29 july 2005

Experiences and directions for
Abduction and Induction using
Constraint Handling Rules

Computer Science, bldg 42.1
Roskilde University
Universitetsvej 1

P.O. Box 260

DK-4000 Roskilde
Denmark
S www.ruc.dk/~hennin
Computer Science /~henning
Roskilde University Presentation at Workshop on Abduction and Induction, AIAI'05, Edinburgh, Scotland

Motivation and overview

e Results on abduction by means of constraint
logic programming (CLP)
®* Indicates inherent relationship between the two
® Efficient and elegant implementation

e Speculations and experiments with induction

® Current results: high flexibility
(efficiency and scaleability problematic)
® Discuss:
* Also here "inherent relation"?

* Inspiration for new CLP-like technology for abduction-
induction integration?

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Playing with abduction in Prolog & CHR

A Prolog program:

p(X):- q(X), a(X).
q(l).

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Playing with abduction in Prolog & CHR

A Prolog program:

p(X):- q(X), a(X).
q(l).

A query:

?2- p(X).
no

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

p(X):- q9(X), a(X).
q(l).
A query:
?2- p(X).
no

ComputerSaence ; 29 july 2005 Henning Christiansen 3

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

p(X):- q9(X), a(X).
q(l).
A query:
?2- p(X).
ne

ComputerSaence ; 29 july 2005 Henning Christiansen 3

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

p(X):- q9(X), a(X).
q(l).

A query:
?2- p(X).

a(l) ?

ComputerSaence ; 29 july 2005 Henning Christiansen 3

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

P(X):- q(X), a(X).

A(1) . —3(1) ==> a(2).
a(2), a(3) ==> fail

A query:

?2- p(X).
no

ComputerSaence ; 29 july 2005 Henning Christiansen 3

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

P(X):- q(X), a(X).

A(1) . —3(1) ==> a(2).
a(2), a(3) ==> fail

A query:

?2- p(X).
no

X =1
a(l), a(2) ?

ComputerSaence ’ 29 july 2005 Henning Christiansen 3

Roskilde University

Playing w‘il i bduction in Prolog & CHR

A Prologrog ram:

:— use_module(library(chr)).
handler blabla.
constraints a/l.

P(X):- q(X), a(X).

a(l). a(l) ==> a(2).
a(2), a(3) ==> fail

A query:
?- p(X)o K?- a(7), p(X). \
no X =1
X =1 a(7), a(l), a(2) ?

a(l), a(2) ?
?- P(X)I a(3)°
\Z /

comPUter Science ’ 29 july 2005 Henning Christiansen 3

Roskilde University

Constraint Handling Rules

e Declarative extension to Prolog for writing
constraint solvers [Frihwirth, 1993, 1995]

e A white-box approach to CLP

e Available in SICStus Prolog from 1998; now
several impl., also in Haskell and Java

® Has gained popularity as general prog. lang.
® E.g. language processing (CHR Grammars [2002, 2005])

® Abductive reasoning

® and a lot of other things, bioinfo., ray-tracing, ...
search for CHR web pages

Computer Science ’ 29 july 2005 Henning Christiansen =

Roskilde University

CHR, Introduction by example

:- use_module(library(chr)).
handler leq.

constraints leq/2.

:— op(500, xfx, leq).

X leq ¥ , ¥ leq Z ==> X leq Z.
X leq ¥ , ¥ leq X <=> X=Y.

X leq Y <=> X=Y | true.

X leq Y \ X leq Y <=> true.

pP(X,Y):- q(X), r(Y¥,Z), X leq Z.
e Execution model: Constraint store, replace/add
constraints

e Declarative semantics: as indicated by arrow
symbols

e Implementation: Attributed var's; lot of ongoing
work on optimization such as indexing, etc.

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Abduction with CHR

e [Abdennadher, Ch., 2000] observed analogy
abducibles ~ constraints of CHR
integrity constraints ~ rules of CHR

e Applied in CHR Grammar system [Ch., 2002, 2005]

e Together with Prolog (and bcG) [Ch., Dahl, 2004-5]
¢ HYPROLOG system [ICLP, 2005] available soon

(abduction, assumptions, and auxiliaries,)

A few more details ...

Computer Science ’ 29 july 2005

. A Henning Christiansen 6
Roskilde University

Abduction in CHR, contd. (available in HYPROLOG)

If you say "abducibles a/1." you get explicit negation
a (X), a(Xx) ==> fail.

If, furthermore, you say "compaction a/1." you get

a(x), a(y) ==> X=Y ; dif(X,Y)

ComputerSaence ’ 29 july 2005 Henning Christiansen 7

Roskilde University

Advantages:
e Easy to use, full flex. of CHR for the ICs,

e Much more efficient that other approaches to abductive
logic programming (up to 2000x for selected example)

e Integrates with all of Prolog's and CHR's built-in stuff
(logical as well as dirty ;-)

Disadvantage:

e Negation essentially limited compared with other,
metainterpreter-based approaches

Successful application:

e Elegant model for discourse representation and abduction-
based discourse analysis for Natural Language

. "Meaning-in-Context" [Ch., Dahl, CONTEXT'05]

ComputerSaence ’ 29 july 2005 Henning Christiansen 8

Roskilde University

What you have seen until now is
documented, implemented, tested,
published etc.

What remains ...

exists as fragments, sketches, chuncks of
inefficient code, speculations, and
discussions

ComputerSaence ' 29 july 2005 Henning Christiansen

Roskilde University

Towards an integration of abd/induction
in Prolog+CHR

Part 1: Rules as dynamic entities, i.e., rules-as-
constraints

Example of desirable behaviour:

?- a, (a, b ==> ¢), b.
a, b, ¢, (a, b ==> ¢) ?

Obs: Declarative semantics generalizes immediately

Computer Science ’ 29 july 2005

Roskilde University Henning Christiansen 10

Prototype implementation

Version 0: Propositional case only
Generic abducible pred. "?"
l.e., write a @s ?a and a,b ==> ¢ asS ?a,?b ==> ?c

One metarule for each no. of head atoms:

constraints ?/1, (==>)/2.

?A, ?B, (?A, ?B ==> WhatEver) ==> WhatEver.

ComputerSaence ’ 29 july 2005 Henning Christiansen 11

Roskilde University

Correct implementation with variables

Ground representation of dynamic rules

?a(*x), ?b(*x,*y) ==> write(*x), ?c(*x,*y).

handled by meta-rule of form

?A, ?B, (?Al, ?Bl ==> Body) ==>
instance((Al,Bl,Body), (A,B,LiveBody)) % guard

LiveBody.

instance(...):- 10 lines of Prolog .

ComputerSaence ’ 29 july 2005 Henning Christiansen 12

Roskilde University

Careful impl. provides very dynamic system:

?- (H ==> B),
H = (?a(*x), ?b(*y)),
2a(1l), ?b(2),

B = (?c(*x,*y), More),
More = 2d(*y).

ComputerSaence ’ 29 july 2005 Henning Christiansen 13

Roskilde University

Careful impl. provir ary dynamic system:
Abstract and

"useless" rule
delayed

?- (H ==> B),
H = (?2a(*x), ?b(*y)),
2a(1l), ?b(2),

B = (?c(*x,*y), More),

More = ?d(*y).

ComputerSaence ; 29 july 2005 Henning Christiansen 13

Roskilde University

Careful impl. provir ary dynamic system:
Abstract and

"useless" rule
delayed

Rule compiles partly;
can apply but produces
delayed body

?2- (H ==> B)l

H = (?a(*x), ?b(*y)),
2a(l), ?b(2),
B = (?c(*x,*Yy), More),

More = ?d(*y).

comPUter Science ’ 29 july 2005 Henning Christiansen 13

Roskilde University

Careful impl. provir ary dynamic system:
Abstract and

"useless" rule
delayed

Rule compiles partly;
can apply but produces

delayed body

H = (?a(*x), ?b(*y > Halfway compiled rule
applies; knows argum's

for delayed body

B = (?c(*x,*y), More),
More = ?d(*y).

ComPUter Science ’ 29 july 2005 Henning Christiansen 13

Roskilde University

Careful impl. provir ary dynamic system:
Abstract and

"useless" rule
delayed

Rule compiles partly;
can apply but produces

delayed body

H = (?a(*x), ?b(*y > Halfway compiled rule
applies; knows argum's

for delayed body

2a(l), ?b(2),

Body compiled partly;
rest is delayed and

B = (?2c(*x,*y), More), 2¢(1,2) is called

More = ?d(*y).

Computer Science ’ 29 july 2005 Henning Christiansen 13

Roskilde University

Careful impl. provir ary dynamic system:
Abstract and

"useless" rule
delayed

Rule compiles partly;
can apply but produces

delayed body

H = (?a(*x), ?b(*y > Halfway compiled rule
applies; knows argum's

for delayed body

2a(l), ?b(2),

Body compiled partly;
rest is delayed and

B = (?2c(*x,*y), More), 2¢(1,2) is called

More = ?d(*y).
Compilation of rule
finishes;
?2d(2) is called.

Computer Science , 29 july 2005 Henning Christiansen 13

Roskilde University

Abd/induction integration, part 2

We have:

® abduction

e dynamically created rules

e ... in a powerful programming environment

so we just need to program how and when rules
are created.

A sketch of an example ...

Computer Science ’

Roskilde University 29 Ju Iy 2005

Henning Christiansen 14

Pseudocode for naive induction strategy

?Pred (Arg) ==
if (Pred(Arg) is new) then
if (++Count(Pred) > n) then
for any Pred' with (Pred(X) in store
implies Pred' (X) in store)
do
(?Pred(*x) ==> ?Pred’' (*x))

unless created already.

ComputerSaence ’ 29 july 2005 Henning Christiansen 15

Roskilde University

Example, n = 2

Computer Science ‘ 29 july 2005

Roskilde University

Henning Christiansen

16

Example, n = 2

?- ?swim(sharky),

?swim(coddy),

Computer Science ‘ 29 july 2005

Roskilde University

?swim(flipper),

Henning Christiansen

Example, n = 2

?- ?swim(sharky),
?fish(sharky),

?swim(coddy),
?fish(coddy),

Computer Science ; 29 july 2005

Roskilde University

?swim(flipper),

Henning Christiansen

Example, n = 2

?- ?swim(sharky), ?swim(coddy),
?fish(sharky), ?fish(coddy),

?fish(soly).

Computer Science ’

Roskilde University

29 july 2005

?swim(flipper),

Henning Christiansen

Example, n = 2

?- ?swim(sharky),
?fish(sharky),

?fish(soly).

?swim(coddy), ?swim(flipper),
?fish(coddv).

?fish(*x) ==> 9@

Computer Science ; 29 july 2005 Henning Christiansen

Roskilde University

Example, n = 2

?- ?swim(sharky), ?swim(coddy), ?swim(flipper),
?fish(sharky), ?fish(codd

?fish(*x) ==> ?swim(*x).
?fish(soly).
Rule applies so
?swim(soly)
part of answer

computer SCIEnce ’ 29 JUIy 2005 Henning Christiansen

Roskilde University

16

Example, n = 2

?- ?swim(sharky), ?swim(coddy), ?swim(flipper),
?fish(sharky), ?fish(coddv).

?fish(*x) ==> ?swim(*x).

?fish(soly).

Rule applies so
?swim(soly)

part of answer

Computersuerce

Roskilde University 29 july 2005 Henning Christiansen 16

Summing up

e Abduction (with no real negation) works in Prolog+CHR
* eclegant, flexible, efficient

e Simple induction can be added to form integration
¢ flexible, inefficient, bad scaleability

® Possible extensions
¢ explicit negation and exceptions (??)
® NB: everything can be programmed
® FEfficiency and scaleability may be obtained by
send-new-rules-to-file-and-recompile (??)

e | dare not say anything about weight and statistics

However ...
Computer Science ’ 29 july 2005

. A Henning Christiansen 17
Roskilde University

Ongoing work on abduction using CHR

e Probabilistic semantics as way to weighted abd.

¢ Inspiration from [Frahwirth, Di Pierro, Wickely, 2002]:
Probabilistic Constraint Handling Rules?

® Add mechanisms to follow most promising alternative (good
heuristics for NLP)

® | earn probabilities by PRISM system (Sato & al.) ?

e Alternative CHR execution strategy (for NLP)
¢ Splitting state whenever alternatives occur
* Efficient copying (in C with relative addr. scheme)
¢ All states in parallel

® Assumptions: ICs should eliminate nonsense state; sets of
abducibles of "manageable size"

ComputerSaence ’ 29 july 2005 Henning Christiansen 18

Roskilde University

Conclusion & discussion

What did we learn from this exercise?

Open questions

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Conclusion & discussion

What did we learn from this exercise?
e Fun to play with CHR and advanced reasoning

Open questions

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

Conclusion & discussion

What did we learn from this exercise?
e Fun to play with CHR and advanced reasoning
e Clarified rel'ship abduction <-> constraint LP

Open questions

Computer Science ’ 29 july 2005

Henning Christiansen
Roskilde University 9 a

Conclusion & discussion

What did we learn from this exercise?
e Fun to play with CHR and advanced reasoning
e Clarified rel'ship abduction <-> constraint LP

¢ Induction as well as integration with abduction
can be modelled with some-sort-of-logical-
semantics

Open questions

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

19

Conclusion & discussion

What did we learn from this exercise?

e Fun to play with CHR and advanced reasoning

e Clarified rel'ship abduction <-> constraint LP

¢ Induction as well as integration with abduction
can be modelled with some-sort-of-logical-
semantics

Open questions

e Clarify rel'ship induction <-> constraint LP??

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

19

Conclusion & discussion

What did we learn from this exercise?
e Fun to play with CHR and advanced reasoning
e Clarified rel'ship abduction <-> constraint LP

¢ Induction as well as integration with abduction
can be modelled with some-sort-of-logical-
semantics

Open questions

e Clarify rel'ship induction <-> constraint LP??
e Useful and efficiently implemented models?

Computer Science ’ 29 july 2005 Henning Christiansen

Roskilde University

19

