
Abduction and Induction
through Inverse Entailment and

Consequence Finding

Katsumi Inoue
National Institute of Informatics, Japan

AIAI'05
Edinburgh, July 29, 2005

Consequence Finding

Given an axiom set, the task of consequence finding
or theorem finding is to find out some theorems of
interest [Lee, 1967].
Theorems to find out are not given in an explicit way,
but are characterized by some properties.
Task is clearly distinguished from proof finding or
theorem proving. However, theorem proving is a
special case of consequence finding.
Consequence finding is a part of deduction, but can be
used for abduction and induction.

Abduction and Induction:
Logical Framework

Input:
B : background theory
E : (positive) examples ／observations

Output:
H : hypothesis satisfying that

B ∧ H ⊨ E
B ∧ H is consistent.

Abduction and Induction:
Logical Framework

B ∧ H ⊨ E
B ∧ H is consistent.

The logical framework is exactly the same.
A different formalism exists for induction, e.g.,
descriptive induction, but can be unified with the above
framework [Inoue & Saito, ILP'04].
Induction often gets negative examples, but abduction
can be extended too [Inoue & Sakama, IJCAI-95].
Theoretical results for one can be easily transferred to
the other. E.g., The notion of equivalence is explored
for abduction [Inoue & Sakama, MBR'04; IJCAI-05] and
for induction [Sakama & Inoue, ILP'05].
Computation can also be unified.

Inverse Entailment

Given that

B ∧ H ⊨ E ,

computing a hypothesis H can be done by

B ∧ ￢ E ⊨ ￢ H .

I.e., ￢H deductively follows from B ∧￢E .

Inverse Entailment

B: Human(Socrates),
E: Mortal(Socrates),

H: ∀x (Human(x) ⊃ Mortal(x))
satisfies that:

B ∧ H ⊨ E .
In fact,

B ∧ ￢E = Human(Socrates) ∧ ￢Mortal(Socrates)

⊨ ∃x (Human(x) ∧ ￢Mortal(x)) = ￢H .

IE for Abduction [Inoue, 1992]

B ∧ ￢E ⊨￢H

Computation through consequence finding

E : conjunction of (existentially-quantified) literals
H : conjunctions of literals
B : (full) clausal theory (non-Horn clauses)

Note: Both ￢E and ￢H are clauses.

sound and complete

S O L A RS O L A R
[Nabeshima, Iwanuma & Inoue, 2003]

Input: (1) the set of input clauses (TPTP library format), (2) the top
clause, (3) the production field, and (4) the search strategy.
For example, the graph completion problem (find an arc which
enables a path from a to d) is described as follows:

input_clause(edge, axiom, [node(a)]).
input_clause(edge, axiom, [node(b)]).
input_clause(edge, axiom, [node(c)]).
input_clause(edge, axiom, [node(d)]).
input_clause(arc, axiom, [arc(a,b)]).
input_clause(arc, axiom, [arc(c,d)]).
input_clause(path, axiom,

[-node(X), -node(Y), -arc(X,Y), path(X,Y)]).
input_clause(path, axiom, [-node(X), -node(Y), -node(Z),

-arc(X,Y), -path(Y,Z), path(X,Z)]).
input_clause(observation, top_clause, [-path(a,d)]).

production_field([predicates([-arc(_,_)])]).

SOLAR outputs four consequences:
[-arc(a, d)]
[-arc(a, c)]
[-arc(b, d)]
[-arc(b, c)]

a c

b d

IE for ILP [Muggleton, 1995]

B ∧ ￢E ⊨￢H

Use consequence-finding procedures twice
[Yamamoto 1997]

B : Horn clausal theory
E : single Horn clause

H : single (non-)Horn clause

Note: Neither ¬E nor ¬H is a single clause, and
both contain existentially quantified variables.

IE with ⊥-clause: Incompleteness

Approach: Compute the ⊥-clause:

⊥(B , E) = {￢L | L is a literal s.t. B ∧￢E ⊨ L }.

Hypothesis H is constructed by generalizing ⊥-clause:

H ⊨⊥(B , E) .

Sound but incomplete for recursive clauses [Yamamoto,
1997]

Sufficient conditions for completeness
[Furukawa et al., 1997; Yamamoto, 1997;1999]

Incompleteness due to single-clause hypotheses [Ray, 2003]

Complete Calculus for IE

B ∧ ￢E ⊨￢H

CF-Induction [Inoue, 2001]
Compute the characteristic clauses of B ∧￢E
Use any consequence-finding procedure.
Use any generalizer.
Includes the bottom method and abductive computation.

B : full clausal theory (non-Horn clauses)
E : full clausal theory (non-Horn clauses)
H : full clausal theory (non-Horn clauses)

Sound and complete

CF-Induction: Principle

B ∧ H ⊨ E

⇔ B ∧ ￢E ⊨ ￢H

⇔ B ∧ ￢E ⊨ Carc(B∧￢E, P) ⊨ CC(B,E) ⊨ ￢H

⇔ CC(B,E) ⊆ Carc(B∧￢E, P) ,

￢CC(B,E) ≡ F, H ⊨ F (where F is CNF)

CF-Induction: Algorithm

1. Compute Carc(B∧￢E, P).

2. Construct CC(B,E) such that

CC(B,E) ⊆ Carc(B∧￢E, P) ;

CC(B,E) ∩ NewCarc(B,￢E, P) ≠φ.

3. Convert ￢CC(B,E) into CNF F .

4. Generalize F to H such that

B∧H is consistent.

CF-Induction: Generalizers

Given a CNF formula F, find a CNF formula H
such that

H ⊨ F.

inverse Skolemization
anti-instantiation
anti-subsumption (dropping literals from clauses)
anti-weakening (addition of clauses)
inverse resolution
Plotkin’s least generalization

CF-Induction: Buntine’s Example

B: cat(x) ⊃ pet(x),
small(x) ∧fluffy(x) ∧pet(x) ⊃ cuddly_pet(x).

E: fluffy(x) ∧cat(x) ⊃ cuddly_pet(x).

NewCarc(B,￢E, P):
fluffy(sx), cat(sx), ￢cuddly_pet (sx),

pet(sx), ￢small(sx)

CC(B,E) = NewCarc(B,￢E, P)

H: fluffy(x)fluffy(x)∧∧cat(x)cat(x)∧pet(x) ⊃⊃ cuddly_pet(x)∨small(xsmall(x))

CF-Induction: Yamamoto’s Example

B: even(0),
odd(x) ⊃ even(s(x)).

E: odd(s(s(s(0)))).

NewCarc(B,￢E, P): ￢odd(s(s(s(0)))).

CC(B,E) : even(0), odd(s(0))⊃even(s(s(0))), ￢odd(s(s(s(0)))).

CNF(￢CC(B,E)):
even(0) ⊃ odd(s(0))∨odd(s(s(s(0)))),

even(0) ∧ even(s(s(0))) ⊃ odd(s(s(s(0)))).

H: even(x) ⊃ odd(s(x)).

Yamamoto & Fronhőfer’s Example

B: dog(x) ∧ small(x) ⊃ pet(x).
E: pet(c).

NewCarc(B,￢E, P): ￢pet(c), ￢dog(c)∨￢small(c).

CC(B,E) = NewCarc(B,￢E, P).

￢CC(B,E) : pet(c) ∨ (dog(c) ∧ small(c)).

CNF(￢CC(B,E)): pet(c) ∨ dog(c) , pet(c) ∨ small(c).

H: pet(x) ∨ dog(x) , pet(x) ∨ small(x).

Abduction and Induction in Network Inference

n1 n2

S1 S2

a

abduction: path(n1,n2)

arc(X,Y) ⊃ path(X,Y)

∴ arc(n1,n2)

induction: Q after a
∴ a causes Q if P

where P ⊆ S1, Q ⊆ S2
[Inoue, Bando & Nabeshima, ILP'05]

	Abduction and Induction through Inverse Entailment and Consequence Finding
	Consequence Finding
	Abduction and Induction: � Logical Framework
	Abduction and Induction: � Logical Framework
	Inverse Entailment
	Inverse Entailment
	IE for Abduction [Inoue, 1992]
	IE for ILP [Muggleton, 1995]
	IE with ⊥-clause: Incompleteness
	Complete Calculus for IE
	CF-Induction: Principle
	CF-Induction: Algorithm
	CF-Induction: Generalizers
	CF-Induction: Buntine’s Example
	CF-Induction: Yamamoto’s Example
	Yamamoto & Fronhőfer’s Example
	Abduction and Induction in Network Inference
	Production Field
	Characteristic Clauses
	Applications in AI
	Computing Characteristic Clauses
	SOL Resolution [Inoue, 1991-1992]
	Connection Tableau [Letz et al., 1994]
	SOL Resolution, Skip Rule
	SOL Resolution, Skip-factor Rule
	SOL Resolution, Resolve Rule
	SOL Resolution, Reduce Rule
	Example: New Characteristic Clauses
	SOL Resolution, Example (1)
	SOL Resolution, Example (2)
	SOL Resolution, Example (3)
	SOL Resolution, Example (4)
	SOL Resolution, Example (5)
	SOL Resolution, Example (6)
	Soundness and Completeness
	Duplicated Computation
	Pruning Methods in SOL Calculi [Iwanuma, Inoue & Satoh, 2000]
	Folding-up
	Future Work
	SOLAR [Nabeshima, Iwanuma & Inoue, �TABLEAUX 2003]
	ILP Background
	Induction as Consequence-finding
	Induction as Consequence-finding
	Induction as Consequence-finding
	Induction as Consequence-finding
	Induction v.s. Abduction
	Muggleton’s Example

