cogritive reasons to change her mind or to think in a dif-
ferent way, and with multiple motivations todeploy varioustactics
of argument. In this perspedive Gabbay and Woods say:

Good reasoning is always goodin relation to a goal or an
agenda which may betacit. [...] Reasoning validly is never
itself agoal of goodreasoning; otherwise one could always
adhieveit smply by repeding a premiss as conclusion, or by
entering a new premiss thet contradicts one drealy present.

1. symbolic: they adivate and semiotically “anchor’ meanings in [...] Itisthat the reasoning acdualy performed byindividual

material communicative and intersubjective mediators in the
framework of the phylogenetic, ontogenetic, and cultural redity
of the human being and its language. It can be hypahesized these
logical agentsoriginated in emboded cogrition, gestures, and ma-
nipulations of the environment we share with some mammals but
aso nonmammal animals (cf. the cae of monkeys knots and
pigeons’ categorization, in [12]).”

. abstract: they are based on a maximal independence regarding
sensory modality ; they strondy stabilize experience and common
caegorization. The maximality is espedally important: it refers to
their pradical and historical invariance and stability ;

. rigorous: the rigor of proof is readed througha difficult pradical
experience. For instance, in the case of mathematics and logic, as
the maximal place for convincing and sharable reasoning. Rigor
lies in the stability of proofs and in the fad they can be iterated.
Following this perspedive mathematics is the best example of
maximal stability and conceptual invariance Logic is in turn a set
of prodf invariants, a set of structures thet are preserved from one
proof to ancther or which are preserved by proof transformations.
As the externalization and result of adistilled praxis, the praxis of
prodf, it is made of maximally stable regularities;

. | also say that amaximization of memorylesses$ “variably” char-
aderizes demonstrative reasoning. This is particularly tangible in
the cae of the vast idedization of classcal logic and related ap-
proaches. The inferences described by classcal logic do nd yield
sensitive information — so to say — abou their red past life in
human agents’ use, contrarily to the “conceptual” — narrative —
descriptions of human nondemonstrative processes, which var-
iously involve “historical”, “contextual”, and “heuristic” memo-
ries. Indeed many thinking behaviors in human agents — for ex-
amples abductive inferences, espedally in their generative part —
are oontext-dependent. As drealy naed their stories vary with
the multiple propasitional relations the human agent finds in her

agents issufficiently reliable not to kill them. It is reasoning
that predudes neither seaurity not prosperity. This is a fad
of fundamental importance It helps establish the falibilist
position that it is not unreasonable to pursue modes of rea
soning that are known to be imperfed [8, pp. 19-20].

As we have dreay illustrated in sedion 2.3 human agents, as
pradical agents, are hasty inducers and bad predictors, unlike
ided (logical and computational) agents. In conclusion, we can
say abdctive inferences in human agents have amemory, astary:
consequently, an abductive ided logical agent has to variably
wegken many of the aspeds of clasdcal logic and to overcome
the relative demonstrative limitations.

| think that agred contribution given to logic by Gabbay is the ae-

ation of the labelled deductive systems (and their application to the
logic of abduction), where data is structured and labelled and dffer-
ent insertion pdicies can beformulated [7, 9]. Thelabelled deductive
systems fulfill the request of weakening therigidity of clasgcal logic
but also of many nonstandard logics dgrictly related to it, opening a
new erain logic: the dtention to the role of meta-leves —for instance
in the logic of abduction —formalizes the flexibility and“historicity”
of many kinds of human thinking which are meaningful in certain
application areas they address Gabbay and Woods' conclusion about
psychologism is clear and leads toa new conception of logic:

If[...]itislegitimateto regard logic asfurnishing forma mod-
els of certain aspeds of the cogritive behavior of logical agents,
then nat only do psychadlogical considerations have adefensible
place, they cannat reasonably be excluded [8, p. 2].°

We can conclude by stressirg the fad that human non-demonstrative
inferential processes of induction and abduction are more and more
externalized and oljectified at least in threeways:

environment and which she is able to take into acourt, and with 1. throughTuring's Universal Pradical Computing Machineswe can
have running programs — often based on logic — that are le to
6 ,?_ survey on D?fsllgled(iﬁl% ig :(0;3:(0 pr%gan;]mi;g at;OlI _iquUStig:f alndlabqlz mimic — and enhance — “the adions of a human computer very
repecive on inegraion f sbcbion and inducton, The following de 00l (23], and so - amazingly - also those human agents “ac-
tinctionisintroduced between explanation and generali zation: tions” that correspondto the complicated inferential performances

- explanaion: hypathesisdoesnot refer to observables - alrealy in the case like abduction (cf. the V_Vhde areaof artificial intellig ence);
of seledtive aduction, moreover, abduction also credes new hypaheses 2. human nonrdemonstrative processes are more and more external-

tog;

- generalization - it is the introduction of a genuinely new hypahesis that
in turn can entail additional observable information on unolgerved indi-
vidual, extending the theory T'.

ized and made available in forms of explicit narratives and learn-
able templates of behavior (cf. also the study of fallacies as im-
portant tools of the human “kit” that provides evolutionary ad-
vantages, in this sense afallacy of the dfirming the consequent —

Imagine we have anew abdctive theory T/ = T'U H constructed by induc-
tion: an inductive extension o atheory can be viewed as a set of abductive
extensions of the original theory T'.

7 Cf. also the cogritive analysis of the origin of the mathematica continuols
line @ a pre-conceptual invariant of three @gritive pradices [22], and o
thenumericline[3, 5, 1].

8 | derive this expresson from Leyton [16] that introduces a very interest-
ing rew geometry where forms are no longer memorylesslike in classcd
approaches auch as the Euclidean and the Kleinian in terms of groups of
transformations.

9 An analogots example of the new modeling flexibility of recent logic is
represented by the work in the dynamic logics of reasoning of van Benthem
[24]. Thislogic offers a distinction between inferences that are dependent
on short term representations and those that depend onlong-term memory,
which involves the processng o representations of greder abstradion. In
thisway it is possble to formdly and flexibly reproduce the interplay that
occurs in human agents' thinking bah at the level of short-term memory
—moreinclined to be damaged by inconsistencies — and at the level of the
long-term memory, where inconsistencies can be inert.



which depicts abduction in clasdcal logic — is better than nathing
[25]).%°

3. new demonstrative systems — ided logical agents — are aeded
able to model in a deductive way many norrdemonstrative think-
ing processs, like aduiction, analogy, credivity, spatial and vi-
sual reasoning, etc.!

4 Conclusion

| have described inductive and abductive ressoning in the light of
the agent—based framework to the am of clarifying their falacious
charader andtherole of their related ided systems (logical and com-
putational). In this perspedive | have analyzed some inductive and
abductive ways of reasoning that in the light of classcal and infor-
mal logic are defined fallacies, showing the fad they can redize a
kind of strategic “rationality”. After having illu strated the distinction
between internal and external representations in the tradition of bath
logic programning and distributed reasoning, | have described some
important aspeds of manipulative abdiction. It can beinterpreted as
a form of pradical reasoning a better understanding of which fur-
nishes a description of human beings as hybrid reasoners to the ex-
tend that they are users of ided and computational agents, for exam-
ple devoted to perform sophisticated inductions and abductions.
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Abduction, Preduction and the falli ble way

of modélling nature
some gistemological consequences for the phil osophy of physics !

Andrés Rivadulla?

1 Introduction

Sincethe very beginning of the methoddogy of science 2400 yeas
ago, philosophers have been trying different ways of scientific dis-
covery. Abduction and induction belong to the best known ores. Ab-
duction was Plato’s ars inveniendi, whereas induction was Aristotle’s
method for the discovery of the principles of science Plato’s way
was abductive, because it was conceived of to propase hypaheses
(geometrical models) intended to save the gopeaances presented by
movements of the planets, as observed from the Earth. Aristotle’s in-
ductive method on hs side has caused a big troule in the history of
Western philosophy: It was known that inductive inferences could be
false. But, urtil the consolidation of the hypahetic-deductive method
in the contemporary philosophy d science dter Einstein and Popper,
there was available no alternative method o scientifi c discovery that
could replace it. Thus it was assumed that induction was a fallible
way of deding with Nature. So was conceived of abduction as well,
since & Peirce (C.P. 2.776 and 2777) acknowledged, abducted hy-
potheses are frequently wrong.

However my main contribution will be to point to a way of rea
soning, very common in theoretical physics, but which has not yet
attraded the dtention of the philosophers of science | cdl it pre-
duction®. It consists in a form or reasoning that starts from first
principles, methoddogically postuated as premises of the inferen-
tial procedure. These premises can proceead from different theories.
Preductive reasoning differs from abduction in that the hypaheses
are not suggested by data, but constructed onthe basis of the avail-
able theoretical badground Thus it depends more on the theoreti-
cd framework than onthe empirical data, and it is an implementa-
tion of the hypathetical-deductive method. But it shoud not be con-
fused with the axiomatic-deductive method. Preduction provides in-
deed the method bywhich most theoretical models are postuated in
science But since preduced models depend onthe available theoret-
ica badkground and this canna be known to be true, restrictions do
frequently occur in the domain of their intended applications. Thus
preduction orly offers afallible way of deding with Nature & well.

In the following sedion | present some cases of study of bath ex-
tensions and restrictions in the fields of Newtonian mechanics and
classcal statistical mechanics. My paint is that the existence of bath

L This paper is part of areseach on Theoretical Modelsin Physics suppated
by the Spanish Ministry of Educaion and Science

2 Universidad Complutense, Faaltad de Filosofia, Dpto. de Légca y
Fil osofiade la Ciencia, E-28040Madrid, email: arivadull a@filos.ucm.es

3 As| have beeninformed by two anonymous referees of this paper, thisword
has been used already by Jum Arimaand by Allen Courtney and Norman
Foo (in a different sense) in the doman of artificial intelligence | thank
both referees for further hel pful criticismsonthis paper.

extensions and restrictions of the gpplication domain of a preduced
theoretical model can be taken as an argument on behalf of an antir-
redist viewpaint in the philosophy d physics: Unlessone wants to
immunize atheoretical construct against potential falsifiers, the ex-
tension of the domain of intended applications of atheoretical model
canna be used to claim either its approximation to the truth nor its
probability to be true; moreover since apriori we have no reason
to be suspicious abou what does nat court as one of the intended
applications of a model, any a posteriori commitment to restrict its
application damain canna impel us to claim that it has been falsi-
fied. In other words. when a theoretical model has been preduced,
its domain of intended applications is completdy open. In scientific
methoddogy there is no algorithm for the postuation of theoretical
models, and bah abductive and preductive reasoning are dlowed.
Both provide us with hypaheses thet serve & premises for further
inferences and empirical predictions. Scientific ars inveniend is not
submitted to rules. As a cnsequence, we caina foresee how many
phenomenawill in the future be considered to belong to the gpplica-
tion damain of the postuated theoretical constructs, nor howv many
will nat or will have to be removed from it. It is therefore resson-
able to assume that theoretical models are nothing but instruments
intended merely to ded predictively with Nature. Inference to the
best explanation goes without saying. But it does nat mean inference
to the true, or approximately true, or probably true explanation. For
theory is not the spaceof truth.

2 Domain revisionsin theoretical physics

As a particular form of the hypathetical-deductive method, preduc-
tion provides, on the basis of previously accepted theoretical con
structs, the means of the postuation of further theoretical models.
The confirmation or the empirical rejection of these models alows
us totalk respedively abou the domain extension or the domain re-
striction of theoretical models. Following Theo Kuipers (2006 do-
main extension and damain restriction are the two forms of the revi-
sion of the domain of intented applications of atheoretical construct.
In the following | present some examples of domain extension and
domain restriction in the methoddogy of physics as part of an argu-
ment intended to suppat an anti-redist viewpoint in the philosophy
of physics’.

2.1 Domain extensionsin classcal physics

Example 1 - Extensions of the domain of intended applications
of the celestial Newtonian model

4 Cfr. also Rivadulla (2008.




Beside the so-cdled paradigmatic intended applications, unex
peded applications of Newtonian medanics are: the computation of
star and danet masses, the existence of collapsed stars as well as the
stability of stars, the light defledion by the sun, the aitical density
of the Universe, etc.

Example 2 - Extension of the domain of intended applications
of classical statistical mechanics: the Jeans' mass limit model for
star formation

James Eans (18771946 investigated the condtions under which
amolecular cloud composed of N molecules would collapse to form
astar. The Theorem of Equipartition of Energy of classcal statistical
medhanics claims thet the kinetic energy of the doud is

E. = gNkBT
where kg is Boltzmann's constant, or

3 M
 2umpy

expressirg N in terms of the average molecular weight and hydo-
gen mass

On the other hand, the virial theorem, applied to systems com-
posed by many oljects, claims thet the average potential gravitational
energy of the constituent objects is two times their average kinetic
energy. Sincethe expressian of the potential gravitational energy is

kT

c

3 M?
Vo R 3G T
then,
3 M 3 . M?
22 ksT = SGNn—
2 pmpg B 5 N R

M and R denating here the massand the radius of the molecular
cloud respedively.

Sincein terms of the density po = 5
be constant,

R=(2M )1/3, we obtain Jeans’ critical massvalue:

4mpo
o kT 3/2 3 1/2
7= Gypmp 4mpo

to be overcome in order that the mllapse takes place, i.e. M >
My.

M

~5z Of the doud, assumed to

2.2 Domain restrictionsin clasdgcal physics

Example 1 - Restriction of the domain of intended applications
of the Newtonian model: The Kelvin-Helmholtz gravitational col-
lapse model

What is the source of the energy of stars? According to Arthur Ed-
dington (193Q p. 289, Helmhadltz-Kelvin's gravitational contradion
hypahesis

Suppees that the [star energy] suppy is maintained by the
corversion of gravitational energy into heat owing to the grad-
ual contraction of the star.

This ideawas put forward by Hermann vonHelmholtz in alecture
given in Konigsberg on February the 7th, 1854 in occasion of the
50th anniversary of Immanuel Kant’'s deah. Twelve yeas later Lord
Kelvin retook this ideain “On the Age of the Sun'sHea”. According
to Kelvin (1903 pp. 493494 Helmhdltz's meteoric theory

Consistsin suppasing the sun and fis heat to haveoriginated in
a coalition of smaller bodes, falling together by mutual grav-
itation, and generating, as theymust do according to the great
law demonstrated by Joule, an exact equivalent of heat for the
motion lost in coallision.

He daims
That some form of the meteoric theory is certainly the true.

In order to analyse the viability of this hypahesis | resort to A.
Ostlie & D. Carroll (1996 p. 329): Sincethe total mecdhanical energy
of astar in equilibriumis

3 ., M?

Ex=3®

(i.e., the half of its potential energy, acrding to the virial theo-
rem) in the case of our Sunthe amourt of gravitational energy liber-
ated duing his ‘collapse’ until today would be

FEy~1.1x 104867‘g.
Asaiming a constant luminosity during the Sun’'swhale lif e - given
that luminosity is power, i.e. energy per time unity - the Sun's age
shoud be

~ 107 yeas.

E
t==2
l

This age s bizarrely short. As Eddington (1930 p. 290 claims

Biological, geological, physical and estronamical arguments
all lead to the conclusion that this age is much too low and
that the time-scale given by the contraction hypathesis must
somehow be estended.

Example 2 - Restriction of the domain of intended applications
of classcal statistical medchanics. The Rayleigh-Jeans radiation
model for the black body

In 1900Lord Rayleigh and James Jkans applied the Theorem of

Equipartition of Energy of classcal statistical mechanics, acording
to which the average kinetic energy of a particle of a system in ther-
modynamic equilibrium is %kBT, to the cdculation of the energy
density of agasof phaons insice areceptacle in thermal equilib rium
which contains N,, stationary electromagnetic waves with frequen-
ciesintheinterva v, v+dv andaverage energy kT, resulting of the
sum of the aorrespondng energies of the dectric and magnetic fields.
Thus the total value of the energy would be E = NkgT. Sincethe
energy density is independent of the geometry and material consti-
tution of the receptacle, and it can be deduced that the number of
radiation modesis N, = S’C’{;z , then it suffices tomultiply N, by
kg T in order to determine that the energy density emitted by ablack
bodyis:

8r1?

E(w,T) = ksT

c3

which is known as Rayleigh-Jeans radiation law.

The problem with this expressim is that integrating owver al fre-
guencies:

E= SﬁkBT/ Vidy = oo
0

3

thus contradicting experience.
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Rayleigh-Jeans radiation law failure is due to the gplication of
clasdcal statistica mechanics to the domain of phaon gases, which
seems tobe the proper application damain of quantum statistical me-
chanics of Bose-Einstein, from which Max Planck’s radiation law
mathematically follows. Indeed, the extension of the gpplication do-
main of clasdcal statistical medchanics to the study of radiation leads
to the ultraviolet catasrophe, which is how Paul Ehrenfest cdled
Rayleigh-Jeans radiation law failure.

3 Conclusion: Some reasons on behalf of an
antir realist viewpoint in the philosophy of
physics

Any successul application of a scientific hypahesis does nat have
any repercussims onits truth or onits probability. The atual exten-
sion of the goplication damain of a theoretical model maintains the
doars open to their empirical rejection or to their application restric-
tion to further phenomena.

Anyhow, the restriction cases of the gplication domain of class-
cd physics shown above do nd commiit to the revision of the theory,
i. e.: from adomain restriction does not follow ipso fado the empiri-
cd refutation of thetheoretical model. It merely pointsto thefad that
not every previously acceted hypdhesis can be succes<ully applied
to any possilde novel question posed either by Nature or by science

Only aposteriori can we recognize theinapplicability of ahypah-
esis to a given damain. A priori we caana susped abou what does
not court as one of its intended applications.

Thus we have readed following conclusion: Neither does domain
extension verify, approximate to the truth or increase the truth prob-
ability of atheoretical model, nor does restriction refuteit ipso fado.
| seein this doule fad a good reason to take theoretica models
merely as tools to ded predictively with Nature.

Any case dthoughrestriction does not amourt to empirical refuta-
tion, it would be philosophicaly uninteresting to pursue immuniza-
tion strategies leading to a complete determination of the goplication
domain of theoretical constructs.
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Abstraction, I nduction and Abduction in Scientific
M odéelling

Demetris Portides

1 Introduction

The development of scientific knowledge consistsin two major com-
porents. The first comporent involves the construction d the cdcu-
lus of atheory, that | choose to refer to as 'theory formulation’, and
the secondinvavesthe atempt to relate this cd culus to experimental
reports, that | choose to refer to as’theory applicaion’. Distinguish-
ing the two is, in my view, important and useful both epistemologi-
cdly and methoddogicdly.

Phil osophers of science, natably [10, 1, 6, 5, 8, 3, 4], have explic-
itly recogrised that theory formulation invalves the conceptual pro-
cesses of abstradionandidedi sation. Suppes’ view iscouched inthe
jargon d the Semantic Conception o scientific theories, but withou
committing to the latter we could still make use of his general idea
which could be spelled ou as foll ows. Assuming that we begin with
the universe of discourse, by seleding a small number of variables
and perameters abstraded from the phenomena we ae ale to for-
mulate what we generaly refer to as the general laws of a theory.
For example, in classcd medanics we seled position and momen-
tum and establi sh arelation amonggt the two variables, which we cdl
Newton's nd law or Hamilton's equations. By abstrading a set
of parameters we thus creae asub-domain of the universe of dis-
course, which we cdl the domain of a scientific theory. Thus, New-
ton's laws sgnify a conceptual objed of study that we cdl the do-
main of clasdcd medhanics. Similarly Maxwell’s equations dgnify
the domain of classcd eledromagnetism, the Schrodinger equation
signifies the domain of quantum theory, and so forth. Scientific do-
mains, viewed from this perspedive, are dealy distinct from physi-
cd domains, which they could represent only if they are expanded by
or integrated with other conceptual resources (see[9]. Hence theory
formulation abstrads a scientific domain from the universe of dis-
course and thus groups together different phenomena based onthe
particular aspeds dictated by the particular domain.

In al the &owe general laws mething is left unspedfied: the
force function in Newton's 2nd law, the dedric and magnetic field
vedorsin Maxwell’s equations, and the Hamiltonian operator in the
Schrodinger equation. Scientific methoddogy demands that these ae
spedfied in order to establish a link between the assertions of the
theory and physicd systems. The theory appli cation component en-
ters in the process of spedfying those dements of scientific theo-
ries that need to be filled-out if the theoreticd assertions are to be
linked to empiricd phenomena, such as forcefunctions, eledric and
magnetic field vedors, Hamiltonian operators, etc. The am of these
spedficaions are nat to extend the theoreticd assertions all the way
to phenomena but it is to construct a model that resembles as many

1 Department of Clasdgcs and Philosophy, University of Cyprus, Nicosia,
Cyprus, email: portides@ucy.accy
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of the feaures of its target physicd system. My aim in this paper
is to suggest a meta-algorithm that captures the ways by which we
spedfy forcefunctions, Hamiltonian operators, etc. To be more pre-
cise, my attempt isto establish alogicd framework (i.e. to rationally
reqonstruct) that captures the ways by which scientific models are
constructed for the representation o physicd systems.

The processof spedficaion can be understoodto invave two dis-
tinct aspeds, bath of which, eadinitsownway, play a aucial rolein
improvingthe acaragy or the representational cgpadty of the model.
The first asped concerns the question o how the degree of resem-
blance of a model to its target physicd system is increased. This
asped comprises in the analgamation inside the model of different
descriptions about diff erent aspeds of the physicd system, so that a
more detail ed and refined representation o the former is achieved.
Let me refer to this asped as the process of concretisation (or de-
idedisation). The second asped invalves discovering (or inventing)
the diff erent descriptions that enter in the processof concretisation.
Itis, | claim, in the latter asped of model construction that induction
and abdiction are vital.

2 A Reonstruction of M odelling Processes

Intrying to use the theoreticd assertions to model physica systems,
we usually start from a highly abstrad description d an ided-type,
which we atempt to concretise by reintroducing into the description
al the astraded fedures. Concretisation may involve a caeful
study o the physicd system in question and o al its peauli arities
and it is mething that often takes an entire scientific research
program to adiieve (e.g. the structure of the nucleus reseach
program). What is important in my discusdon is the question
of how the theory-dictated 'primary’ description o a physicd
system is supdemented by what within the theory is considered of
'sendary’ importance Concretisation is invalved at three levels,
firstly in distinguishing what fadors are necessary for achieving an
acceptable representation o the physicd system, | refer to these &
the primary fadors of the theoreticd description. Secondy, what
fadors are reguired in bringing every individual primary term of
the description closer to redity, as if it functions alone. And thirdly
what is required in bringing closer to redity the interading terms,
thus compensating for the asumption that the separate terms are
digoint and autonamous. The logicd schema | want to suggest, to
cgpture this though process is a multi-dimensional i mprovement of
Nowak’s 1980acwmurt [8]. Nowak's idedi sation acourt was meant
to capture the logic of theories in the social sciences and econamics.
| believe that the complexities invaved in the physicd sciences,
espedadly in the gpplicaion d Quantum Mechanics, require the
multi-dimensional more generalized acourt that | urge, and that



could be formulated as foll ows:

T8 If R(z)and S11(x) =0,...,Sas(z) =0,

and if Pmi(x),..., Pmn(z) act on the physical system
autonomously from Pri(z), ..., Pu(z), then

H(z) = fi(Pi(z),. .., Piy(2)) + f2(Por(2),. .., Pae(2))+
R fg(Pgl(:E), R Pge(l’))

The statement T°° says that in a redistic description R(z)
of a physicd system we éstrad in two distinct ways. Firstly
we ébstrad by caegorising the fadors of influence into primary,
P’s, and secondary, S’s, and by subtrading all the secondary
fadors of influence from our initial theoreticd description (i.e.
by asaiming that they do nd ad on the system in question).
Seawondy we astrad by grouping the primary fadors into separate
terms, f/s, eah of which is assumed to adt autonamously in the
physicd system, and by caegarising the seoondary fadors into their
correspondng goups. Each f; represents a mathematicd function
of different primary and secondary fadors of influence and the
subscripts (indices) are only meant to state distinctions between
different fadors and goupngs among fadors. For instance, f; is
a function conceptualy distinct from f.> becaise the influencing
fadors of which it is a function are sssumed to ad autonamously
on the physicd system from the respedive fadors of which f> isa
function. Also, ead P;; (or S;;) are indexed so that the modelling
assumption that ead fadtor of influence can be described distinctly
from other fadors is cgptured in the logicd schema. The first index
in the primary (and secondary) fadors refers to the groupng to
which the fador belongs and the second index is its name. The
overall moddl descriptionis represented by H, which is the sum of
mathematicd terms ead of which is functionaly related only to
different primary fadors of influence The step-by-step process of
concretisation o our hypahesis, that would improve the represen-
tational cgpadty of our model, invalves the gradua addition o the
seondary fadors related with ead and every one of the individ-
ual primary terms. A first step concretisationwould be the foll owing:

T8=1 . If R(z) and S11(z) = 0,...,S45_1(z) =0,

and Sap(z) # 0,and if Pmi(z),..., Pmn(x)

act on the physical system autonomously from

Pkl(fﬁ), Ceey PM(CC), then H(m) = f1 (Pll(:c), Cey Plﬂ,(m))—&—
o Gapo1lfa (Par(@), ., Pan(@)), hap(Sas(@))]+

A f(;(Pgl(CC), ey P&g(m))

Where, | have alded the influence of just one secondary fador
(Sap) injust ore of the g;; terms (namely, gag—1). The g;; terms
are simply new names to the grouping-function that is altered by the
introdwction of one seacondary function o influence, the first index ¢
signifies the name of the groupng and the second index ; signifies
the number of fadors introduced into the particular grouping. The
h;; terms are the names of the mathematicad expressons through
which the secondary fadors of influence ae represented. The
addition o just one secondary fador of influence into the logicd
schema goes only to show that concretisation fadors are alded orly
toindividual primary terms, it does nat portray the adual pradicein
science, where concretisation fadors may be alded simultaneously
or after significant theoreticd and experimental developments. It
must be nated that this logicd schema dl ows for the regrouping o
thetermsin adescription, aswell asfor theintroduction of new terms
as corredion fadors or as addenda. In other words, it all ows for radi-
cd i mprovements to representational modelsin a particular physicad

domain that usually come &ou after a bregkthrough is acom-
plished. A final concretised assertionwould have the foll owing form:

T : If R(z)and S11(x) #0,...,Sas(x) # 0,

and if Pm1(z), ..., Pmn(z) act on the physical system
autonomously from Pyi(x),..., Pu(z), then H(z) =
g10[f1(Pra(z),. .., Piy(2)), h11(512()), ..., hao(S1e(2))]+
920[f2(P1(2), . .., Pay (), h21(S21(2)), - . ., hay (Sax ()]
+...+

gs0[fs(Ps1(x), ..., Psc(x)), hs1(Ss1(x)), - - ., hsg(Ss4(2))]

The final statement 7°° says that in atheoreticd description of a
physicd system, in which al known fadors of influence that were
initialy abstraded from the redistic description R are now reintro-
duced, we have an expresson that bre&ks down the impad of all
influencing fadors into severa terms ead of which is asumed to
ad autonamously in the physicd system. | believe that this acourt
cgptures well the construction processof many applicaions of Clas-
sicd and Quantum Medhanics. It aso sheds ome light on haw rep-
resentational models relate to the theory (a task that is beyond the
scope of the present work). Moreover, it expli cates one other impor-
tant element of scientific model construction. Each diff erent term of
the description caries its own separate, and frequently independent,
asaumptions, which isamuch more acarate understanding o scien-
tific pradice than regarding al as assumptions boundto the overall
model description.

The daim | want to urgeisthat inductive and abdvctive procedures
are operativein discovering (or inventing) how ead termin the over-
al descriptionisto be represented. That isto say, that we need either
inductive or abductive aguments in order to justify the introduction
of theindividual terms P;; s and S}; s inthelogicd schema ebove, but
that such arguments ontheir own do nd justify the overall model de-
scription H, the latter is omething that is determined by the process
of abstradion/idedi sation and its converse processof concretisation.
In ather words, indwction and abduction are processes that piggy-
bad on the processes of abstradior/idedisation and concretisation.
I will proceed to hriefly sketch two examples that can help visualize
the above modelli ng processand dstinguish its two aspeds.

3 Scientific Modelling from the Viewpoint of the
Concretisation Logical Schema

The simple penduum is probably one of the most succesdul scien-
tific representations in the history of science To model the adual
penddum apparatus we start by assuming a masspoint bob sup-
ported by a masdessinextensible cord of length | performing in-
finitesimal oscill ations about an equili brium point. Thus the equa
tion d motion o the simple harmonic oscill ator can be used as the
starting pant for modelling a red penddum and thus attempting
to measure the accéeration due to the Earth's gravitational field:
6" + (g/1)0 = 0 . But the idedised assumptions underlying this
model equation, do nd describe how the gparatus is in the world
but they dictate an ided description o the gparatus. Henceit isob-
viousto physicists that if areasonably acairate representationis de-
manded, the variousinfluencing fadors of the penduum motionmust
be incorporated into the model. Thisis nat something peadli ar to the
penddum but it is a demand that is present in the majority of cases
of modelling physicd systems.

In the penddum example areasonably acarrate representati onal
model would involve the following influencing fadors: (i) finite
amplitude, (ii) finite radius of boh, (iii) massof ring, (iv) mass of
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cap, (v) mass of cap screw, (vi) mass of wire, (vii) flexibility of
wire, (viii) rotation o bob (ix) doude penduum, (x) buoyancy,
(xi) linea damping, (xii) quadratic damping, (xiii) decegy of finite
amplitude, (xiv) added mass (xv) stretching o wire, (xvi) motion
of suppat. To increase the degree of resemblance of the model to
the penduum apparatus mathematicad descriptions of these fadors
are introdwced into the model equation in a aumulative manner.
Hence the aspeds of modelling that were discerned abow, i.e.
concretisation, induction, and abdwction, are dealy discerned in the
penddum case. To identify these influencing fadors and to dedde
how they must be introdwced into the model is a dea demonstration
of what | have labelled the process of concretisation. In fad the
abowve logicd schema gplies to the model of the penduum in its
most abstrad and idedi sed form as foll ows:

T8 . If R(z)and S11(z) =0,...,S18(x) =0, then
H(z) = fi(Pu(z)

Inthis smple form the schema suggests that only one primary fac
tor of influenceis identified (that of the linea restoring force due to
gravity), and al secondary fadors of influence ae mrredionsto the
influence of gravity. Where H(z) = fi(Pii(x) is a metaingus-
tic description o the Newtonian equation o motion o the simple
harmonic oscill ator 6 + (g/1)0 = 0, that is meant to model the
penduum at a high degreeof idedi zaion and abstraction.

To discover what descriptions must be used for ead of the sec
ondary influencing fadors is a dea demonstration o either an in-
duction a an abduwction process (The moddlling detail s of the red
pendudum apparatus can be foundin [7]). Here is a cae of an ab-
ductive procedure in determining hav the dr resistance ad¢s on the
oscill ating system (penduum bob and wire) to cause the anplitude
to deaease with time andto increase the period. The Reynads num-
ber for eath comporent of the system determines the law of force
for that comporent. The drag forceis hence expressed in terms of a
dimensionlessdrag coefficient, which is a function o the Reynadds
number. In the penddum case it can be agued abductively that a
quadratic force law shoud apply for the penduum boh whereas a
linea forcelaw shoud apply for the penduum wire (bath of these
are dealy inferences to the best explanation). Hence, it makes ense
to establish a damping force which is a combination o linea and
quedratic velocity terms: F' = b |v| + cv®. To determine the physi-
cd damping constants b and ¢ the work-energy theorem is employed,
an appropriate velocity function v = f (6o, t) is asumed, and uncer
the asaumption o conservation o energy they are matched to exper-
imental results. The final expresson o the dfea of air damping is
introdwced into the equation of motion o the model.

Here is a cae based on an inductive procedure in determining
how the length of the penduum is increassed by stretching o the
wire due to the weight of the boh By Hooke's law (which, being
an empiricd law, could be daimed that it is arrived at inductively)
when the penddum is suspended in a static position the increase is
Al = mglo/ES, where S is the aosssediond area and E is the
elastic moduus. The dynamic stretching when the penddum is os-
cill ating is due to the goparent centrifugal and Coriolis forces ading
on the bob duing the mation. This feaure is modelled by analogy
with the spring-penddum system to the nea stiff limit. When these
feaures are introduced into the model equation it givesriseto asys-
tem of couped equations of motion.

A more complicaed modelling example is that of the nuclea
unified model used in the representation o the nuclea structure [2].
The unified model is based on a highly complex hypahesis about
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the nature of the nucleus, which expresses our conception o the
nuclea structure as it has been shaped by the successes and fail ures
of predecesor models. The hypahesis asserts that the nucleus is a
complex system of a mlledion d particles that exhibit some form
of independent nucleon motion, but that this motion is constrained
by a slow colledive motion of a re of nucleons, and that the two
modes of motion interad with ead cther. In addition it asserts that
the alledive mode of motion is congtituted by threedistinct kinds
of motion (vibration, rotation and gant resonance), two of which
demonstrate an interadion mode. These ideas are expressd in the
formalism of Quantum Mechanics in terms of the Hamiltonian
operator of the unified model that is used in the Schrdinger equation
for the nucleus. This Hamiltonian operator takes the foll owing form:
Hror = Hsp+Hcor+ Hint - Where Hs p isthesingle-particle
Hamiltonian term, H;n7 isthe interadion mode Hamiltonian term,
and the mlledive Hamiltonian is divided into four distinct modes of
motion: Hcor = Hror + Hvie + Hror-vie + Hgr . Each
of these terms are, of course, constituted by complex expressons
that represent the various fadors involved in eat particular mode of
nuclea motion. Sincethere ae six primary terms, the abowe logicd
schema gopli es to the unified model in its most abstrad and idedi sed
form as foll ows:

T°P . If R(z) and S11(x) =0,...,Sap(z) =0,

and if Pmi(z), ..., Pmn(z) act on the physical system
autonomously from Pri(x),..., Pu(z), then

H(z) = fi(Pu(2),..., Piy(2) + f2(Por(2), ..., Pag(x))+
A fa(Pal(x'), e ,P65(x))

Where H(l’) f1 (P11(:E), Cey Ply(l’)) —+ fz(P21 (:E), R
Poe(x))+...+ fe(Pe1(x), . .., Psc(x)) isametalinguistic descrip-
tion o the total Hamiltonian operator of the unified model of nuclea
structure, i.e. Hror = Hsp + Hror + Hvie + Hror-viB +
Hgr+ HinT.

The unified model i s an example that demonstrates two fundamen-
tal elements of model constructionin the goplicaion o quantum me-
chanics. Firstly, inthe cae of the unified model the hypathesis of the
model is nat asserted in a highly abstraa form. It involves many of
the significant feaures of the nuclea structure that are present in
our description o the physicd system. Nevertheless in spedfying
aHamiltonian we ébstrad by dividing these feaures into three sep-
arate terms, as if their contribution to the behaviour of the nucleus
is distinct and autonamous. This procedure is very frequent in mod-
dlingin physics, but we must recognise that it is only a conceptual
division. The threeterms in the unified model Hamiltonian are not
meant to ad disjointedly nor to represent separately, we impel the
division by abstrading. The abstradion invaved is the foundition
of the munterfadual asertion, implied by the Hamiltonian, that the
overall nuclea motionisas i f it recaves contributions from distinct
and autonamous modes of motion. This way by which abstracion
isused in our modelling is refleded in the ébowve logicd schema of
model construction.

Sewndy, the individual Hamiltonian terms of the model are not
constructed in identicd ways. The Hsp term is modelled by using
the principles of Quantum Medanics from the outset in a system-
atic manner, i.e. by using astock model of the theory and pastulating
ways by which to concretise the estradions invaved. The ollec
tive motionterms, however, differ significantly in the method d con-
struction. In fad the ooll edive terms are first set up asif the system
behaves in acmrdance to classcd mechanics and at some gpro-
priate stage its parameters are quantized, i.e. the dasscd functions



are mnwerted to quantum mechanicd operators. This is a standard
procedure in phenomendogicd modelling in quantum mecdhanics,
which deserves its own analysis. But for the purposes of this work
we must discern that in such cases no stock model of Quantum Me-
chanics is used, and notheoreticd justification exists for the quanti-
zdion o clasdcd variables. In other words, part of the Hamiltonian
of the unified model isin fad semi-clasdcd. Thisgivesriseto ques-
tions concerning the construction o representation models that are
not outright products of quantum theory alone. This asped of mod-
ling, which is © common in the gplicaion d Quantum Mecan-
ics, is also refleded in the ébove logicd schema of moddl construc-
tion, since there is no restriction that the f;’s and the g;;’s must be
dictated by theory.

Abdctive ressoning enters in the construction o the unified
model in two levels. The first is in reading the conclusion that al-
thoughthe individual motion term and the ollecive motion term
are oonstructed in significantly different ways (i.e. the first by using
guantum mechanicd principles from the outset, and the second by
semi-classcd processs) the best way to achieve an explanation o
the nuclea propertiesisby employing bah termsin aunified Hamil -
tonian. The seandisin reading the conclusion o what contributes
to ead particular term of the Hamiltonian, i.e. in establishing the
best posshle description o ead term that would most acarrately
represent the diff erent modes of motion o the nucleus.

4 Conclusion

Thelogicd schema of the concretisation process | suggest, captures
most of the dements of theory applicaion. But most importantly,
what underlies this way of looking at theory application is that in-
ductive and abductive inferences are mainly present in determining
spedfic fadors that influence the behaviour of physicd systems, and
not in determining general unifying theories. Grouping these fadors
together in order to read atheoreticd representation of a target phys-
icd systemisaprocessthat isprimarily guided bythe ebstracionand
concretisation processes. Thisis, in my view, amore predse charac
terisation of scientific pradice andin particular 'theory application'.
Theimportance of induction and abduction could be best understood
if these processes are seen as operating together with the process
of concretisation, and the logicd schema @owe serves as a meta-
algorithm for understanding haow all threeprocesses operate together
in our attempt to construct representations of phenomena.
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Digunctive Bottom Set and Its Computation

WenjinLu and RossKing!

Abstract. This paper presents the digunctive bottom set and ds-
cussss its computation. Diff erent from existing extensions of the bat-
tom set, such as the kernel[6], which is a set of hypaheses, the dis-
junctive battom set is the weakest minimal single hypahesis in the
whade hypahesis gace It happens that the disjunctive bottom set
can be charaderized interms of minimal models. Asminimal models
can be computed in pdynomial space omplexity, so can the disunc-
tive bottom set. A flexible ILP framework based on the digunctive
bottom set isa so outlined. The framework sharesthe low space om-
plexity of the disjunctive bottom set. Ancther nowelty of the frame-
work isthat it leaves an opening viahypahesis sledion functionto
integrate more alvanced hypdhesis ssledion mechanisms.

1 Introduction

Inverse Entail ment(IE) [4] is one of the most important inference
medhanisms in inductive logic programming (ILP). It is an inverse
process of deductive reasoning. More formally, given badground
knowledge B and an example E and B (£~ E, IE will work out a
set of rules H such that

BAHEE

In pradice atypicd framework for implementing |E consists of
the following modues:

1. Bottom set generation: The bottom set of E under B, is defined
as aspedfic (ground clause set whose negationis derivable from
BAE.

2. Bottom set generalisation: Thiswill construct a dause theory H
such that every clause in the bottom set is #-subsumed by a dause
inH.

3. Hypothesis sledion: Biases are used for the seledion o a spe-
cific hypahesisin the hypahesis gace

Asaninverse processof deductive reasoning, inductive ressoning
isintrinsicdly a multi-solution process Given B and F, however,
the hypahesis H that can be foundwith |E mainly depends on the
bottom set.

Example 1 Given backgroundknowledge B and anexample E as
foll ows,

B

{b—a,
cANd— a,
e— ¢,
fHC7
g —d,
h—d}
E = a

L Department of Computer Science, University of Wales, Aberystwyth,
Ceredigion, SY23 3B, Wales, UK, e-mail: {wwl, rdk} @aber.acuk

the possble (minimal) inductive hypotheses could be:

(1) {a},

(2) {b},

3) Ae d},

4) {e g}

(5) e, h},

6) {f. g},

(1) {f. hh

®) {avi},

(9) {avbVveveVf, avbVvdVgVh}

Depending onthe seledion o bottom set, existing ILP systems may
deliver different solutions. Asit is limited to single Horn clause hy-
potheses, the Progd family takes (8) as abattom set and may deliver
(1) or (2) as hypaheses. The HAIL system all ows hypaheses con
sisting o many Horn clauses and takes (1), (2), ..., (7) all together
as the bottom set. It may deliver hypahesis from (1) to (7) but not
(8) and (9). Hypathesis (9), however, does possess ®me desirable
properties as a bottom set:

e itisaminima hypahesisin asensethat no proper subset of (9) is
ahypahesis.

e itisthewedkest hypahesisin asensethat it is subsumed by aher
hypaheses.

e itiscompletein asense that al other hypahesis can be obtained
from (9) by seleding some literals from ead clause in it. There-
foreit represents the multi-solutionin a compad way.

This observation hes led us to introduce the concept of the digunc-
tive battom set which is defined as the weekest minimal ground hy
pathesis? for given badground knavledge B and an example E. In
additionto the properties li sted abowve, the digjunctive bottom set also
has the foll owing advantages:

e it can be charaderised by the minimal models of a simple dudity
transformation o B and E.

e With some restriction onthe syntax of B, the disjunctive bottom
set can be computed in pdynomial space omplexity as minimal
model computation can doso.

The rest of the paper is organized as follows. After introdwcing
some preliminaries in the next sedion, in sedion 3 we present the
digunctive baottom set. Sedion 4 dscusses the issues of computing
the digunctive bottom set. The comparison with related work is pre-
sented in 5. We aonclude the paper in sedion 6 by dscussng some
future work

2 Preliminaries and Background

In this sdion, based on the aaumption o familiarity with first
order logic and logic programming [3], we give abrief review onthe

2 seedefinitions in sedion 3
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inverse entail ment and its variants.

Given afirst order language £, here ae the necessary notation and
termindogy. A positive literal is an atom and a negative literal isthe
negation of an atom. A groundliteral isaliteral withou variables. We
denote H B(L£) the Herbrand bese of £, the set of al groundatoms
formed from L. Thedisjunctive Herbrand bese, denoted asd H B(L),
isthe set of al (finite) positive ground dsjunctions formed from the
elements of the Herbrand base H B(L). The set of al groundliter-
dsof £ isdenoted by GL(L). A clause is a digunction o literals
where dl variables in the dause ae (implicitly) universally quanti-
fied. Conventionally, a dause is also represented as a set of literals
which meansadigunction o theliteralsin the set. Inlogic program-
ming setting, a dause C' iswritten as

BiN..ANB, — A1 V..VA,

where m,n > 0 and A;, B; are @aoms. A Horn clause is a dause
containing at most one positive literal, that is, m < 1. A (Horn)
clausal theory isa conjunction o (Horn) clauses. Given C' as abo\e,
C = (BiA...ABy AmA1 A ... A=Ay iscdled the complement
of C, where o isa Skolemising substitutionfor C.

Given a dausa theory B, an (Herbrand) interpretation d B is
a subset of Herbrand bese. Given an interpretation I, a ground
clauseC = Bi A ... ABy — A1 V ...V A istruein the I iff
{Bl, ,Bk} cI II'TlplleS{Al7 ...,Al} NI ?,é (, denoted as I ': C.
Iisamode of B iff dl clausesin B aretruein I. A model M of B
isminimal model iff thereisnomodel M, of B suchthat My C M.
The set of all minimal models of B is denoted by MM (B).

The central task of ILP isto find a hypahesis H from given back-
ground knavledge B and examples E such that

BAHEE

where H, B and E are dl finite dausal theories. Inverse Entail ment
fulfill sthistask by so-cdled batom generalisation, whichis, in turn,
based on bdtom set [4]. The following cefinitions and ndations are
taken from [9] with B and E are limited to aHorn theory andaHorn
clause, respedively.

Definition 1 (Muggdleton’s Bottom Set) Let B be a Horn theory
and E' be a Horn clause. Then the battom Set of B and E is the
clause

bot(B,E) = {L| L € GL(£)andBAE k= —L}

We dendte bot™(B,E) the set of atoms in bot(B,E) and
bot™ (B, E) the set of atoms whose negation isin bot(B, E). Wth
the notation, we have

bot(B, E) = [\ bot™ (B, E) — \/ bot* (B, E)

Definition 2 (Bottom Generalisation) Let B be a Horn theory and
FE be a Horn clause. A Horn clause H is sid to be derivable by
bottom generali zation from B and E iff H 6-subsumes Bot(B, E).

For computational purpose, Bottom set has been rephrased in [9] in
terms of deductive and abductive reasoning. Inthe foll owing, without
lossof generality, we assume that example E isagroundatom, asin
the case E isaHorn clause, normalisation grocesscan be gpplied 3.

3 Given aHorn theory B andHornclause E = a1 A ... Aan — b, B =
B Aajo A ...\ amo ande = bo iscdled anormdisation d B and E,
where o is a Skolemising substitution for E [6]

Proposition 1 Given Horn theory B and gound @om E with B -
E. Then

bot~ (B, E) =
bot* (B, E) =

{a|la € HB(L) andB [= a}
{b|be HB(L)andB A {b} E E}

The interesting pdnt with this reformulation is that it explicitly re-
veds the relationship between inductive logic programming and ab-
ductive logic programming, that is, bot™ (B, E) can be generated by
employing an abductive procedure to abduce dl single géom hypahe-
ses (asumingthat all atomsare ebduwcible). Asindicated in [6], how-
ever, Mugdeton's bottom set is incomplete due to its restriction to
single dause hypaheses. This has led to a further generali sation o
the bottom set by all owing abductive hypaheses with multi ple &oms
[6, 7], which provides asemantic underpinning to alarger hypahesis
spacethan that computed using Mugdeton's bottom set.

Definition 3 (Kernel, Kernel Generalisation) Let B be a Horn
theory and E' a ground @om with B (= E. Then the Kernel of B
and E, written as KCer (B, E), isthe formula defined as foll ows:

Ker(B,E) = \ Ker™ (B, E) — \/ Ker™ (B, E)

where
Ker~(B,E)= {al|la€ HB(L)andB [ a}
Ker™(B,E)= {A|ACHB(L)andBAA | E}

AHorntheory H is sid to be derivable by Kernel Generali sationiff
H = Ker(B, E).

It hasbeen shown that kernel generali sationis oundin the sense that
give B and E as abow, for any Horn theory H, H = Ker(B, E)
onyif BAH = E.

3 Digunctive Bottom Set

This dion presents the formal definition o the disjunctive bottom
set. After taking a further look at the Mugdeton's bottom set, we
show that for a given badkground knevledge B and a ground atom
E such that B & E, there exist an urique wedkest hypahesis H
suchthat BV H |= E. Naturdly, the disunctive bottom set is then
defined to be the weekest hypahesis. We start with the following
simple fads.

Proposition 2 Let B be a Horn theory and E' be a ground dom.
Thenfor C =c1V..Ve, €dHB,BANC E Eiff BA¢; |E E for
ali=1,..,n.

Proposition 3 Let B be a Horn theory and £ a ground d@om with
B £ E.Forany H € dHB,if BAH = E,then H |=
\ bot* (B, E).

Propasition 2 and propasition 3 together show that bot™ (B, E) is
nothing bu the weekest positive ground hypadhesis consisting o sin-
gle dausefor B and E. For example, the hypahesis (8) inexample 1.
Considering the fad that Mugdeton's battom set is incomplete due
to this limitation, by the aowe propasitions, it would be natural to
seled the wedkest ground hypohesis in the whole hypahesis gace
as abottom set. Thisis exadly the ideabehind the definition o the
digunctive bottom set. In the following we give aforma acourt of
“the wedkest” ground hypadhesis.
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Definition 4 (Positive Ground Hypothesis) Let B be a Horn the-
ory and E be a ground @om where B [~ E. A positive ground ty-
pothesis of B and F is a set of positive groundclauses of the form
PH = {D; |D; € dHBi = 0,1,...,m}
satisfying
BADiA..ADy = E

A positive ground lypathesis PH is called minimal if there is no
pasitiveground typathesis PH’ suchthat PH’' C PH.

In the following, a dausal theory S is sid to clausally subsume
a dausal theory T', writtenas S O T, if every clause in T is 6-
subsumed by at least one dausein S. If S O T, thenwe say T is
wedker than S.

Definition 5 (Weakest positive ground hypothesis) Let PH be a
minimal positiveground typathesis of a Horn theory B and a gound
atom F where B [~ E. PH iscalled weakest iff thereisnominimal
pasitive ground typathesis PH’ of B and E suchthat PH 3 PH'
and PH # PH'.

The foll owing lemma shows that the weakest positive ground hy
pothesis, if any, isunique.

Lemma 1 (Uniquenessof weakest positive ground hypothesis)
Let B be a Horn theory and E be a ground @dom where B (£~ E.
If bath H; and H» are weakest positive ground typotheses, then
H=H'"

Proof: Let H = H: V Hz, then BA H | E. Conwert H into a
conjunctive normal form (CNF) and remove dl clauses which are
subsumed by ahers. Let the resulting CNF be H., then H. isapos-
itive ground hypehesis and is wedker than H; and H,. But H; and
H> both are weakest, we have H. J H; (i =1, 2). As Hy, H> and
H, are dl paositive ground we have H, = H. = Hs.

For a given Horn theory B and an example E satisfying B (= F,
we still need to show the existence of the weekest positive ground
hypahesis. To fulfill this task, we borrow the gproach and results
from [8] which discusses the dudlity for goal-driven query process
ing in digunctive deductive databases. The interesting pdnt for us
isthat it shows that the wegkest minimal hypahesis can be obtained
by computing the minimal models of a dudlity transformation o B
and E. The following result taken from [8] has been tailored and
rephrased acording to our neads. A more general version and its
proof can be foundin [8].

Definition 6 (Dual clause[8]) LetC = BiA...AB, — A1V...VA;
be a clause, the dud clause of C, denated byCd, is a clause of the
form

CY=AAN..NA — BV ..V B

The dud of a set of clauses S is the set S? of duds of each of the
members of S.

Theorem 1 ([8]) Let B bea Horntheory and E be a ground aom.
Let BE = BYU {E}. If MM(B$) isnonempty, then

e BF£E
e F becmes derivable fromthe updaed clause theory B’ achievel
by addngto B the set of clauses S such that S 3 MM(BE).

4 here we read aground hypahesis as aset of clauses, which, in turn, are sets
of groundatoms.

o S = MM(BE) isthe minimal andweakest such set that can ke
added to B to guaanteethe derivablility of £ from B’.

Thefollowing coroll ary clarifiesthe relationship between minimal
models and pasitive ground dsjunctive hypaheses.

Corollary 1 (Existence of weakest positive ground hypothesis)
Let B beaHorn theory and E be a ground @aomwith B |}~ E. Then
S = MM(B? U {E}) is the weakest minimal positive ground
hypathesis.

Example2 Let B and E be asin example 1, then

a—b,
a— cVd,
c— e,
c_)f7
d—g,
d— h}

B ={

MM(B* U {a})) =
bot~ (B, E) = 0, we have

{{a7b7c’e’f}7{a7b7d7g7h}}' %

BuU{aVvbVveVvVeVf, avbvdVVgVh}Ea

With lemma 1 and corallary 1, we have the foll owing theorem.

Theorem 2 Let B be a Horn theory and E be a ground d@om with
B = E. Then there exsts an urique weakest minimal positive
ground typathesis.

With these results, we ae now in a pasition to present the defini-
tion d the digunctive bottom set.

Definition 7 (Digunctive Bottom Set) Let B beaHorn theory and
E a ground gomwith B [~ E. Let W PH be the weakest minimal
hypathesis of B and E. The disjunctive bottom set of B and E isa
clausal theory of the form

dBot(B, E) = {bot~ (B, E) — D|D € WPH}

Example3 Let B and F be as in example 1, By example 2 and
bot™ (B, E) = 0, wehave

dBot(B,E)={aVbVeVveV f, avbVvdVgVh}

In the following, we show that the disunctive bottom set is a red
extension d bottom set (theorem 3). The next lemmafoll owsthe fad
that for any derivation D of —a from B A —F, we have aderivation
D? of a from B¢ A E obtained by repladng eat C' in the D with
C?%whichisa dausein B A E.

Lemma 2 Let B beaHorn theory and E be ground @aomwith B (-
E. Thenfor any ground doma, B A —E |= —aiff B*A E = a.

Theorem 3 Let B be a Horn theory and E be a Horn clause. Then
bot(B, FE) J dBot(B, E).

Prodf: By lemma2, forany a € bot" (B, E), B A E | a. That
is, a istrue in every minimal model of B A E. Therefore for every
minimal model M € MM(B* A E), bot™ (B, E) C M. Thusthe
theorem foll ows the definiti ons of the bottom set and the digunctive
bottom set.
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4 On Computation of the Digunctive Bottom Set

In this ®dion we discuss the isaies of computing the digunctive
bottom set. By theorem 1 and the definition o the disjunctive battom
set, for given badground knevledge B and an example E where
B [~ E, the omputation o dBot(B, E) turns out to be the genera-
tion o minimal modelsof B¢ U E.

Minimal model computation hes been intensively studied in the
community of disunctive logic programming and theorem proving.
Many minima model generation approaches have been propcsed
in the literature [5, 1]. Among them the methods based on hyper
tableaux seem to offer a promising besis for minimal model reason
ing [5, 1]. The hyper tableau cdculus combines the ideafrom hy-
per resolution and from analytic tableaux. When applied to minimal
model generation, hyper tableaux are defined as aspedal kind o lit-
eral trees. The treeis generated in such a way, that in any step an
open branch isa candidate for a partial model.

Whileit istrue that thereisalot of agorithms for minimal model
generation, however, many of them were defined for ground theo-
ries or theories with restricted syntax. One such arestrictionisrange
restriction clauses defined below.

Definition 8 (Range restricted clause[1]) A clause is sid to be
rance restricted if evey variable occurring in a paitiveliteral also
appears in a negative literal. A clause theory is range restricted if
evay dauseinitis range restricted.

Asdiscussdin[1], for anonrange restricted clausal theory, arange-
restricted transformation can be gplied to it to produce arange-
restricted clauses theory [1].

Spedficdly, for arange restricted clause theory, there exist min-
imal model generation procedures with a padynomia space om-
plexity. One such procedure is reported in [5]. The basic ideais to
generate models with a hyper tableau proof procedure and to in-
clude an additional test for ruling ou those branches in the tableau
that do nd represent minimal models. This groundedness test is
dore locally, i.e. there is no reed to compare abranch with other
branches computed previously; hencethereis no reed to store mod-
els. In the following dscusson, we will rely on this fad and as-
sume that the minimal model generation procedure provides an API
next_minimal_model(B), which takes a range-restricted clause
theory B and aways returns the next minimal model if any withou
repeding.

Next, under the sssumption that for a given badkgroundHorn the-
ory B, B¢ isrange-restricted, we outline an |L P framework based on
the disunctive battom set. To make the framework more flexible, we
introduce the concept of a hypahesis sledion function, which will
be used to seled a ground hypaohesis from the disunctive bottom
Set.

Definition 9 (Hypothesis sledion function) A hypathesis slec
tionfunctionis a mappng

£ 9HB _ oHB
such that

o f(0)=10
o if M # 0, then f(M) # 0 and f(M) C M

f is called a Horn hypothesis sledion function if f(M) contains
only one atom.

Algorithm 1 presents a computational procedure to compute in-
ductive hypaheses. The basic ideabehind the procedure is as fol-
lows: for agiven Horn theory B, agroundatom E, as B isassumed
to be range-restricted, aminima model generation procedure can be
applied to generate dl minimal models of B¢ U { E'}. For ea min-
ima model, apply hypahesis sledion function to produce apartial
hypahesis. This partial hypahesis is then generalised by a hypath-
esis generalising procedure. Once the dgorithm terminates, it will
produce an inductive hypathesis for E.

Algorithm 1 : Computing Inductive hypatheses

Input: A Horn Theory B,
A groundatom E,
A hypahesis €ledion function 7
Output: A hypahesis H
begin
H=0
repeat
M = next_minimal_model(B%)
if M # “no”
let H be agenerdisation o bot(B,E)” — F(M)
H=HU{H}
until M = “no”
return H
end

The foll owing theorem shows that algorithm 1 is soundand com-
plete.

Theorem 4 (Soundnessand Completenesg Let B be a Horn the-
ory and £ a ground @om. Then a clause H is a hypathesis of £
given B iff there exsts a hypathesis ®ledion function f such that H
isthe output of algorithm 1 with the input of the Horn theory B, the
ground dom E andthe hypothesis sledion function f.

5 Related work

The work presented here has been influenced by several existing
work. The bottom set was first introduced in [4]. As rephrased
in[9, 6, 7], given abadground knaevledge B and goundatom F, the
bottom set bot(B, F) can be represented in two parts, bot~ (B, E)
andbot™ (B, E), where bot~ (B, E) isthe least Herbrand mode! of
B and bot™ (B, E) is the set of atoms abdcible from B and E. By
propasition 2and 3 bott (B, E) is nathing bu the wedkest single
clause which is an hypdhesis for E given B. In this ®nse, the dis-
junctive bottom set is a natural extension o the bottom set as it is
the wedkest set of clauses which, atogether, form ahypahesisfor £
given B.

The digunctive bottom set has been much inspired by the kernel
set approach [6], which is a generalisation on bdtom set. Given B
and F, the kernel can be represented as

Ker(B,E) = \ Ker™ (B, E) — \/ Ker™ (B, E)

where
Ker=(B,E)= {ala€ HB(L)andB = a}
Kert(B,E)= {A|ACHB(L)andBAA E E}

AsKernel isa complete extension o the bottom set, it it i s nat sur-
prise that, the digunctive bottom set and the Kernel are semanticdly
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equivalent in a sense that they represented ead other in adua way.
More predsely we have the foll owing result.

Theorem 5 (Duality of the disunctive bottom set and the Kernel)
Let B be a Horn theory and E be a ground @om where B [~ E.
Then

\/ Ker* (B, E) = \ MM(B U{E})

Proo: LetWPH = A MM(B*U{E}), then W PH isaground
clause theory consisting o only pasitive groundclauses. Let A be a
model of W PH,then A subsumes W PH.AsW PH istheweakest
hypdhesis, wehave BAA |= E, therefore, A € Kert (B, E). That
is, A isamode of \/ Ker™ (B, E).

Now let § be amodd of \/ Ker™ (B, E), then § must be a
hypahesis of E under B. As W PH isthe wedkest hypahesis, we
have § subsumes W PH. Therefore 6 is a model of W PH. This
completes our prodf.

While it is true that the digunctive bottom set and the kernel are
semanticdly equivaent, the differences between the two are dso
clea. The Ker™ (B, E) is defined as a set of hypaheses consisting
of groundatoms as eat A is a hypahesis. The digunctive battom
setisasingehypahesis. The diff erencein representation hasalso an
impad on their implementation. The kernel set approach has itsim-
plementation based on abductive ressoning and the ILP framework
presented here will beimplemented ontop d minimal model reason-
ing and share the advantage of lower space omplexity.

Ancther interesting ILP framework is CF-induction [2]. It is aso
soundand complete for finding hypdheses from full clausal theories,
and can be used for inducing nd only definite dauses but also non
Horn clauses and integrity constraints. The big difference between
CF-indwction and ou framework isthe way in which the hypaheses
are coomputed. CF-induction computes hypaheses using aresolution
method via consequence finding. Our framework is based on min-
imal model generation. Anather differenceis in deding with hias.
While it is modelled in CF-indwction by poduction field, inductive
bias can be represented in our framework via more general hyp ahe-
sis #ledionfunction.

6 Conclusionsand Future Work

This paper presents the digjunctive bottom set which is a natural ex-
tension o Mugdeton's bottom set. Different from existing exten-
sions, the digunctive bottom set is the wegkest minimal hypahesis
and can be represented by the minima models of a dudlity trans-
formation o badground knavledge B and an example E. In addi-
tion, the digunctive bottom set can be computed in pdynomial space
complexity. An ILP framework based onthe disunctive bottom set
is aso oulined. The main nowlty of the new framework is its low
space omplexity. In additionthe hypahesis sledionfunctioninthe
framework leases an opening to integrate more advanced hypahesis
seledion mechanism in hypahesis construction.

A lot of work remains to do. Firstly we will prototype the frame-
work for experiment and compare the results with existingwork. The
other point we want to exploit further isto cooperate statisticd meth-
odsinto the hypahesis sledion. Aninteresting application areawill
be bioinformatics, where ILP has shown gred success
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Abduction, Induction, and the L ogic of Scientific
K nowledge Development

Peter Flach! and AntonisKakas? and Oliver Ray®

Abstract. In this paper we outline some recent developments in
the study o abduwction and induction and their role in scientific
modelling and knavledge refinement. We dso describe a cetral
challenge that appeas to be amerging from this gudy. namely, the
problem of developing pradicd approaches for exploiting abduction
and induction, of formally charaderising the limitations of such ap-
proaches, and o identifying the dasses of red-world problems to
which they can be usefully applied.

1 Modelling Scientific Theories

Moddlling a scientific domain is a continuows process of observing
and understanding phenomena acording to some aurrently avail able
model, and using this understanding to improve the original domain
model. Inthisprocessone startswith arelatively simple model which
gets further improved and expanded as the processisiterated. At any
given stage of its development, the aurrent model is very likely to
be incomplete. The task then is to use the information gven to us
by experimental observations to improve and passhbly compl ete this
description. The development of our theories is driven by the obser-
vations and the nee for these theories to conform to the observa-
tions. This paint of view forms the basis of many formal theories of
scientific discovery [22, 7, 15] 4 in the sense that the development
of a scientific theory is considered to be an incremental process of
refinement strondy guided by the enpiricd observations.
Considering alogicd approacd to this problem of incremental de-
velopment of a scientific model, phil osophers of science have recog
nized the need to introduce new synthetic forms of reasoning, along
side with the analyticd reasoning form of deduction. Drawing on
Aristotle's g/llogistic logic, Charles Sanders Peirce [6, 21] distin-
guished between abdiction and induction, and studied their respec
tiverolein the development of scientific theories. Morerecently, sev-
eral authors have studied abduction and induction from the perspec
tive of Artificial Intelli gence and Cognitive Science [8, 11, 17, 4]. In
particular, one recent volume [4] is devoted to the problem of com-
paring these two forms of reasoning and investigating their posshle
unification a integration for the purposes of Artificial Intelli gence
Given atheory T describing ou current (incomplete) model of the
scientific domain under investigation, and a set of observations de-
scribed by the sentences, O, abduction and induction are enployed
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in the process of incorporating the new information contained in
the observations into the aurrent theory. They baoth synthesize new
knowledge, H, that extends the aurrent model to T UH, such that (1)
TUH =0, and(2) TUH isconsistent (where |= denctes the deduc-
tive entail ment relation o the formal | ogic used in the representation
of our theory and consistency refers also to the correspond ng ndion
in thislogic). The particular choice of the underlying logic depends
on the problem or phenomena that we ae trying to model. In many
casesthisisbased onfirst-order predicate cdculus, asfor examplein
the gpproach of Theory Completionin [20]. But other logics can be
used, e.g. the non-monaonic logics of Default Logic [25] or Logic
Programming with Negation-as-Failure [1, 16] when the modelling
of our problem reguires this level of expressvity.

Given this sngle formal definition o these two forms of reasson
ing, how can they be distinguished and why shoud we neel to do
s0? One way to distinguish them is to consider the extent to which
we dl ow the new knowledge H, to complement the aurrent theory T.
Abductiontypicdly asaimes that we can identify two distinct sets of
predicates: observable predicates and abdtcible predicates. This re-
fleds the assumption that our model T has readied a sufficient level
of comprehension o the domain such that all the incompleteness of
the model can beisolated in its abducible predicaes. The observable
predicates are asumed to be completely defined (in T) in terms of
the ébduwcible predicaes and aher badkground auxili ary predicaes;
any incompletenessin their representation comes from the incom-
pletenessin the ebdwcible predicaes. Furthermore, the empiricd ob-
servations of the domain that we ae trying to model are described
using olservable predicaes only (typicdly as groundatomic fads).

The abdwcible predicaes describe underlying (theoretical) rela
tions in our model that are nat observable diredly but can, through
the model T, bring about observable conseguences. Having isolated
the incompletenessof our modd in the éducible predicaes, abduc-
tivereasoning generates explanationsin terms of these predicates for
uncerstanding, acording to the model, the spedfic observations that
we have of our scientific domain. Such explanations generate knowl-
edge that is pedfic to the particular state or scenario of the world
pertaining to the observations explained and to the given model T
from which they were generated. Adding an explanation to the the-
ory then alows usto predict further observable information but this
new predictive power is restricted to come only throughthe dready
given knowledge in ou theory that defines the observable predicaes.
Note that the form of the abductive hypahesis depends heavily on
the particular theory T at hand, and the way that we have chosen to
represent the domain.

On the other hand, induction typicaly generates knowvledge in the
form of new general rules that can provide — either diredly, or indi-
redly throughthe arrent theory T that they extend — rew interrela



tionships between the predicaes of our theory that can include the
ohservable predicates and even in some caes new predicaes. The
inductive hypahesis thus introduces new, hitherto unknavn, links
between the relationsthat we ae studying, thus allowing rew predic-
tions on the observable predicaes that would have been impossble
to oktain from the original theory under any abdictive extension.

The role of an inductive hypahesis, H, is to extend the existing
theory T to anew theory T’ = T UH, rather than reason with T un-
der the set of assumptions H as is the case for abduction. Hence T
isreplaced by T’ to become anew theory with which we can subse-
guently reason, either deductively or abductively, to extrad informa-
tionfromit. In effed, H provides the link between observables and
non-observables that was missng a incomplete in the original the-
ory T. Thisis particularly evident from the fad that inductioncan be
performed starting from an empty given theory T, using just the set
of observations. The observations gpedfy incomplete (usually exten-
sional) knowledge abou the observable predicaes, which we am to
generalise into new knowledge.

Indeed, from one point of view (e.g. as applied in Machine Lean-
ing) the esential asped of induction seensto bethe kind o sample-
to-popuation inference exemplified by the foll owing schema, usu-
aly cdled (caegoricd) inductive generali sation:

All objedsin the sample satisfy P(x);
therefore, all objedsin the popuation satisfy P(x).

In contrast, the generalising effed of abduction, if at all present, is
much more limited. With the given current theory T weimplicitly re-
strict the generali sing paver of abduction aswe require that the basic
model of our domain remains that of T. The existence of this theory
separates two levels of generalisation: (8) that contained in the theory
and (b) new generali sations that are nat given by the theory. Through
abduction we can only have the first level, whil e induction aims for
a stronger and genuinely new generaising effed on the observable
predicates. Whereas the purpose of abductionis to extend the theory
with an explanation and then reason with it, thus enabling the gen-
eralising pdentia of the given theory T, in indwction the purpose is
to extend the given theory to a new theory, which can provide new
posshble observable mnsequences.

2

This complementarity of abduction and induction suggests a basis
for their integration within the context of theory formation. A cyde
of integration of abduction andinduction [3] emerges that is quitable
for our task of incrementa scientific modelling. Abduction is used
to transform the observations to information onthe aducible pred-
icates. Then indwction takes this as input and tries to generali ze this
information to general rules for the ébducible predicaes now trea-
ingthese as observabl e predicaesfor itsown puposes. The gycle can
then be repeaed by adding the learned information onthe ebdwcibles
bad in the model as new partia information onthe incomplete ab-
ducible predicaes. Thiswill affed the ebductive explanations of new
observations to be used again in a subsequent phase of induction.
Hencethroughthis cycle of integration the ebductive explanations of
the observations are added to the theory, nat in the (ssmple) form in
which they have been generated, but in a generalized form given by
aprocessof indwction onthese (Figure 1).

A simple example, adapted from [24], that ill ustrates this cycle of
integration o abductionandinductionisasfoll ows. Suppose that our
current model, T, contains the foll owing rule and badkgroundfads:

Integrating Abduction and Induction
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T /\o
TOHE O Abdudion

Indudion

- O

Figure 1. The g/cle of abductive and inductive knowledge development: T
isthe arrent theory, O the observations triggering theory development, and
H the new knowledge generated. On the left-hand side we have induction, its
output feading into the theory T for later use by abduction onthe right; the
abductive output in turn feeds into the observational data O for later use by
induwction, and so on

sad(X) if tired(X), poar (X).

academic(oli). academic(ale). academic(kr).
student(oli). ledurer(ale).  ledurer(kr).
tired(oli). tired(ale). tired(kr).

Suppcse dso that our only observable predicate is sad and we ae
given the observations

O = {sad(ale),sad(kr),na sad(oli)}

Can we use these fads to improve our model? If we assume that
the incompleteness resides in the predicae poar, then we can use
abduction to explain the observations O via the explanation

E = {poa(ale), poa (kr),na poa(oli)}

Subsequently, treding this explanation as training data for inductive
generali zation we can generdizethisto get the hypahesis:

H = {poa (X) if ledurer (X).}

thus (partialy) defining the @ducible predicae poa when we ex-
tend ou theory with thisrule.

The combination o abduction and induction hes recently been
studied and deployed in several ways within the context of Inductive
Logic programming (ILP). In particular, the widely used inference
method d Inverse Entailement [20] can be seen as integrating ab-
ductive inference (which is used in the construction o the so-cdled
“bottom clause”) andinductive inference (which isused to generalize
the battom clause). Thisisredized in the ILP system Progd 5 and
applied to several problems including the discovery of the function
of genesin anetwork of metabdlic pathways[14] and, morerecently,
to the study o enzyme inhibiti onin metabdi c networks [26].

In [19] Theory Completion is redized in an ILP system cdled
ALECTO, which integrates a first phase of exraction or identifica-
tion case abduction [2] — to transform ead training example into
an abduwctive hypahesis — followed by a second plase of induction
that generali zes these abdctive hypaheses. It has been used to lean
roba navigation control programs by completing the spedfic do-
main knowledge required, within a genera theory of planning that
the roba uses for its navigation[18].

Unlike most other madhine leaning approaches, frameworks that
incorporate ebductive reasoning cgoabiliti es can perform what is
cdled non-observation predicate learning (nonOPL) [20] wherethe
concept being leant diff ers from that observed in the examples. This



ability is absolutely crucia in the goplicaions cited above, where
the aconcept of interest (e.g. enzyme inhibition) canna be observed
diredly, but must be inferred indirealy from the observed data (i.e.
metabalite concentrations).

The development of these initial frameworks for integrating ab-
duction and indwction in a gycle of knowledge refinemnt prompted
the study d their completenesswith resped to the general problem
of finding consistent hypatheses H such that T UH = O for a given
theory T and otservations O. Progd was foundto be semanticdly
[27] and procedurally [24] incomplete and several new frameworks
of integration o abduction and induction were later proposed, such
as SOLDR [10], Model Constraining Clauses [5], Abdictive Corn-
cept Learning (ACL) [13] and Hybrid Abductive Inductive Learning
HAIL [24, 23].

In particular, HAIL has shown that one of the main reasons for
the incompletenessof Progd isthat it uses a very restricted form of
abductive reasoning. Lifting some of these restrictions through the
employment of methods from Abductive Logic Programming [12],
HAIL has also enabled the theory and pradice of Bottom Generali-
sation to be extended in order to al ow the inference of multi-clause
hypaheses in resporse to a singe example while mntinuing to ex-
ploit the tried and tested mechanisms of language and search bias
used in systems like Progd 5. In this way, HAIL has enlarged the
classof red-world problems that are soluble in pradice

By contrast, theoreticdly complete indwctive procedures have
been proposed for full clausal logic. These include Consegquence
Finding Induwction (CF-Induction) [9] and Residue Hypotheses [28].
CF-Inductionisespedaly interesting asit provides some suppat for
language bias and pruning. It also offers a useful framework to study
the incompleteness of other systems auch as Progd5 and HAIL,
which can bah be viewed as pradicdly motivated restrictions of
CF-Induction. Moreover, between the two extremes of systems like
Progd and CF-Induction, there is awhade spedrum of oppatunities
where may li e the deli cate balance between efficiency and generality
that will be necessary to addressred-world appli cations.

An exciting research agenda is therefore emerging that involves (i)
exploring the inevitable tradeoff s between efficiency and generdlity,
(i) examining the patentia utility of nonHorn leaning systems by
developing procedures for digunctive and namal logic programs,
(iii ) studying the strengths and limitations of such approaches, (iv)
identifying the dassof problems to which they can be profitably ap-
plied, and (v) investigating the degree to which such methods are
acdualy used in scientific methoddogy and everyday life. We be-
lieve the work presented at this workshop clealy shows that these
challenges are beginning to be addressed and that the results may
lead to important developments in fields ranging from the pradice of
Artificial intelli gence and Machine Leaning to scientific theory de-
velopment in areas auch as Systems Biology and Cogritive Science
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An Abduction framework for Handling
| ncompletenessin First-Order Learning

S. Ferilli

Abstract. This paper presents the ILP incremental leaning sys-
tem INTHELEX, focusing onits abductive cgability. It isbased on
an abductive proof procedure that aims at attading the problem of
incomplete information by hypahesizing likely fads that are not ex-
plicitly stated in the observations. The system implements a frame-
work in which inductive and abductive inference been brougtt to co-
operation, and its performance in experiments on bah artificial and
red-world dataset is encouraging.

1 INTRODUCTION

Most traditional Madhine Leaning approades focus on inductive
mecdhanismsin order to achievetheleaning gal. In order to broaden
the investigation and the gppli cability of macdine learning schemes,
it is necessry to move on to more expressve representations which
require more complex inference mechanisms and strategies to work
together, taking advantage of the benefits that eah approach can
bring. In particular, one of the problems of thetraditional approach to
predicate-leaning is the partial relevance of the available evidence,
that could be takled by abduction. The problem of integrating an ab-
ductive strategy in an inductive leaner is made harder in the incre-
mental setting, where hypahesizeinformationis more difficult since
the knowledge is not completely avail able & the beginning.

INTHELEX (INcremental THEory Leaner from EXamples) [6] is
anincremental | earning system for the induction o hierarchicd first-
order logic theories from positive and regative examples, that works
under the Objed Identity (Ol) assumption [15]. It leans dmultane-
ously multiple concepts, passbly related to ead other, and guaran-
tees validity of the theories on al the processed examples. It uses
feadbadk on performance to adivate the theory revision phase on a
previously generated version d the theory, but leaning can also start
from scratch. Inthe leaning process it exploitsaprevious version o
the theory (if any), a graph describing the dependence relationships
among concepts, and an historicad memory of all the past examples
that led to the aurrent theory. Ancther peauli arity of the systemisthe
integration o multi strategy operators that may help solve the theory
revision problem. The purpose of inductionisto infer regul aritiesand
laws (from a cetain number of significant observations) that may be
vaid for the whaole popdation. INTHELEX incorporates two induc-
tive refinement operators, one for generali zing hypdheses that rejed
positive examples, and the other for spedalizing hypdheses that ex-
plain negative examples.

Deductionis exploited to fill observations with information that is
not explicitly stated, but isimplicit i n their description. Indeed, since
the system is able to hande ahierarchy of concepts, some combina
tions of predicates might identify higher level conceptsthat are worth

! Universitadi Bari, Italia, email: {ferilli ,esposito,ndm,basil e, biba} @di.uniba.it

and F. Esposito and N.DiMauro and T.M.A.Basile and M.Biba'

adding to the descriptions in order to raise their semantic level. For
thisreason, the system exploits deduction to reaognize such concepts
and explicitly add them to the example description. The role of ab-
duction in INTHELEX is helping to manage situations where nat
only the set of al observations is partially known, but eat observa-
tioncould also beincomplete. Inded, it can be exploited bah duing
theory generation and duing theory chedking to hypdhesize fads
that are not explicitly present in the observations. This prevents the
refinement operators from being applied, aslongas possble, learing
the theory unchanged. Lastly, abstraction removes uperfluous de-
tail s from the description o both the examples and the theory. The
exploitation o abstradion in the system concerns the shift from the
language in which the theory is described to a higher level one ac
cording to the framework proposed in [8].

Figure 1 graphicaly represents the achitedure of the system, em-
bodying the cooperation between the diff erent multi strategy opera-
tors. In the typicd information flow, every incoming example pre-
liminarily undergoes a pre-processng step of abstradion, that elim-
inates uninteresting cetail s acording to the avail able operators pro-
vided in the abstradiontheory. Then, the exampleis chedked for cor-
red explanation ac@rding to the aurrent theory and the background
knowledge, and it is gored in the examples repository. During the
coverage (i.e., chedking whether the observation is explained by the
current theory) and saturation (i.e., identifying higher level concepts
and explicitly adding them to the example description) steps, if ab-
duction is enabled, an abductive derivation is used. Otherwise the
normal deductive derivation is darted to read the same goal with-
out hypathesizing urseen information. In case the derivation fails, a
theory refinement is necessary, and thus the example is (abductively
or deductively) saturated and the inductive engine is darted in order

abstracted example

Abd.
Theory

abd.saturated example

Abduction

action

saturated example

abstracted example

Figure 1. Architedure of the leaning system
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to generali ze/'spedali ze the proper definitions, passbly using the ab-
ductive or deductive derivation whenever needed. Spedficaly, when
apositive exampleis not covered, arevised theory isobtained in ore
of the following ways (listed by deaeasing priority) such that com-
pletenessis restored: 1) repladng a dause in the theory with ore of
its generalizaions; 2) adding a new clause to the theory; 3) addinga
positive exception. When, on the other hand, a negative example is
covered, arevised theory that restores consistency is reached by per-
forming ore of the following adions: 1) adding pdsitive literals to
clauses; 2) adding a negative literal to a dause; 3) adding a negative
exception.

2 A FRAMEWORK FOR INTEGRATING
INDUCTION AND ABDUCTION

Abduction, just like induction, has been recognized as a powerful
mechanism for performing hypdheticd reasoningin the presence of
incomplete knowledge. Indeed, abduction is able to capture default
reasoning as aform of reasoning which deds with incomplete infor-
mation [9]. Moreover, abduction can model also negation &s failure
rule (NAF) [3], with simple transformations of logic programs into
abductive theories. Thus, abduction gves auniform way to ded with
negation, incompletenessand integrity constraints[12]. The problem
of Abduction, defined as inference to the best explanaion acwrding
to a given damain theory, can be formalized as follows[4]: Given
atheory T, some observations O and some nstraints I; Find an
explanation H such that: T U H isconsistent, T U H satisfies I,
T U H [ O. Candidate abductive explanations H shoud be de-
scribed in terms of domain-spedfic predicates, referred to as ab-
ducibles, that are nat (completely) defined in T, but contribute to the
definition of other predicaes. The integrity constraints I shoud pro-
vide indired information abou such incompleteness[9]. They can
also be exploited to encode preference aiteriafor seleding the best
explanation that may had in this problem setting.

An abductive proof procedure can find explanations that make hy-
potheses (abductive asaumptions) on the state of the world, possbly
invalving new abdwcible concepts. Indeed, when partia relevanceis
asaumed, it could be the case that nat only the set of al observations
ispartially known, but aso any sing e observation may turn out to be
incomplete. The procedure is generally goal-driven by the observae-
tionsthat it triesto explain. Preliminary, thetop-level goal undergoes
a transformation processthat converts it into sub-goas. The theory
and gaals must be transformed into their positive vesion, by convert-
ing ead literal —p into its positive version not _p (default lit erals).
Moreover, to embed NAF in such a mechanism, it is necessry to
add, for ead predicate p, an integrity constraint stating that bath p
andits negation canna hald at the sametime. This providesasimple
and urique modality for deding with nonmonadonic reasoning.

The dassc dgarithm for an abductive proof procedure [10] is
analogous to standard SLD derivations, except that whenever a fad
isnot known or derivable to betrue, before faili ng an attempt is made
to chedk whether it can be eductively assumed to be true acording
to the given integrity constraints. Such a dhed is caried out by a
consistency-chedk subroutine, ensuring that at least one condtion o
ead constraint invalving the hypahesized fad is (deductively or ab-
ductively) false. Each abductive sssumption is considered as known
in subsequent processng.

Abductive and Inductive operators address diff erent forms of in-
completenessin the theories. Spedficdly, abduction exracts from
the theory a hypahesis which is considered to bea incompleteness
with resped to some (abducible) predicates but is complete with re-

Revise (T: theory; E: example; M = Mt U M~: historical
memory);
AbsE + Abstrad(E, AbsT)
if Derive(AbsE, T', D) succeels then
M+ M U{AbsE U D}
else
M <+ MUAbSE; SatE + AbsE U Saturate( AbsE, TUBK)
if AbsE isapositive example then
Generdizg(T, BK, SatE, M ™)
else
SpedaizgT, BK, SatE, M ™)
end if
end if

Derive (G: god; T: theory; D: abduced literals);
if Abductionis ON at the aurrent stage of processng then
D+ G
if success+ Abdwct(G, T U BK, AbdT, D) succeals then
Addto D the abdwced literals
end if
else
D + 0; success<+ Deduct(G, T U BK)
end if
return success

Figure 2. Multistrategy Theory Revisionin INTHELEX

sped to athers. Moreover, the explanations constructed by abduction
are spedfic to the situation d that observation. Hence duction can
be seen as a way to reason with incomplete information, rather than
to complete knowledge [4].

Figure 2 summarizesthe extension o the general schemaof thein-
ductive incremental |eaning system INTHELEX with an abdictive
proof procedure, derived from the dasscd one but properly mod-
ified to embed the Objed |dentity assumption. M = M+ U M~
represents the set of al positive and regative processed examples,
E isthe example aurrently examined, T' represents the theory gen-
erated so far acording to M. For simplicity, BK (the badkground
knowledge), AbsT (the ebstradiontheory) and AbdT (the ebduction
theory), that must be provided by the user, are assumed to be fixed
parameters (and hence ae not present in the procedure headings).
AbsE and SatE represent the example E after the ebstradion and
saturation pleses, respedively; D isthe set of literals (fads) returned
by the ebductive derivation when successully applied toagoal G in
theory T. Procedure Derive exploits abduction (through pocedure
Abduct) or deduction (through pocedure Deduct), acarding to the
spedfic settings for ead step of the revision process to prove agoal.
It returns true or false, acrding to the successor fail ure of the proof
procedure. Saurate isthe procedure that returnsall i mplicit i nforma-
tionin the given example. Generali ze and Spedali ze are the inductive
operators used by the system to refine an incorred theory. Theresult-
ing refinement is then implemented in the new version o the theory,
and the procedure ends.

The system has been provided with an abdctive proof procedure
to help it in managing situationsin which na only the set of all obser-
vations is partial y known, but eat observation could be incomplete
too [6]. Spedficdly, abduction hes been exploited to complete the
observations in such a way that the correspondng examples are &-
ther covered (if positive) or ruled ou (if negative) by the drealy gen-
erated theory, thus avoiding, whenever posshble, the use of the gen-
erali zaior/spedali zation operators above mentioned to modify the
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theory. The set of abduced literals for eat observation is minimal,
which ensures that the inductive operators use éduwcibles only when
redly needed. Sincespedfic fadsare nat alowed in the leaned the-
ory, the ebduced information is attached diredly to the observation
that generated it, so that the ‘ completed’ examples obtained this way
will be avail able for subsequent refinements of thetheory. Such infor-
mation will also be available to subsequent abdictions, in order for
them to preserve cnsistency amongthe whae set of abduced fads.
To sum up, when a new observation is avail able, the ébductive proof
procedure is garted, parameterized onthe aurrent theory, the exam-
ple and the aurrent set of past abductive sssumptions. If the proce-
dure succeas, the resulting set of assumptions, that were necessary
to corredly classfy the observation, is added to the example descrip-
tion before storing it (of course, being it minimal by definition, if no
assumption is neaded for the arred clasdfication, the example de-
scriptionis not affeded). Otherwise the usual refinement procedure
(generdlizaion a spedalizaion) is performed.

3 EXPERIMENTS

INTHELEX’s abduction capability was tested on \erious domains,
baoth toy and red-world ores. In the following we show the exper-
iments aimed at asessng the quality of the results obtained by
the exploitation d the ebductive version d the system in handling
incomplete data. INTHELEX has been provided with the ebductive
prodf procedure [6] in order to complete the observations in such a
way that the correspondng examples are corredly classfied by the
arealy generated theory, thus avoiding, whenever posshle, the use
of the operators to modify the theory.

Multiplexer. The “multiplexer” problem [14] aims at leaning the
definition o a 6-bits multiplexer. The dataset contains descriptions
of all possble configurations of 6 bits, in which the first 2 bits rep-
resent the addressof one of the subsequent 4 hits, that must be set
a 1. Thus, if the bit addressed isadually 1 the example is positive,
otherwise it is considered as negative for the target concept. Since a
6-bits multi plexer can assume 2° = 64 possble configurations, the
complete training set is made up o 64 examples, 32 paitive and
32 regative. The representation language of the observations is the
same & in [14]. Starting from scratch with the complete training set
containing all the 64 pesshble mnfigurations, the arred theory was
leaned in 1.38 secs, performing 12theory revisions.

Successvely, an incomplete dataset was obtained by corrupting

12 examples out of 64 so that only 3 hits out of 6 of the origina
corfiguration were spedfied. Both the examples to be corrupted and
their bitsto be negleded were randamly seleded for 10times. Asde-
scribed in [14], such an incomplete dataset was exploited for lean-
ing theories in two different ways: first using induction oy, and
then using induction suppated by abduction. The theories obtained
in the two cases were tested (withou using abduction) on the un-
corrupted dataset. Table 1 shows the system performancein the two
cases, averaged onthe 10 corrupted datasets, as regards the number
of definitionsin the leaned theories, the performed theory revisions,
the number of exceptions, runtime and predictive acaragy. The Ab-
duction Theory provided to the system included all the predicates as
abduwcibles, and integrity constraints meaning that “if the bit in posi-
tionN is tto Oit can't be set to 1, and vice vesa.
INTHELEX was able to capture the corred definiti ons but applying
less theory revisions, adding less exceptions and in less time
with resped to induwction alone, while nat affeding the predictive
acaragy.

Tablel. System performance onthe Multiplexer dataset
Def | Rev | Exceptions | Time (sec) Acc
W/oAbd | 41 | 6.05 2.05 455 99.38
WithAbd | 41 | 555 0.4 4.36 99.22

Congresdonal Voting Rewrds. The problem, as reported in [11],
consists in clasdfying a Congressman as a democrat or a repuli-
can acording to his votes on 16isaues. A certain amourt of noiseis
present in the descriptions, in the form of unknown votes. Defini-
tionsfor the dassdemocrat were leaned, exploitingfirst pureinduc-
tion and then induction dus abduction, starting from the empty the-
ory. The morrespondng predictive acaracy was tested acording to
a10-fold crossvali dation methoddogy, ensuring that ead fold con-
tained the same propartion o pasitive and negative examples. Table 2
shows the system performance on this dataset. It is posshle to nae
that the use of abduction improves all evaluation parameters, except
Runtime. This can be explained by takinginto aceurt the additi onal
time needed to seach for consistent abdictive explanations due to
the large number of integrity constraints in the abductive theory.

Table2. System performance onthe Congressona Voting Records dataset

Def Rev Exceptions | Time (sec) Acc
WJo Abd | 1240 | 2690 17 30.30 9333
With Abd | 1010 | 1920 0.80 4136 96.8

Family Relationships. The eperiment here described aims at
investigating the abductive proof procedure behavior with resped to
different degrees of incompleteness In this case, we followed the
same gpproach adopted by [11] onthe same dataset [1]. Only exam-
ples abou father were taken into acourt: the training set included
36 paitive examples and 200 regative ones that were randamly
generated. The examples description includes aso al the knowvn
fads concerning the concepts other than father (i.e. son, daugher,
mother, etc.), for a total of 742 literals. Progressve corruption o
such a complete description was obtained by randamly eliminating
fads from it: 100% (no incompleteness 742 literas), 90% (668
literals), 80%, 70%, 60%, 50% and 40%. For ead percentage,
the dataset was corrupted in 5 dfferent ways, thus obtaining 5
correspondng leaning problems whose performance was averaged
acording to a 5-fold cross validation methoddogy, ensuring that
ead fold contained the same propation o positive and regative
examples. Comparing the performance with and withou abduction

Table3. System Performance onthe Family dataset

Rev/Def | Runtime | Accuragy

100% noabd 16 5225 9958
abd 12 47.13 100

90%  noabd 22 14619 96.28
abd 12 69.04 9917

80% noabd 23 19012 96.27
abd 12 70.35 100

70%  noabd 138 21803 9378
abd 12 59.70 100

60% noabd 1.7 28757 92.13
abd 0.5 44882 100

50% noabd 1.3 25691 92.15
abd 0.5 43.08 100

40%  noabd 12 87151 90.9
abd 05 24.32 98.75
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on the mrrupted datasets, the benefit becomes very evident with
resped to all the parameters taken into acourt in Table 3. Abduc-
tionis able to preserve the theories from being refined (indeed, the
number of revisions per clause dramaticdly deaeases). Moreover,
lower runtimes (except in ore ca&e) prove that the éductive
procedure is aso efficient. Finaly, note that, in spite of the number
of clauses being lesswhen using abduction in al corrupted cases,
predictive acaragy isaways higher than the case withou abduction.

Scientific Paper Domain. In the experiment concerning the induc-
tion o clasgficaion rules for a dataset of scientific paper docu-
ments belongng to ore of 4 classes [5], the crruption consisted
in eliminating 8% of the descriptors for ead observation (made up
of 112 fads on average (76 min-170 max)) contained in the tuning
set. INTHELEX was applied first without exploiting its abductive
procedure. Successvely, the leaning process was repeded, alow-
ing the system to exploit its abductive cgability and kinary con-
straints made up o unary and binary predicaes, i.e. of the form
(ic(la(X), b(X)], ic([e(X, V), d(X,Y))).

Table 4 reports the system performance ato performed theory re-
visions, added definitions, predictive acaracy and runtime (secs.).
Predictive acarracy and nunber of theory revisions improve when
the abductive procedure is exploited. This means that the system was
able to corredly complete the corrupted observations without apply-
ing the refinement procedure. As regards runtime, it increases be-
cause of the ébductive procedure.

Table4. System performance on the Scientific Papers Domain

Rev | Clauses
Without abd | 7.72 4,09
With abd 5.58 318

Acauragy (%) | Runtime (sec)
96.24 5.16
99.32 40.05

Comparison. The proposed approach does not aim at completing
the training deta before the leaning process garts. Thus, a compari-
son with systems that propcse to overcome the problem of handling
missng values by pre-processng the training data before the lean-
ing process garts (FOIL [13], LINUS[13], ASSSTANT [2]) would
be unfair. Nevertheless we compare our system to ACL1 [11] and
mFOIL [13], the FOIL extension able to ded with incomplete data
on the family and congressonal votes datasets (the same exploited
by [11] for the same purpose). Table 5 reveds that predictive acw-
ragy onthe family dataset for progressve crruption (which percent-
age is reported in the first row of the table) is amost the same &
that obtained by the other systems, while on congessonal voting
INTHELEX turned out to be better with resped to the other systems.

Table5. Comparison d Abduction onthe Family dataset

100 90 80 70 60 50 40
INTH. 1 99.17 1 1 1 1 98.75
ACL1 1 1 99.60 1 1 9720 | 97.60
mFOIL 1 9920 | 9840 || 9750 || 9840 | 9840 | 9510

4 CONCLUSION

This paper presented the ILP incremental leaning system
INTHELEX, with spedfic focus on its abductive caability that a-
lows it to takle the problem of relevance within a language bias,

that is typicd of many red-world domains. After presenting and
discussng, an abductive proof procedure that aims at attacking the
problem by hypdhesizing likely fads that are nat explicitly stated
in the observations, a framework in which indwtive and abductive
inference been brough to cooperation, and its implementation in
INTHELEX, that make it able to add urseen information that can
be mnsistently hypahesized or deduced, have been mentioned.

The abductive proof procedure exploited in thiswork requires that
an abductive theory for the spedfic goplicaion damain is avail able.
In the aurrent pradice, it isin charge of the human expert to spec
ify it, but it is not easy to singe out and formally express sich pa-
rameters. Of course quality, corrednessand completenessin the for-
mali zation o such meta-information can affed the feasibility of the
learning process To overcome such a battlenedk, we dso developed
a procedure that can automaticaly generate such information start-
ing from the same observations that are input to the leaning process
thus making the learning system completely autonomous [7]. Actu-
ally, the ebductive theories provided to INTHELEX for the experi-
mentsin Sedion 3were aitomaticdly leaned using ou procedure.
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Using Abduction for Induction
of Normal L ogic Programs

Oliver Ray !

Abstract. This paper proposes the gpproach of eXtended Hybrid
Abductive Inductive Learning (XHAIL) for generalising pasitive and
negative examples with resped to normal logic programs. A proof
procedure is described that uses abduction to redise the abductive,
deductive, and inductive phases which comprise this approach.

1 Introduction

Logic-based madine learning techniques have benefits over other
approacdhes in terms of their ability to represent and uilise badk-
ground knavledge and in terms of the expressvity and uncerstand-
ability of their hypatheses. Inductive Logic Programming (ILP) [13]
is the branch of madine learning concerned with the generalisation
of positive and negative examples with resped to prior knowledge
expressd in alogic programming formalism. Recently, several ILP
systems have been developed that also exploit techniques from Ab-
ductive Logic Programming (ALP) [6] to enable the learning of con-
cepts different from those in the examples (e.g. Progd5 [12] and
ALECTO [9]) and to allow more sophisticated inference uncer in-
completeinformation (e.g. INTHELEX [4] and ACL [7]).

From a knowledge representation pant of view, a key advantage
of logic programming formalisms is their suppat for the Negation-
as-Failure (NAF) operator. Indeed, NAF is used in most signifi cant
applications of Progd5 (such aslearning the functions of genes[12])
and in most significant applications of ALECTO (such as learning
roba control programs|[9]). This relianceon NAF is signifi cant given
that, semantically, Progd5 and ALECTO are only defined for pure
Horn clause theories. Moreover, as explained below, they arein fadt
unsound for programs with NAF in the sense that they can return
hypaheses which do nd entail al of the examples.

One difficulty of learning in the presence of NAF is the non
monaonicity of this operator, which is esentially incompatible with
the incremental methods used by most ILP systems. Take atheory
with two clauses p(X, 1) «+ q(X), not(r(X)) and p(X, 2) < r(X)
and two examples p(a, 1) and p(a, 2). Given the mode dedarations
modeh(1, ¢(+any)) and modeh(1,r(+any)), Progd5 computes
a hypathesis with two atoms ¢(X) and r(X). After picking the first
example p(a, 1), Progd5 aserts the hypahesis ¢(X) and retrads
p(a, 1). In resporse to the second example p(a, 2), Progd5 aserts
the hypahesis r(X) and retrads p(a, 2). But, as it stands, Progd5
does not detect that the seaond hypdhesis invalid ates the first, so that
only one of the two examplesiis finally covered.

Ancther difficulty facal by hylrid learners is the need to perform
abduction through regation. For example, given a theory with two
clauses p(X) «— not(q(X)) and ¢(X) «— mnot(r(X)) and two
examples p(1) and p(2), we would like to compute the hypahesis
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r(X). But, both the contrapasitive method o Progd5 andthe SOLD
resolution of ALECTO — which perform the aductive reasoning of
these systems — are unable to reason with negative literals and so
canna compute this hypahesis. By contrast, ALP techniques[6] are
designed to handle negation, but can only return hypaheses thet are
sets of groundliterals.

The integration of ALP and ILP techniques can paentially over-
come the limitations of both these gpproadches. This is evidenced by
the methoddogy of Hybrid Abductive Inductive Learning (HAIL)
[14]. Compared to Progd5, the aility of HAIL's ALP procedure to
compute multi-atom abductive hypaheses enables the inference of
multi- clause hypatheses in response to a single example. Compared
to ALECTO, the integrated integrity chedks performed by HAIL's
ALP procedure improves efficiency by detecting violations as oon
as they arise. More importantly, the fad that HAIL incorporates a
full ALP procedure grealy fadlitates its extension from Horn clause
theories tonormal logic programs.

The normonatonicity arising from the use of NAF makes design
of efficient generalisation procedures very difficult. Horn clause ILP
procedures rely heavily uponthe mondonicity of clasdcal logic to
suppat incremental learning techniques and efficient pruning mecd-
anisms. Unfortunately, these strategies are nat viable in formalisms
that suppat NAF. Since abrute-force seacch of the entire hypahe-
sis spaceis generaly infeasible, a pradical approach for restricting
the search to some relevant subsets of the hypahesis spaceis clearly
necessary. The present work suggests that HAIL can fulfil this role
in much the same way asit does in the Horn clause case.

This paper introduces a generalisation of HAIL cdled eXtended
Hybrid Abductive Inductive Learning (XHAIL) for logic programs
with NAF. Like its predecessor, XHAIL is based onthe construction
and generalisation of agroundtheory K cdled aKernel Set[14]. The
core procedure oconsists of three phases: first, the head atoms of K
are obtained by an abdvctive procedure; then, the bodyliterals of K
are obtained by a deductive procedure; and, finally, K is generalised
by an inductive procedure. A methoddogy is propcsed that uses a
standard AL P procedure to implement all threephases of the XHAIL
approach. This methoddogy is then briefly illu strated onasmall case
study based onthe Event Calculus (EC) [8].

2 eXtended Hybrid Abductive Inductive Learning

Given a badkgroundtheory B and a set of (positive and regative)
examples F, the task of ILP is to find a consistent hypahesis H
that entails E relative to B. Symbdlically, this requirement can be
written B U H = E. When B, H and E are Horn theories,  is
the standard entailment relation of classcal logic; but if B, H and E
are logic programs with NAF, then an alternative logic programming
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semantics must be chasen. This paper adopts the credulous partial
steble model semantics[6] sothat BUH = E means the examples E
aretruein apartial stable mode! of the augmented program B U H .2
The hypahesis H is usualy restricted by some form of language
and seach bias. This paper utilises the well-known ILP techniques
of mode dedarations and compressian [11].

2.1 The Covering Loop

The XHAIL methoddogy comprises two distinct levels. An outer
covering loop performs the selection and namalisation of examples
and invokes an inner core procedure to redise the cnstruction and
generalisation of Kernel Sets. The oovering loop is parameterised
by a selection function that, on ead iteration, selects a subset of
the remaining examples tobe generalised. For example, selecting the
first available example results in a behaviour that subsumes Progd5,
while selecting al remaining examples results in a behaviour that
subsumes ALECTO.® Of course, other pdlicies could aso be used
that cluster examples in ome other way.

Covering loops are dready well documented. Asdescribed in [11]
and[14], ageneral Horn clause example is dedt with by temporarily
replacing al variables by fresh (Skolem) constants and transferring
any bodyatoms in the resulting clause & groundfads to the back-
ground knavledge. The resulting ground atom is then generalised
with resped to the augmented badkground knavledge. However,
since @vering approaches are only redly useful in the monaonic
case, the emphasis in this paper is on describing the core XHAIL
procedure, which lif tsthe three phase HAIL methoddogy from Horn
clause theories tonormal logic programs.

2.2 TheCore Procedure

Theinputsto the core procedure mnsist of alogic program B (badk-
ground knavledge), a set of groundliterals £ (examples), and a set
of mode dedarations M (languege bias) that spedfy a set of clauses
L (hypahesis spacg. The output is a logic program H C Ly
(hypahesis) such that B U H = E.* In addition, the core procedure
attempts to minimise the number of literals in H.

Ead hypdhesis H is computed in threesteps. The first two steps
result in agroundlogic program K that entails E with resped to B.
The heal atoms of K are computed by an abductive procedure that
returns minimal abductive explanations of £ whase aoms «; are
instances of M. The bodyliterals of K are computed by a deductive
procedure that uses M to compute a sequence of literals 617 that are
deductive consequences of B.

Thetheory K produced bythefirst two stepsis then generalised in
the third step by an inductive procedure which seaches for a highly
compressve hypathesis H that 6-subsumes K .5 Of course, the non-
mondaonicity of the stable model semantics, makesiit hard to design
seach procedures very much more dficient than a complete seach
of the 6-subsumption lattice boundd by K.

In this way, thetheory K, whichis cadled aKernel Setof B and E,
is aground hypahesis that bound the hypahesis space &plored in
the search for more general solutions. In effed, the Kernel Set ads as

afilter by selecting some highly relevant set of head and bodyliterals
guided by B, E and M. By definition, the head atoms of K entail
the examples and the body literals are entailed by the theory.

The intuition is esentially the same & the Horn case: namely that
generalising a Kernel Set (or a Bottom Set, for that matter) is likely
to produce better quality hypaheses than generalising some abitrary
theory (such as a set of randam clauses, for example). But, even if
this is true, it may be worth investigating the possiblity that adding
some randam literals to K might result in further improvements.

XHAIL is based onthe principle of exploiting efficient abductive
methods to fadlitate the computation of inductive hypatheses. But
XHAIL takes this philosophy to a new extreme by using the same
ALP procedure to implement the ebductive, deductive and inductive
phases of the proof procedure.

The ALP system used in this work is an enhanced implementation
of the Kakas-Mancarella ALP procedure cdled ProLoglCA[15]. The
inputs are aprogram 7' (theory), a set of literals G (goals), and a set
of predicates A (abdicibles). Each ouput returned by the system
consists of a substitution 6 (answer) and a set of ground atoms A
(explanation) with predicates in A suchthat T U A = G6.

The remainder of the this subsedion briefly describes ead of the
three phases of the core XHAIL procedure and explains how they
are implemented with ProLoglCA by stating the theory, goals and
abdweibles in eat case. Just like the HAIL approad, the deductive
and inductive phases are gpplied to ead explanation returned by the
abductive phase in order to find the best overall hypathesis.®

Abductive Phase: The aductive phase of XHAIL must com-
pute a set A of ground atoms thet explain E with resped to B.
Becaise eat abduced atom will go in the head of a Kernel Set
clause, the ebduwcible predicates A are those predicates appeaing
in some head dedaration of M." The godls G and the theory T
are smply the examples F and badkground knavledge B moduo
two simple syntactic modifications. To ensure any type and schema
requirements in the head dedarations of M are respeded, and to
avoid potential complications caused by abduwcible predicates ap-
peaing in clause heals, eah abdwcible a in A is associated with
two fresh predicates denoted o’ and * .2 Each ocaurrenceof a in B
and E is replaced by o’ and ore dause is added to B of the form
a(Xi,...,X,) « a*(X1,...,Xn),a(X1,...,X,) where n is
the aity of a, a’ and a*. For eath heal dedaration m in M, one
clause is added to B of the form schema™(m) < type(m) where
schema(m) is the géom obtained by replacing eat placemarker in
m with afresh variable, and type(m) is the set of atoms of the form
t;(X;) where t; is the type predicate in the placemarker that was
replaced by the variable X;.° Intuitively, the introdwction of these
clauses forces al of the ebduced atoms to stisfy the language bias
M at the groundlevel. As a result, the ALP procedure will return
well-formed explanations A (seebelow) which can ead be thought
of asan atomic Kernel Set of B and E.

A:{aly---van}

2 This contrasts with the scepticd stable model semantics, which reqguires
truth in all stable models, or the well-founded semantics, for example.

3 For corredness the former can orly be used if the theory is negation freg
whil e the latter can only be used if the examples are groundatoms

4 Integrity constraints are dausesin B with falsity L in their head. Since |
istruein nomodels, satisfadion o the integrity constraintsisimplied.

5 Clause C' 6-subsumes D if C6 C D for some variable substitution 6.
Program P #-subsumes Q if ead clausein P is §-subsumed by orein Q.

6 This paper does not discussthe many system parameters that boundthe size
of the computation and ensure finite termination.

7 Asdefined in [11], mode dedarations consist of head and body dedarations
ead having a schemewith placamarker symbols and type predicaes.

8 Intuitively, o’ ads as a non-abducible proxy for a, while a* identifies the
instances of a that satisfy the head dedaration schemas.

9 Thetechnicd detail s are formaised in [14] but are not espedally important
for the purposes of this paper.
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Deductive Phase: The deductive phase of XHAIL must compute
a maximally spedfic Kernel Set K of B and E with resped to
M whaose head atoms are the ébducibles computed in the previous
phase. This isadhieved by saturating ead head atom with asegquence
of ground bodyliterals entailed by B. The bodyliterals are computed
by finding the successul groundinstances of the queries obtained by
substituting a set of input terms into the placemarkers of the body
dedaration schemas. The processis identical to that used in HAIL
and Progd5, except that XHAIL solves the deductive computations
abductively by simply dedaring an empty set of abdwible predicates
(so that only negative literals can acually be asssumed).

This technique of using ALP to implement NAF was proposed
by Eshg and Kowalski [3] and has many advantages over standard
Prolog. In particular, ALP corredly terminates on many problems
involving reaursion through regation as well as processirg integrity
constraints more ficiently and recording the negative literals used
in a derivation. Saturating ead head atom results in a maximally
spedfic Kernel Set K (seebelow) of B and E that conforms to the
language bias M at the groundlevel.’® When querying anegative lit-
eral from abody cedaration, it is necessry to use the type predicates
to groundany variables in order to avoid flouncering.

ap «— 0t,...,6m

1
Qn — Opyenn, Op™

Inductive Phase: Theinductive phase of XHAIL must compute a

compressve program H that -subsumes the Kernel Set of B and £
returned in the previous phase. This processesentially amourts to
replacing constants by variablesand deleting as many literals from K
as possilde. Two simple syntactic transformations prepare the ALP
system for this task throughthe introduction of two new predicates
try/3 and use/2. Firgt, al of the input and ouput terms in K are
replaced by variables to give aprogram K’ C Ly. Second eath
bodyliteral §'7 in K is replaced bythe @om try(i, j, [X1, - . ., X&])
where [ X1, ..., X,,] isthelist of all variables in theith clause of K’,
and the two clauses try(i, j, [X1, ..., Xi]) «— not(use(i, j)) and
try(i, j, [X1, - .., Xx]) < use(i, j), 8] are added to K'. Applying
an ALP procedure to the resulting theory B U K’ with the goal £
and ore ebdwcible use/2 returnsaset .S of groundatoms of the form
use(i, j), which indicate that the correspondng literals 6’7 shoud
be included in H and the others shoud be removed.™* As the ALP
system is biased to return minimal explanations, it is guaranteed to
compute al maximally compressve hypaheses (in the sense of con-
taining the fewest number of literals).

The intuition uncerlying this approach is that in order
to use a head atom o) from K’ in some derivation of
E, the ALP procedure must solve eat of the body atoms
try(i, 1, [ X1, ..oy Xk])s ooy try(i,ma, [ X4, ..., Xk]). By the two
rules added to K’, ead such atom can be solved in one of two ways:
either by assuming not (use(i, j)) or by abdwcing use(s, j) andsolv-
ing 8’7 Theformer case df edively ignores 6’ asif it werenat there,
while the latter case solves §"] asif it were part of the dause. Once
this dedsion is made, it can orly be remnsidered upon ladtrading.

10 Technicaly, only those body literals 6{ shoud be alded to K whose
derivations do nd assume the negation o any previousliteral in A or K,
asthisensuresthe existenceof apartial stable model whereby BUK = E.

11 The transformation can be simplified by wrapping each body literal 7
in K’ within a meta-predicae try(i, j, 6’{) and adding just two clauses
try(X,Y,G) < not(use(X,Y)) andtry(X,Y,G) «— use(X,Y),G.

The list of variables ensures any hindings are mrredly propagated
throughthe dause. In this way, the ALP procedure records which
atoms from K’ shoud beincluded in H and which shoud nat. This
computed explanation is then used to select the best hypahesis H
(seebelow) suchthat BU H = E. *?

1
a1<—d1,...,d'f1

1 ap
ap —dp,...,dp

3 Learning Event Calculus Preconditions

This sedionillu strates the XHAIL procedure onan example problem
simplified from [1]. Given an Event Calculus (EC) [8] description
of some domain and a narrative of events, the task is to learn a set
of rules dating when certain adions are impassitle to perform. In
this particular example, the domain concerns a pump operating in
a mine. There ae two adions switchOf f and switchOn which,
if they are succesdul, cause the predicate pumpOn to change from
true to false and vice versa. In addition, there ae two predicates
water and methane whose truth is controlled by the environment.

%— Domain Independent Axioms—%

hodsAt(FT2) :- attempt(A,T1), initiates(A,F, T1),
T1<T2, notimposside(A,T1), nat clipped(T1,FT2).

hodsAt(F,T2) :- initially (F), nat clipped(0,F T2).
hodsAt(FT2) :- observed(F T2).

clipped(T1,FT2) :- attempt(A,T), terminates(A,FT),
T1=<T, T<T2, notimposside(A,T).

% — Domain Dependent Axioms —%
initiates(switchOn,pumpOn,T).
terminates(switchOff ,pumpOn,T).

% — Narr ative—%

attempt(switchOn,1). attempt(switchOn,2).
attempt(switchOff,3). attempt(switchOff ,4).
observed(methane,1). observed(water,1).
observed(water,2). observed(water,3).

Figure 1. Theory (B)

As formalised in Figure 1 abowe, the badkground knavledge B
contains the domain independent EC axioms which dictate how the
truth of ead fluent predicate changes over timein resporseto various
adions. Intuitively, afluent F is true & atime T2 if an adion A was
succesgully attempted as some ealier time 7'1 which caused F' to be
true (i.e. initiated) and nointervening adion happened in between
that caused F' to become false (i.e. terminated). Fluents can be
dedared as initially true or can be observed to be true.

12 Strictly speeking, the search procedure may not resped the linking of in-
put and output variablesimplied by the mode dedarationsif it can achieve
greder compresgon by doppng redundant literals. Like type predicaes
andrecdls, input and ouput variables are used in the aonstruction o the
Kernel Set but not in its generalisation if they would result in the compu-
tation lesscompressve hypaheses.
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modeh(* impassilde(#adion,+time)).
modeb(* ,holdsAt(#fluent,+time)).
modeb(* ,nat holdsAt(#fluent,+time)).

Figure 2. Mode Dedarations (M)

not hadsAt(pumpOn,1),
not hadsAt(pumpOn,2),
hadsAt(pumpOn,3),
hadsAt(pumpOn,4),
not hadsAt(pumpOn,5).

Figure 3. Examples (E)

In this EC axiomatisation, attempted adions only have success
ful outcomes if certain precondtions are satisfied: namely it is not
impossible to perform the adion at that time. When this precond-
tion is met, the domain dependent EC axioms gatewhich fluents are
aff eded bywhich adions. Inthis case, switchOn initiates pumpOn
whereas switchO f f terminates it. The theory also contains narra-
tive information giving the times at which cetain adions were &-
tempted and particular fluents were observed to hold.

The remaining inputs to XHAIL are the mode dedarations M
and the examples E formalised in Figures 2 and 3 abowe. The
type predicates, which are not shown, simply dedare the adions
switchOn, switchOf f, the fluents methane, water, pumpOn,
and the time points 0, 1, 2, 3, 4, 5. Given these inputs, the eductive
phase of XHAIL returns jug one aductive explanation A below,
which entails the observations £ when added to the theory B.

A = { imposside(switchOff,3), impossilde(switchOn,1) }

These @oms are saturated in the deductive phase to give the
Kernd Set K below. The literas in the body d the first clause
are the succesul instances of the queries holdsAt(X,3) and
not(holdsAt(X, 3)). (Note that, to avoid flouncering, the latter
query must be explicitly grounded using the type predicates. Alter-
natively, as explained in [10], this particular problem can be avoided
by using the so-cdled flip-clip formulation of the Event Calculus.)

impossilde(switchOff,3) :- nat hadsAt(methane,3),
hodsAt(water,3),haldsAt(pumpOn,3).

impossilde(switchOn,1) :- holdsAt(methane,1),
holdsAt(water,1), not hadsAt(pumpOn,1).

This logic program is generalised in the inductive phase to
give the hypahesis H below. After applying the necessary trans-
formations, just one minimal hypahesis is computed S =
{use(1,2),use(2,1)}, indicating that the secondatom form the first
clause and the first atom from the second clause ae to appea in the
hypahesis H. Asrequired, it can be shown that the examples E are
all satisfied in a stable model of the extended theory B U H.

' impossilde(switchOff ,X) :- holdsAt(water,X).
o impossilde(switchOn,X) :- holdsAt(methane, X).

These rules explain the failure of per form(switchOn, 1) to en-
sure holds At(pumpOn, 2) and o per form(switchOf f, 3) toen-
surenot holds At(pumpOn, 4). They also explain the observed suc-
cessof holds At(pumpOn, 3) and holds At(pumpOn, 4).

4 Conclusions, Related and Future Work

This paper presented an extension of HAIL from pure Horn clauses
to normal logic programs. The XHAIL proof procedure for non
monaonic ILP was introduced and illustrated ona simple EC case
study. It was then shown howv ALP can be used to implement the
abductive, deductive and inductive phases of the methoddogy. This
adhievement suppats the hypahesis that abductive reasoning can
be usefully exploited in inductive learning procedures. It remains
to carry out a detailed comparison with related approades for non
monaonic ILP, such as those propcsed in [2, 5, 16]. Unlike these
other approaches, XHAIL uses the Kernel Set to restrict the seacch
to arelevant part of the hypahesis space The limitations of XHAIL
need to be studied more dosely andit remains tovalidate the method
onamore challenging case study.
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Abduction, Induction, and the Robot Scientist
(invited talk abstract)

RossKing!

A Roba Scientist is a physicdly implemented computer/robdic
system which tili zes techniques from artificial intelli genceto cary
out cycles of scientific experimentation. A central motivation for our
work on the Roba Scientist projed 2 is philosoptica. We wish to
better understand the nature of Scienceby building a computer/roba
system that is cgpable of doing scientific research. This approach to
the philosophy d scienceis analogous to the standard Al approach
to the phil osophy d mind: build andinvestigate atifadsthat are en-
piricdly shown to have some of the &tributes of the objed of study.
Our aim is to develop intelli gent systems that do science The key
advantage of this approach to the philosophy d scienceisthat itis
ohjedive: the Roba Scientist can be empiricdly judged to be ca
pable of daoing science or nat. This approach differs fundamentally
from most phil osophy d science, which either studies iencein the
abstrad, or isbased on historicd anaysis.

Abductionandinduction areintegral to the Roba Scientist. We a-
gue that for anumber of the astrad concepts used by the Robat Sci-
entist, their truth values canna be physicdly verified in finite time.
To reason abou these abstrad objeds, from correspondng physicd
observations, therefore requires explicit i nductions. Theformation o
hypaheses has traditi onall y been the hardest part of scienceto envis-
age automating. Indeed, many philosophers of science have openly
expressd views that hypahesis formation could orly be truly ac
complished by humans. We ague that most hypahesis formation
in modern biology is abductive, rather than inductive. What are hy-
pothesised are fadua relationships between oheds, e.g. the gene
ypr06Qc codes for enzyme chorismate mutase, gene yprO6Qc exists
a locaion 675628674858(C) on chromosome 16. In our origina
Roba Scientist work we used Abductive Logic Programming to in-
fer hypatheses. For efficiency reasons we ae now using danain spe-
ciali sed techniques (bioinformatics). One way at looking at the bioin-
formatic technique of genome aandation is as abductive hypahesis
generation onan enormous sae.

1 Department of Computer Science, University of Wales, Aberystwyth,
Ceredigion, SY23 DB, Wales, UK, e-mail: rdk@aber.acuk

2 R.D.Kinget d, ‘Functional genomic hypathesis generation and experimen-
tation byaroba scientist’, Nature, 427,247-252, (2004
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