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Abstract

In this paper we describe an approach for integrat-
ing abduction and induction in the ILP setting of
learning from interpretations with the aim of solv-
ing the problem of incomplete information both in
the background knowledge and in the interpreta-
tions. The approach is inspired by the techniques
developed in the learning from entailment setting
for performing induction from an incomplete back-
ground knowledge. Similarly to those techniques,
we exploit an abductive proof procedure for com-
pleting the available background knowledge and in-
put interpretations.

The approach has been implemented in a system
called AICL that is based on the ILP system ICL.
Preliminary experiments have been performed on
a toy domain where knowledge has been gradually
removed. The experiments show that AICL has a
superior accuracy for levels of incompleteness be-
tween 5% and 20%.

1 Introduction

The integration of abduction and induction has recently re
ceived a lot of attention in the field of Inductive Logic Pro-
gramming (ILP)YMuggleton and De Raedt, 19p4A number
of ILP systems combine abduction and induction in variou
ways: LAP[Lammaet al,, 1999, ACL [Kakas and Riguzzi,
2004, Progol 5.0[Muggleton and Bryant, 2000 SOLDR
[Yamamoto, 2000 CF-Induction[Inoue, 200} and HAIL
[Rayet al, 2003.
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knowledge is very often incomplete in the sense that faals an
rules may be missing from it.

In [Lammaet al, 1999; Kakas and Riguzzi, 20pthe
authors consider a learning problem where the background
knowledge may be incomplete and they exploit abduction in
order to complete the available knowledge. In practice,;jwhe
testing the coverage of an example by a clause, the Prolog
derivation is substituted by an abductive derivation. Iis th
way, a positive example may be covered by abducing some
positive or negative facts. Similarly, the system may avoid
the coverage of a negative example by abducing some posi-
tive or negative facts.

When learning from interpretations, we can face the same
incompleteness problem. In this case, the incompleteness
may reside either in the background knowledge, in the in-
terpretations or in both. This may cause a good clause to un-
cover a positive example or to cover a negative example. To
this purpose, we exploit an abductive proof procedure in the
testing of the coverage of interpretations by a clause, 4in or
der to abduce the facts that are missing from either the back-
ground and/or the interpretation. The asymmetry with respe
the learning of entailment setting where only the backgdoun
knowledge is incomplete is due to the fact that in that sgttin

the information regarding each single example is contaimed

the background knowledge together with the general knowl-
edge that applies to all examples. In the learning from in-

Sterpretation setting the specific information regardingean

ample is stored in the associated interpretation, whilegEn
rules are stored in the background. So in practice both ap-
proaches complete the same kind of knowledge.

However, all these systems are relative to the ILP setting of e thus present the algorithm AICL (Abductive ICL) that

learning from entailmeniMuggleton and De Raedt, 19p4

is based on ICILDe Raedt and Van Laer, 19p&nd improves

To the best of our knowledge, no attempt has been performegs apility of learning from incomplete interpretations.

to integrate abduction and induction in the setting of leagn
from interpretation$De Raedt and DZeroski, 19p4

The paper is organized as follows. In section 2 we recall

In this paper we propose an approach for integrating absome preliminaries. In section 3 we briefly describe the ICL

duction and induction in the latter setting. In particulag
tackle a problem similar to the one examinedliammaet
al., 1999; Kakas and Riguzzi, 20ptthe incompleteness of
available knowledge.

system. Section 4 presents an example that will be used to
explain AICL and will be the subject of the experiments. In
section 5 we illustrate the AICL system. Section 6 reports
on a set of preliminaries experiments for comparing the two

This is an important problem because in practice thesystems. Finally in section 7 we present our conclusions and

knowledge acquisition process is rarely perfect: the aequi

some directions for future work.



2 Preéiminaries
A clause is a formula of the form
h1Vh2\/...\/hn(—bl,bQ,...,bm

where theh; and b; are logical atoms. The disjunction
hiV hs V...V h, is called theheadof the clause and the
conjunctionby A bs A ... A by, is the called thdody. Let us
define the two functionead(C') andbody(C) that, given a
clauseC, return respectively the head and the body’ofin
some cases, we will use the functidns:d(C) andbody(C)

e a setP of interpretations;
e asetN of interpretations;
¢ adefinite clause background thedsy
Find: a clausal theor# such that
e forallp € P, M(B Up) is atrue interpretation off;
e foralln € N, M(B Un) is a false interpretation df ;

Figure 1 shows the main loop of ICL. Figure 2 show the
search for a clause of ICL.

to denote the set of the atoms in the head or of the literals of

the body respectively. The meaningiefad(C') andbody(C)
will be clear from the context.

A definite clause is a clause where= 1. A fact is a
definite clause with an empty body & 1, m = 0).

A term (clause) is ground if it does not contain variables.

The Herbrand universél (P) of a clausal theony is the
set of all the ground terms that can be constructed with th
constant and function symbols appearindg’inThe Herbrand
baseH s (P) of a clausal theory is the set of all the atoms
constructed with the predicates appearing’iand the terms
of H(P). A Herbrand interpretation is a subsetf (P). In
this paper we will consider only Herbrand interpretationd a
in the following we will drop the word Herbrand.

Let us now discuss how to ascertain the truth of clauses i
an interpretation. A claus€' is true in an interpretatio
if for all grounding substitutiong of C: body(C)0 C I —
head(C)0 NI # (. We also sayl is a model forC, or C
makes the interpretatiohtrue, or even is a true interpreta-
tion for C'. If a clauseC' is not true in an interpretatioh, we
say thatC is false in interpretation | or thdtis not a model
for C'. An interpretatior! is a model for a clausal theofy if
and only if it is a model for all clauses ifi. We also say that
T is true inI. Therefore, it is sufficient for a single clause
from T to be false inl in order forT to be false in/.

As observed byDe Raedt and Dehaspe, 199the truth of
a clause” in a finite interpretatiod can be tested by running
the query? — body(C'), not head(C') on a database contain-
ing I, wherehead(C) is interpreted as a disjunction (thus
not head(C) is a conjunction of negations). If the query suc-
ceeds( is false inI. If the query finitely fails,C' is true in
1.

A Herbrand model for a definite clause thedtys an inter-
pretation where each clauseBfis true. The intersection of a
set of Herbrand models is also a Herbrand model. The inte
section of all the Herbrand models fBris the least Herbrand
model. The semantics of definite clause theories is given i

terms of the least Herbrand model. We denote the least He

brand model of a definite clause thedPyas M (P).

Note that if P is a definite clause theory ardis a finite
interpretationP U I is still a definite clause theory. The truth
of clauseC in the interpretatior/ (P U I) can be tested by
running the query—body(C), not head(C) against the logic
programP UI. If the query succeeds§; is false inM (PUI).

If the query finitely fails,C is true inM (P U I).

3 ICL

ICL solves the following learning problem:
Given

4 Running Example

In this section we introduce a running example that will be
used to explain the behaviour of AICL and that will provide
a dataset for comparing ICL and AICL.

Consider a two bit multiplexer: it has two input pins and
four output pins. The four output pins are numbered from
® to 3. The behaviour of the multiplexer is the following:
given values for the input pins, the output pin whose number
is represented by the input pins is at 1, while the other dutpu
pins may assume either O or 1.

The aim is to learn how to distinguish a working multi-
plexer configuration from a faulty one. Each multiplexercon
figuration is completely described by the state of the sispin
Each pin can be at 0 or at 1. In total, we have 64 examples,
32 of which are positive (configurations of a working mul-
tiplexer) and 32 of which are negative (configurations of a
faulty multiplexer).

We represent a multiplexer configuration using 12 nullary
predicates, obtained by renumbering the pins from 1 to &(pin
1 and 2 are the input pins, pins 3, 4, 5 and 6 are the output
pins). For example, the multiplexer configuration desatibe
by the bit string 010110 can be described by the following
interpretation:

pinlat0. pin2atl. pin3atO.
pi n4at1. pinbatl. pin6atO.

This is a positive example because output pin 4 is at 1.
A correct theory for distinguishing positive from negative
configurations is the following:

pi n3at 1: - pi nlat 0, pi n2at 0.

pi nd4at 1: - pi nlat 0, pi n2at 1.

pi n5at 1: - pi nlat 1, pi n2at 0.

pi n6at 1: - pi nlat 1, pi n2at 1.

r- . . . : :
Incompleteness is the interpretations in this case means

ﬁhat an interpretation does not contain any fact for some of

fhe pins.

5 AbductiveICL

We modify the way in which ICL tests for the truth of a clause
in an interpretation. Instead of using a standard Prologfpro
procedure for testing the quebydy(C), not head(C), we
use an abductive proof procedure.

Consider a clause of the form

h1Vh2V...\/hn(—bl,bQ,...,bm
The query that is tested is thus:
bi,ba,...,bm,not hy,not ha,...,not hy,



Learn(P, N, B)
Initialize H := ()
repeat until best claugé not found orV is empty
find best claus€’
if best clause&” found then
(2) addC' to H
remove fromN all interpretations that are false fér
returnH

Figure 1: ICL covering algorithm

FindBestClause?, N, B)
Initialize Beam := {false + true}
Initialize BestClause := )
while Beam is not empty do
Initialize NewBeam := ()
for each claus€’' in Beam do
for each refinemenke f of C do
(1) if Ref is better thamBestClause andRe f
is statistically significant theBestClause := Ref
if Ref is notto be pruned then
addRef to NewBeam
if size of NewBeam > MaxBeamSize then
remove worst clause from NewBeam
Beam := NewBeam
returnBestClause

Figure 2: ICL beam search algorithm

Suppose this query is tested agaiBst p wherep is a posi-  ceed or fall, if it succeeds it returns a substitutioior Goal.

tive interpretation. If the interpretation is incompletepay  AbductiveDerivatioiGoal, P, A;,) implements the abduc-
happen that the query succeeds because one of the head atdiwe derivation defined ilKakas and Mancarella, 19R0It

is false inB U p when it should in fact be true. Supposge  may succeed or fall, if it succeeds returns a substituditor

is false becausgis incomplete. By using an abductive proof Goal and a set of abduced literals,,; such thatA,,; D
procedure, we may abduce facts that mak&ue so thatthe A;,.

query fails and the clause is true in the interpretation. dive In order to explain the behaviour of TestClause, consider
duction is performed only if the abduced atoms are condisterthe following example in which we want to test the cladse
with the integrity constraints.

Now consider an incomplete negative interpretatioihe . L :
query may fail againsB U n because one of body literals Over the incomplete positive interpretation
is false, so the clause is considered erroneously true in thgi n1at 0. pi n2at 0.
interpretation. Suppose thaf is false inB U n because of pjn4at1. pin5atl. pin6atO.
the incompleteness of. Then it could be useful to abduce

facts that make; true so that the query succeeds and the In this case the background knowledgaloes not contain
clause is false in the interpretation. Again, the abductibn any clauses. However, it contains some integrity condsain

facts for making; true can be performed only if the facts are at are used by the abductive proof procedure: it contams t
consistent with the integrity constraints. constraints that state that a pin can not be at the same time 0

. e . ' and 1. One of these constraints is for example

More formally, ICL is modified in two points. The first _ _
is point (1) in function FindBestClause: in order to compare: - Pi nlat 0, pi nlat 1.
the current refinement with the best clause found so far, the e first find the substitutions with whidkvdy(C) is true
refinement must be tested on the positive and negative intefn , U B. There is only one such substitution, the empty one.
pretations, so that the heuristic and the likelihood ratia ¢ Thus® = {(}. covered is set to true and the outer cycle
be computed. The new function for testing a clause is repreis entered. Head is set topi n3at 1 and found to false.
sented in Figure 3. Then the inner cycle is entered and an abductive derivation

In Figure 3 DerivatiofGoal, P) implements the Prolog is started for the goali n3at 1 from the theoryp U B. Re-
derivation of a goalGoal from a programP. It may suc- member that the theorf? contains the integrity constraints.

pin3atl :- pinlatO, pin2atO.



TestClausel, N, B, C)
NP := 0 \* number of positive interpretations covered is true in them)¥
P’ .= \* set of covered positive interpretation$ *
for each interpretatiop € P
find the se® of all the substitutions such that
Derivationbody(C'), p U B) succeeds
A:=10
covered := true
while © is not empty andovered
remove the first elemeidtfrom ©
Head := head(C)6
found := false
while there are literals it ead andnot found
remove the first literal in Head
if AbductiveDerivatior{L, pU B, A) succeeds returning,,; then
found := true
A= Agy
if found = false then
covered := false
if covered then
NP:=NP+1
P':= P'U{(p.A)}
NN := 0 \* number of negative interpretations not coverétlig false in them) X
N’ := () \* set of non covered negative intepretations *
for each interpretation € N
find the setE of all the couplegd, A) such that
AbductiveDerivatiotibody (C),n U B, () succeeds
returningd as a substitution foBody and A
as the set of abduced literals
covered := true
while E is not empty andovered
remove the first elemerff, A) from E
Head := head(C)0
add the facts oA ton
call Derivation(not Head),n U B)
remove the facts oh fromn
if the derivation succeeds then
covered := false
if not covered then
NN :=NN +1
N':=N'U{(n,A)}
return(NP,P', NN, N")

Figure 3: AICL test function




The abductive proof procedure tries to abdymen3at 1 covered positive examples plus the number of non covered

and succeeds because it is consistent with the integrity comegative example over the total number of examples.

straint: - pi n3at 0, pi n3at 1 sincepi n3at 0 is not true When learning with ICL, the background knowledge was

inpUB. empty. When learning with AICL the background knowl-
Thusfound is setto true anch to {pi n3at 1}. Theinner edge contained an abductive thed®, A, IC) whereT is

cycle terminates, the variabtevered remains at the value empty, A contains all the 12 predicates used for describing

true and the outer cycle is terminated as well. the configurations andC' contains integrity constraints that
The value of the valueovered at the end of the outer cycle state that a pin can not be at the same time 0 and 1.

indicates that the example is covered. The learning parameters for ICL were all left to their de-
Let us now consider the test of the same clatisever the  fault values except the significance level which was set to 0,

negative interpretation represented by meaning that no significance test was performed. The same

pi nlat 0. pi n3at 0. values have been used for AICL.

pindatl. pin5atl. pin6atO. The accuracy on the testing set for each level of incom-

leteness has then been averaged over the ten folds. Figure 4
hows the value of the average accuracy as a function of the
incompleteness level. As can be seen from the graph AICL
outperforms ICL for the incompleteness levels from 5% to
20%. This shows that the abductions performed by AICL are
frequently correct. Only when the level of incompletenass i
particularly high (25%-30%) AICL has a performance sim-
ilar to ICL. The average improvement of accuracy over all
incompleteness levels is 11.2%.

In this case, an abductive derivation is started for the goai
pi nlat 0, pi n2at 0. The derivation succeeds returning
the empty substitution and = {pi n2at 0}. ThusE =
{(@,{pi n2at 0})}. covered is set to true. Then the cycle
is entered. Head is set topi n3at 1. The fact contained
in A is added ton and a derivation fonot pi n3at 1 is
started. The derivation succeedsyered is set to false, the
facts fromA are removed from, the cycle is terminated and
the interpretation is not covered.

The second point in which ICL is modified is (2) in func- .
tion Learn. The function FindBestClause not only returres th 7 Conclusions
best clause found so far but it also returns the literals ebdlu We have proposed the a|gorithm AICL that modifies ICL in
for each interpretation during the test of the clause. Thé-mo order to achieve a better performance on incomplete data.
ified function Learn, besides adding the best clalise the  The modification is based on the use of an abductive proof
current theoryf in point (2), also adds to each interpretation procedure for testing the truth of clauses in the exampég-int
the facts abduced during the test of the coverage of theelaugpretations.
on that interpretation. e AICL has been tested against ICL on a simple toy problem.

AICL has been implemented in Sicstus Prolog. In order topjtferent levels of incompleteness of the data have been con
execute the function Derivation and AbductiveDerivation o sidered, from 5% to 30%. For the levels of incompleteness

a program containing an interpretation and the backgroungom 5% to 25% AICL reached a higher accuracy.
knowledge, the Sicstus Prolog module system was used: each|n the future, we plan to perform other experiments on
interpretation is loaded in a different module and the ®8US |5rger domains in order to draw more grounded conclusions.
of the background are asserted in all the modules. In particular, we plan to apply AICL to the problem of learn-
In function TestClause the addition of the facts frdito g the specification of protocols of interaction among dgen
the current interpretation is performed by asserting te&sfa  from traces of their execution. In fact, these traces arg ver
in the corresponding module. Simiarly, the removal of thegfien incomplete due to the impossibility of recording gver

facts is performed by using the retract predicate. message exchanged between any two agents. Moreover, we
) would also like to investigate the adoption of other abdcti
6 Experiments proof procedures, as for example the IFfing and Kowal-

ICL and AICL were applied on the multiplexer dataset, con-SKi, 1991, the SCIFHAlberti et al, 2004 or the A-system
taining 32 positive interpretations and 32 negative inetgp [ Kakasetal, 2007, for completing the interpretations. These
tions. A ten-fold cross-validation was performed. In ortter Proof procedures are interesting because they provideerbet
test the performances of the two systems in the case of mis§andling of non ground abducibles.

ing data, for each fold, facts from the interpretations were

randomly chosen and removed. In particular, for each foldRefer ences

different percentages of facts were removed from the train: . . .
ing set: 5%, 10%, 15%, 20%, 25% and 30%. In this way[A"tE’e”I'.‘at al'_-* 2004 '\F’jarclo MA'If’e”" d'\ga“"lo TGa"aUe"A[:b
we have obtained 7 training sets for each fold: one with the Vvelina ?’L‘mha' a;]o a vie O'f. and raolo forroni. .
complete data and the other six with increasing missing in- duction with hypothesis confirmation. In G. Rossi,
formation, from 5% to 30%. ICL and AICL were trained on  €ditor, Proceedings of the Convegno ltaliano di Logica
the various training sets, the learned theories were tested (zlggzlputazmnale (CILC-2004Yniversity of Parma, June
the testing set (from which no information was removed) and '

the accuracy was computed. The testing was performed bjpe Raedt and Dehaspe, 199Z. De Raedt and L. Dehaspe.
employing a Prolog derivation, i.e., abductive derivatizas Clausal discovery.Machine Learning 26(2—3):99-146,
not used in testing. The accuracy is given by the number of 1997.
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[De Raedt and DZeroski, 19p4.. De Raedtand S. DZeroski.
First orderjk-clausal theories are PAC-learnablArtifi-
cial Intelligence 70:375-392, 1994.

[De Raedt and Van Laer, 19P5%. De Raedt and
W. Van Laer. Inductive constraint logic. IRroceedings
of the 6th Conference on Algorithmic Learning Theory
volume 997 ofLecture Notes in Atrtificial Intelligence
Springer-Verlag, 1995.

[Fung and Kowalski, 1997T. H. Fung and R. A. Kowalski.

The IFF proof procedure for abductive logic programming.

Journal of Logic Programming33(2):151-165, Novem-
ber 1997.

[Inoue, 2001 K. Inoue.
consequence-finding.
Sebag, editorfroceedings of the 11th International Con-
ference on Inductive Logic Programmingolume 2157
of Lecture Notes in Atrtificial Intelligencepages 65-79.
Springer-Verlag, September 2001.

Induction, abduction,

[Muggleton and Bryant, 20Q00Stephen

[Muggleton and De Raedt, 19p4.

abduction in logic programminglnformation Sciences
116(1):25-54, May 1999.

Muggleton and
Christopher Bryant. Theory completion using inverse en-
tailment. In J. Cussens and A. Frisch, editthmceedings

of the 10th International Conference on Inductive Logic
Programming volume 1866 ol ecture Notes in Artificial
Intelligence pages 130-146. Springer-Verlag, 2000.

Muggleton and
L. De Raedt. Inductive logic programming: Theory
and methodsJournal of Logic Programmingl9/20:629—
679, 1994,

and [Rayetal, 2003 O. Ray, K. Broda, and A. Russo. Hybrid
In Céline Rouveirol and Micheéle @abductive inductive learning: a generalisation of Progol.

In T. Horvath and A. Yamamoto, editorBroceedings of
the 13th International Conference on Inductive Logic Pro-
gramming volume 2835 ol ecture Notes in Artificial In-
telligence pages 311-328. Springer-Verlag, 2003.

[Kakas and Mancarella, 19p®. C. Kakas and P. Mancar- [Yamamoto, 200D A. Yamamoto. Using abduction for in-
ella. On the relation between truth maintenance and abduc- duction based on bottom generalization. In P. A. Flach

tion. In Proceedings of the 2nd Pacific Rim International
Conference on Artificial Intelligenc&990.

[Kakas and Riguzzi, 20Q0Antonis C. Kakas and Fabrizio
Riguzzi. Abductive concept learningNew Generation
Computing 18(3), May 2000.

[Kakaset al,, 200] A. C. Kakas, B. van Nuffelen, and

M. Denecker. A-System: Problem solving through ab-

duction. In B. Nebel, editorProceedings of the Seven-
teenth International Joint Conference on Atrtificial Intell
gence, Seattle, Washington, USA (IJCAI;Gi9ges 591

596, Seattle, Washington, USA, August 2001. Morgan

Kaufmann Publishers.

[Lammaet al, 1999 Evelina Lamma, Paola Mello, Michela
Milano, and Fabrizio Riguzzi. Integrating induction and

and A. C. Kakas, editorgbductive and Inductive Reason-
ing, Essays on their Relation and Integratjomlume 18
of Pure and Applied LogicKluwer, 2000.



