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Consequence Finding

Given an axiom set, the task of consequence finding
or theorem finding is to find out some theorems of 
interest [Lee, 1967].  
Theorems to find out are not given in an explicit way, 
but are characterized by some properties.  
Task is clearly distinguished from proof finding or 
theorem proving.  However, theorem proving is a 
special case of consequence finding.
Consequence finding is a part of deduction, but can be 
used for abduction and induction.   



Abduction and Induction: 
Logical Framework

Input:
B :  background theory 
E :  (positive) examples ／observations

Output:
H :  hypothesis satisfying that

B  ∧ H ⊨ E
B  ∧ H is consistent.  



Abduction and Induction: 
Logical Framework

B  ∧ H ⊨ E
B  ∧ H is consistent.

The logical framework is exactly the same.  
A different formalism exists for induction, e.g., 
descriptive induction, but can be unified with the above 
framework [Inoue & Saito, ILP'04]. 
Induction often gets negative examples, but abduction 
can be extended too [Inoue & Sakama, IJCAI-95].  
Theoretical results for one can be easily transferred to 
the other.   E.g., The notion of equivalence is explored 
for abduction [Inoue & Sakama, MBR'04; IJCAI-05] and 
for induction [Sakama & Inoue, ILP'05].  
Computation can also be unified. 



Inverse Entailment

Given that

B  ∧ H ⊨ E , 

computing a hypothesis H can be done by 

B  ∧ ￢ E ⊨ ￢ H .  

I.e., ￢H  deductively follows from B ∧￢E .



Inverse Entailment

B:     Human(Socrates),
E:      Mortal(Socrates),

H:   ∀x ( Human(x) ⊃ Mortal(x) )
satisfies that: 

B  ∧ H ⊨ E .  
In fact, 

B  ∧ ￢E  = Human(Socrates) ∧ ￢Mortal(Socrates) 

⊨ ∃x ( Human(x) ∧ ￢Mortal(x) )  = ￢H .  



IE for Abduction [Inoue, 1992]

B  ∧ ￢E ⊨￢H

Computation through consequence finding

E : conjunction of (existentially-quantified) literals
H : conjunctions of literals
B : (full) clausal theory (non-Horn clauses) 

Note:  Both ￢E and ￢H  are clauses.  

sound and complete



S O L A RS O L A R
[Nabeshima, Iwanuma & Inoue, 2003]

Input: (1) the set of input clauses (TPTP library format), (2) the top 
clause, (3) the production field, and (4) the search strategy.  
For example, the graph completion problem (find an arc which 
enables a path from a to d) is described as follows: 

input_clause(edge, axiom, [node(a)]). 
input_clause(edge, axiom, [node(b)]). 
input_clause(edge, axiom, [node(c)]). 
input_clause(edge, axiom, [node(d)]).
input_clause(arc, axiom, [arc(a,b)]).
input_clause(arc, axiom, [arc(c,d)]).
input_clause(path, axiom, 

[-node(X), -node(Y), -arc(X,Y), path(X,Y)]).
input_clause(path, axiom, [-node(X), -node(Y), -node(Z),

-arc(X,Y), -path(Y,Z), path(X,Z)]).
input_clause(observation, top_clause, [-path(a,d)]).

production_field([predicates([-arc(_,_)])]).

SOLAR outputs four consequences:
[-arc(a, d)]
[-arc(a, c)]
[-arc(b, d)]
[-arc(b, c)]

a       c

b       d



IE for ILP [Muggleton, 1995]

B  ∧ ￢E ⊨￢H

Use consequence-finding procedures twice 
[Yamamoto 1997]

B : Horn clausal theory 
E : single Horn clause

H : single (non-)Horn clause

Note:  Neither ¬E nor ¬H is a single clause, and 
both contain existentially quantified variables.  



IE with ⊥-clause:  Incompleteness

Approach: Compute the ⊥-clause:

⊥(B , E) = {￢L | L is a literal s.t. B ∧￢E ⊨ L }.

Hypothesis H  is constructed by generalizing ⊥-clause:

H   ⊨⊥(B , E) .

Sound but incomplete for recursive clauses [Yamamoto, 
1997]

Sufficient conditions for completeness 
[Furukawa et al., 1997; Yamamoto, 1997;1999]

Incompleteness due to single-clause hypotheses [Ray, 2003]



Complete Calculus for IE

B  ∧ ￢E ⊨￢H

CF-Induction [Inoue, 2001]
Compute the characteristic clauses  of B ∧￢E
Use any consequence-finding procedure.
Use any generalizer. 
Includes the bottom method and abductive computation. 

B : full clausal theory (non-Horn clauses) 
E : full clausal theory (non-Horn clauses)
H : full clausal theory (non-Horn clauses)

Sound and complete



CF-Induction: Principle

B  ∧ H ⊨ E 

⇔ B  ∧ ￢E ⊨ ￢H

⇔ B  ∧ ￢E ⊨ Carc(B∧￢E, P) ⊨ CC(B,E) ⊨ ￢H

⇔ CC(B,E) ⊆ Carc(B∧￢E, P) , 

￢CC(B,E) ≡ F,     H  ⊨ F    (where F  is CNF )



CF-Induction: Algorithm

1. Compute Carc(B∧￢E, P).

2. Construct CC(B,E)  such that 

CC(B,E) ⊆ Carc(B∧￢E, P) ;

CC(B,E) ∩ NewCarc(B,￢E, P) ≠φ.

3. Convert ￢CC(B,E) into CNF F .

4. Generalize F to H  such that 

B∧H  is consistent.  



CF-Induction: Generalizers

Given a CNF formula F,  find a CNF formula H
such that 

H ⊨ F.

inverse Skolemization
anti-instantiation
anti-subsumption (dropping literals from clauses)
anti-weakening (addition of clauses)
inverse resolution 
Plotkin’s least generalization



CF-Induction: Buntine’s Example

B:   cat(x) ⊃ pet(x), 
small(x) ∧fluffy(x) ∧pet(x) ⊃ cuddly_pet(x).

E:    fluffy(x) ∧cat(x) ⊃ cuddly_pet(x).

NewCarc(B,￢E, P):
fluffy(sx), cat(sx), ￢cuddly_pet (sx), 

pet(sx), ￢small(sx)

CC(B,E) = NewCarc(B,￢E, P)

H:   fluffy(x)fluffy(x)∧∧cat(x)cat(x)∧pet(x) ⊃⊃ cuddly_pet(x)∨small(xsmall(x))



CF-Induction: Yamamoto’s Example

B:   even(0),  
odd(x) ⊃ even(s(x)).

E:   odd(s(s(s(0)))).  

NewCarc(B,￢E, P): ￢odd(s(s(s(0)))). 

CC(B,E) :  even(0),  odd(s(0))⊃even(s(s(0))), ￢odd(s(s(s(0)))).

CNF(￢CC(B,E) ):
even(0) ⊃ odd(s(0))∨odd(s(s(s(0)))), 

even(0) ∧ even(s(s(0))) ⊃ odd(s(s(s(0)))).

H:   even(x) ⊃ odd(s(x)).  



Yamamoto & Fronhőfer’s Example

B:   dog(x) ∧ small(x) ⊃ pet(x).  
E:   pet(c).  

NewCarc(B,￢E, P): ￢pet(c),   ￢dog(c)∨￢small(c). 

CC(B,E) = NewCarc(B,￢E, P).

￢CC(B,E) : pet(c) ∨ (dog(c) ∧ small(c)).

CNF(￢CC(B,E) ): pet(c) ∨ dog(c) ,    pet(c) ∨ small(c).

H:   pet(x) ∨ dog(x) ,    pet(x) ∨ small(x).



Abduction and Induction in Network Inference

n1            n2

S1             S2

a    

abduction:           path(n1,n2)

arc(X,Y) ⊃ path(X,Y)

∴ arc(n1,n2)

induction:       Q after a
∴ a causes Q if P

where P ⊆ S1, Q ⊆ S2
[Inoue, Bando & Nabeshima, ILP'05]
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