
Integrating Abduction and Induction in the Learning from Interpretation Setting

Evelina Lamma1 and Paola Mello2 and Fabrizio Riguzzi11Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1
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Abstract

In this paper we describe an approach for integrat-
ing abduction and induction in the ILP setting of
learning from interpretations with the aim of solv-
ing the problem of incomplete information both in
the background knowledge and in the interpreta-
tions. The approach is inspired by the techniques
developed in the learning from entailment setting
for performing induction from an incomplete back-
ground knowledge. Similarly to those techniques,
we exploit an abductive proof procedure for com-
pleting the available background knowledge and in-
put interpretations.
The approach has been implemented in a system
called AICL that is based on the ILP system ICL.
Preliminary experiments have been performed on
a toy domain where knowledge has been gradually
removed. The experiments show that AICL has a
superior accuracy for levels of incompleteness be-
tween 5% and 20%.

1 Introduction
The integration of abduction and induction has recently re-
ceived a lot of attention in the field of Inductive Logic Pro-
gramming (ILP)[Muggleton and De Raedt, 1994]. A number
of ILP systems combine abduction and induction in various
ways: LAP[Lammaet al., 1999], ACL [Kakas and Riguzzi,
2000], Progol 5.0[Muggleton and Bryant, 2000], SOLDR
[Yamamoto, 2000], CF-Induction[Inoue, 2001] and HAIL
[Rayet al., 2003].

However, all these systems are relative to the ILP setting of
learning from entailment[Muggleton and De Raedt, 1994].
To the best of our knowledge, no attempt has been performed
to integrate abduction and induction in the setting of learning
from interpretations[De Raedt and Džeroski, 1994].

In this paper we propose an approach for integrating ab-
duction and induction in the latter setting. In particular,we
tackle a problem similar to the one examined in[Lammaet
al., 1999; Kakas and Riguzzi, 2000]: the incompleteness of
available knowledge.

This is an important problem because in practice the
knowledge acquisition process is rarely perfect: the acquired

knowledge is very often incomplete in the sense that facts and
rules may be missing from it.

In [Lamma et al., 1999; Kakas and Riguzzi, 2000] the
authors consider a learning problem where the background
knowledge may be incomplete and they exploit abduction in
order to complete the available knowledge. In practice, when
testing the coverage of an example by a clause, the Prolog
derivation is substituted by an abductive derivation. In this
way, a positive example may be covered by abducing some
positive or negative facts. Similarly, the system may avoid
the coverage of a negative example by abducing some posi-
tive or negative facts.

When learning from interpretations, we can face the same
incompleteness problem. In this case, the incompleteness
may reside either in the background knowledge, in the in-
terpretations or in both. This may cause a good clause to un-
cover a positive example or to cover a negative example. To
this purpose, we exploit an abductive proof procedure in the
testing of the coverage of interpretations by a clause, in or-
der to abduce the facts that are missing from either the back-
ground and/or the interpretation. The asymmetry with respect
the learning of entailment setting where only the background
knowledge is incomplete is due to the fact that in that setting
the information regarding each single example is containedin
the background knowledge together with the general knowl-
edge that applies to all examples. In the learning from in-
terpretation setting the specific information regarding anex-
ample is stored in the associated interpretation, while general
rules are stored in the background. So in practice both ap-
proaches complete the same kind of knowledge.

We thus present the algorithm AICL (Abductive ICL) that
is based on ICL[De Raedt and Van Laer, 1995] and improves
its ability of learning from incomplete interpretations.

The paper is organized as follows. In section 2 we recall
some preliminaries. In section 3 we briefly describe the ICL
system. Section 4 presents an example that will be used to
explain AICL and will be the subject of the experiments. In
section 5 we illustrate the AICL system. Section 6 reports
on a set of preliminaries experiments for comparing the two
systems. Finally in section 7 we present our conclusions and
some directions for future work.



2 Preliminaries
A clause is a formula of the formh1 _ h2 _ : : : _ hn  b1; b2; : : : ; bm
where thehi and bi are logical atoms. The disjunctionh1 _ h2 _ : : : _ hn is called theheadof the clause and the
conjunctionb1 ^ b2 ^ : : : ^ bm is the called thebody. Let us
define the two functionshead(C) andbody(C) that, given a
clauseC, return respectively the head and the body ofC. In
some cases, we will use the functionshead(C) andbody(C)
to denote the set of the atoms in the head or of the literals of
the body respectively. The meaning ofhead(C) andbody(C)
will be clear from the context.

A definite clause is a clause wheren = 1. A fact is a
definite clause with an empty body (n = 1;m = 0).

A term (clause) is ground if it does not contain variables.
The Herbrand universeH(P ) of a clausal theoryP is the
set of all the ground terms that can be constructed with the
constant and function symbols appearing inP . The Herbrand
baseHB(P ) of a clausal theoryP is the set of all the atoms
constructed with the predicates appearing inP and the terms
ofH(P ). A Herbrand interpretation is a subset ofHB(P ). In
this paper we will consider only Herbrand interpretations and
in the following we will drop the word Herbrand.

Let us now discuss how to ascertain the truth of clauses in
an interpretation. A clauseC is true in an interpretationI
if for all grounding substitutions� of C: body(C)� � I !head(C)� \ I 6= ;. We also sayI is a model forC, or C
makes the interpretationI true, or evenI is a true interpreta-
tion forC. If a clauseC is not true in an interpretationI , we
say thatC is false in interpretation I or thatI is not a model
for C. An interpretationI is a model for a clausal theoryT if
and only if it is a model for all clauses inT . We also say thatT is true inI . Therefore, it is sufficient for a single clause
from T to be false inI in order forT to be false inI .

As observed by[De Raedt and Dehaspe, 1997], the truth of
a clauseC in a finite interpretationI can be tested by running
the query? � body(C); not head(C) on a database contain-
ing I , wherehead(C) is interpreted as a disjunction (thusnot head(C) is a conjunction of negations). If the query suc-
ceeds,C is false inI . If the query finitely fails,C is true inI .

A Herbrand model for a definite clause theoryP is an inter-
pretation where each clause ofP is true. The intersection of a
set of Herbrand models is also a Herbrand model. The inter-
section of all the Herbrand models forP is the least Herbrand
model. The semantics of definite clause theories is given in
terms of the least Herbrand model. We denote the least Her-
brand model of a definite clause theoryP asM(P ).

Note that ifP is a definite clause theory andI is a finite
interpretation,P [ I is still a definite clause theory. The truth
of clauseC in the interpretationM(P [ I) can be tested by
running the query?�body(C); not head(C) against the logic
programP [I . If the query succeeds,C is false inM(P [I).
If the query finitely fails,C is true inM(P [ I).
3 ICL
ICL solves the following learning problem:
Given

� a setP of interpretations;� a setN of interpretations;� a definite clause background theoryB.

Find: a clausal theoryH such that� for all p 2 P , M(B [ p) is a true interpretation ofH ;� for all n 2 N , M(B [ n) is a false interpretation ofH ;

Figure 1 shows the main loop of ICL. Figure 2 show the
search for a clause of ICL.

4 Running Example
In this section we introduce a running example that will be
used to explain the behaviour of AICL and that will provide
a dataset for comparing ICL and AICL.

Consider a two bit multiplexer: it has two input pins and
four output pins. The four output pins are numbered from
0 to 3. The behaviour of the multiplexer is the following:
given values for the input pins, the output pin whose number
is represented by the input pins is at 1, while the other output
pins may assume either 0 or 1.

The aim is to learn how to distinguish a working multi-
plexer configuration from a faulty one. Each multiplexer con-
figuration is completely described by the state of the six pins.
Each pin can be at 0 or at 1. In total, we have 64 examples,
32 of which are positive (configurations of a working mul-
tiplexer) and 32 of which are negative (configurations of a
faulty multiplexer).

We represent a multiplexer configuration using 12 nullary
predicates, obtained by renumbering the pins from 1 to 6 (pins
1 and 2 are the input pins, pins 3, 4, 5 and 6 are the output
pins). For example, the multiplexer configuration described
by the bit string 010110 can be described by the following
interpretation:

pin1at0. pin2at1. pin3at0.
pin4at1. pin5at1. pin6at0.

This is a positive example because output pin 4 is at 1.
A correct theory for distinguishing positive from negative

configurations is the following:

pin3at1:-pin1at0,pin2at0.
pin4at1:-pin1at0,pin2at1.
pin5at1:-pin1at1,pin2at0.
pin6at1:-pin1at1,pin2at1.

Incompleteness is the interpretations in this case means
that an interpretation does not contain any fact for some of
the pins.

5 Abductive ICL
We modify the way in which ICL tests for the truth of a clause
in an interpretation. Instead of using a standard Prolog proof
procedure for testing the querybody(C); not head(C), we
use an abductive proof procedure.

Consider a clause of the formh1 _ h2 _ : : : _ hn  b1; b2; : : : ; bm
The query that is tested is thus:b1; b2; : : : ; bm; not h1; not h2; : : : ; not hn



Learn(P;N;B)
InitializeH := ;
repeat until best clauseC not found orN is empty

find best clauseC
if best clauseC found then

(2) addC toH
remove fromN all interpretations that are false forC

returnH
Figure 1: ICL covering algorithm

FindBestClause(P;N;B)
InitializeBeam := ffalse trueg
InitializeBestClause := ;
whileBeam is not empty do

InitializeNewBeam := ;
for each clauseC in Beam do

for each refinementRef of C do
(1) if Ref is better thanBestClause andRef

is statistically significant thenBestClause := Ref
if Ref is not to be pruned then

addRef toNewBeam
if size ofNewBeam > MaxBeamSize then

remove worst clause from NewBeamBeam := NewBeam
returnBestClause

Figure 2: ICL beam search algorithm

Suppose this query is tested againstB [ p wherep is a posi-
tive interpretation. If the interpretation is incomplete,it may
happen that the query succeeds because one of the head atoms
is false inB [ p when it should in fact be true. Supposehi
is false becausep is incomplete. By using an abductive proof
procedure, we may abduce facts that makehi true so that the
query fails and the clause is true in the interpretation. Theab-
duction is performed only if the abduced atoms are consistent
with the integrity constraints.

Now consider an incomplete negative interpretationn. The
query may fail againstB [ n because one of body literals
is false, so the clause is considered erroneously true in the
interpretation. Suppose thatbj is false inB [ n because of
the incompleteness ofn. Then it could be useful to abduce
facts that makebj true so that the query succeeds and the
clause is false in the interpretation. Again, the abductionof
facts for makingbj true can be performed only if the facts are
consistent with the integrity constraints.

More formally, ICL is modified in two points. The first
is point (1) in function FindBestClause: in order to compare
the current refinement with the best clause found so far, the
refinement must be tested on the positive and negative inter-
pretations, so that the heuristic and the likelihood ratio can
be computed. The new function for testing a clause is repre-
sented in Figure 3.

In Figure 3 Derivation(Goal; P ) implements the Prolog
derivation of a goalGoal from a programP . It may suc-

ceed or fail, if it succeeds it returns a substitution� for Goal.
AbductiveDerivation(Goal; P;�in) implements the abduc-
tive derivation defined in[Kakas and Mancarella, 1990]. It
may succeed or fail, if it succeeds returns a substitution� forGoal and a set of abduced literals�out such that�out ��in.

In order to explain the behaviour of TestClause, consider
the following example in which we want to test the clauseC:

pin3at1 :- pin1at0,pin2at0.

over the incomplete positive interpretationp
pin1at0. pin2at0.
pin4at1. pin5at1. pin6at0.

In this case the background knowledgeB does not contain
any clauses. However, it contains some integrity constraints,
that are used by the abductive proof procedure: it contains the
constraints that state that a pin can not be at the same time 0
and 1. One of these constraints is for example

:- pin1at0,pin1at1.

We first find the substitutions with whichbody(C) is true
in p [ B. There is only one such substitution, the empty one.
Thus� = f;g. overed is set to true and the outer cycle
is entered.Head is set topin3at1 and found to false.
Then the inner cycle is entered and an abductive derivation
is started for the goalpin3at1 from the theoryp [ B. Re-
member that the theoryB contains the integrity constraints.



TestClause(P;N;B;C)NP := 0 n* number of positive interpretations covered (C is true in them)*nP 0 := ; n* set of covered positive interpretations *n
for each interpretationp 2 P

find the set� of all the substitutions� such that
Derivation(body(C); p [ B) succeeds� := ;overed := true

while� is not empty andovered
remove the first element� from�Head := head(C)�found := false
while there are literals inHead andnot found

remove the first literalL in Head
if AbductiveDerivation(L; p[ B;�) succeeds returning�out thenfound := true� := �out

if found = false thenovered := false
if overed thenNP := NP + 1P 0 := P 0 [ f(p;�)gNN := 0 n* number of negative interpretations not covered (C is false in them) *nN 0 := ; n* set of non covered negative intepretations *n

for each interpretationn 2 N
find the setE of all the couples(�;�) such that

AbductiveDerivation(body(C); n[ B; ;) succeeds
returning� as a substitution forBody and�
as the set of abduced literalsovered := true

whileE is not empty andovered
remove the first element(�;�) fromEHead := head(C)�
add the facts of� to n
call Derivation(not Head); n [ B)
remove the facts of� fromn
if the derivation succeeds thenovered := false

if not overed thenNN := NN + 1N 0 := N 0 [ f(n;�)g
return(NP;P 0; NN;N 0)

Figure 3: AICL test function



The abductive proof procedure tries to abducepin3at1
and succeeds because it is consistent with the integrity con-
straint:- pin3at0,pin3at1 sincepin3at0 is not true
in p [B.

Thusfound is set to true and� to fpin3at1g. The inner
cycle terminates, the variableovered remains at the value
true and the outer cycle is terminated as well.

The value of the valueovered at the end of the outer cycle
indicates that the example is covered.

Let us now consider the test of the same clauseC over the
negative interpretationn represented by

pin1at0. pin3at0.
pin4at1. pin5at1. pin6at0.

In this case, an abductive derivation is started for the goal
pin1at0,pin2at0. The derivation succeeds returning
the empty substitution and� = fpin2at0g. ThusE =f(;; fpin2at0g)g. overed is set to true. Then the cycle
is entered.Head is set topin3at1. The fact contained
in � is added ton and a derivation fornot pin3at1 is
started. The derivation succeeds,overed is set to false, the
facts from� are removed fromn, the cycle is terminated and
the interpretation is not covered.

The second point in which ICL is modified is (2) in func-
tion Learn. The function FindBestClause not only returns the
best clause found so far but it also returns the literals abduced
for each interpretation during the test of the clause. The mod-
ified function Learn, besides adding the best clauseC to the
current theoryH in point (2), also adds to each interpretation
the facts abduced during the test of the coverage of the clause
on that interpretation.

AICL has been implemented in Sicstus Prolog. In order to
execute the function Derivation and AbductiveDerivation on
a program containing an interpretation and the background
knowledge, the Sicstus Prolog module system was used: each
interpretation is loaded in a different module and the clauses
of the background are asserted in all the modules.

In function TestClause the addition of the facts from� to
the current interpretation is performed by asserting the facts
in the corresponding module. Simiarly, the removal of the
facts is performed by using the retract predicate.

6 Experiments
ICL and AICL were applied on the multiplexer dataset, con-
taining 32 positive interpretations and 32 negative interpreta-
tions. A ten-fold cross-validation was performed. In orderto
test the performances of the two systems in the case of miss-
ing data, for each fold, facts from the interpretations were
randomly chosen and removed. In particular, for each fold,
different percentages of facts were removed from the train-
ing set: 5%, 10%, 15%, 20%, 25% and 30%. In this way
we have obtained 7 training sets for each fold: one with the
complete data and the other six with increasing missing in-
formation, from 5% to 30%. ICL and AICL were trained on
the various training sets, the learned theories were testedon
the testing set (from which no information was removed) and
the accuracy was computed. The testing was performed by
employing a Prolog derivation, i.e., abductive derivationwas
not used in testing. The accuracy is given by the number of

covered positive examples plus the number of non covered
negative example over the total number of examples.

When learning with ICL, the background knowledge was
empty. When learning with AICL the background knowl-
edge contained an abductive theory(T;A; IC) whereT is
empty,A contains all the 12 predicates used for describing
the configurations andIC contains integrity constraints that
state that a pin can not be at the same time 0 and 1.

The learning parameters for ICL were all left to their de-
fault values except the significance level which was set to 0,
meaning that no significance test was performed. The same
values have been used for AICL.

The accuracy on the testing set for each level of incom-
pleteness has then been averaged over the ten folds. Figure 4
shows the value of the average accuracy as a function of the
incompleteness level. As can be seen from the graph AICL
outperforms ICL for the incompleteness levels from 5% to
20%. This shows that the abductions performed by AICL are
frequently correct. Only when the level of incompleteness is
particularly high (25%–30%) AICL has a performance sim-
ilar to ICL. The average improvement of accuracy over all
incompleteness levels is 11.2%.

7 Conclusions
We have proposed the algorithm AICL that modifies ICL in
order to achieve a better performance on incomplete data.
The modification is based on the use of an abductive proof
procedure for testing the truth of clauses in the example inter-
pretations.

AICL has been tested against ICL on a simple toy problem.
Different levels of incompleteness of the data have been con-
sidered, from 5% to 30%. For the levels of incompleteness
from 5% to 25% AICL reached a higher accuracy.

In the future, we plan to perform other experiments on
larger domains in order to draw more grounded conclusions.
In particular, we plan to apply AICL to the problem of learn-
ing the specification of protocols of interaction among agents
from traces of their execution. In fact, these traces are very
often incomplete due to the impossibility of recording every
message exchanged between any two agents. Moreover, we
would also like to investigate the adoption of other abductive
proof procedures, as for example the IFF[Fung and Kowal-
ski, 1997], the SCIFF[Alberti et al., 2004] or the A-system
[Kakaset al., 2001], for completing the interpretations. These
proof procedures are interesting because they provide a better
handling of non ground abducibles.
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