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Abstract

We propose novel ways of solving Reinforcement Learning tasks (that is, stochastic optimal con-
trol tasks) by hybridising Evolutionary Algorithms with methods based on value functions. We call
our approach Population-Based Reinforcement Learning. The key idea, from Evolutionary Compu-
tation, is that parallel interacting search processes (in this case Reinforcement Learning or Dynamic
Programming algorithms) can aid each other, and produce improved results in less time than the
same number of search processes running independently. This is a new and general direction in Re-
inforcement Learning research, and is complementary to other directions as it can be combined with
them. We briefly compare our approach to related ones.

1 Introduction

We propose novel ways of solving Reinforcement Learning (RL) tasks (that is, stochastic optimal control
tasks) by hybridising Evolutionary Algorithms with methods based on value functions. The latter include
Reinforcement Learning algorithms and Dynamic Programming (DP). Unlike evolutionary methods, RL
and DP methods are very data efficient, but make stronger assumptions about the task that makes it
difficult to scale them up to solve many real-world problems.

We call our approach Population-Based Reinforcement Learning. The key idea, from Evolutionary
Computation, is that parallel interacting search processes (in this case RL or DP algorithms) can aid
each other, and produce improved results in less time than the same number of search processes running
independently. Furthermore, the bulk of computation can also be performed independently, making it
easy to distribute across cheap clusters of workstations (such as departmental workstations that often
sit idle, or the forthcoming GRID). In this way, real-time learning costs can be reduced even if the total
learning costs of the new approach prove to be more expensive. This is a new and general direction
and promises to be fruitful with, eventually, a broad range of applications. It is complementary to other
directions in RL and DP research since it can be combined with existing methods from those fields.

This document outlines the approach we intend to take and contrasts it with existing work in related
areas. Section 2 provides some background on the relevant areas: RL and Evolutionary Algorithms.
Section 3 introduces the main aspects of our population-based approach, along with some interesting,
but non-essential, opportunities it affords. Finally, section 4 briefly compares our approach with related
ones.

2 Background

This section very briefly introduces the tasks we wish to address, followed by the two types of solution
methods which our approach hybridises.
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2.1 Reinforcement Learning Tasks

Reinforcement Learning is a computational approach to learning how to obtain rewards and avoid pun-
ishments through trial and error, directly through interaction with the task. The learner has some policy
which specifies an action for each state the system may be in. The goal of the learner is to find an
optimal policy, which maximises the reward it receives in the long term. Successful applications of RL to
real-world problems include elevator dispatching [2], space shuttle payload scheduling [12], and a master-
level backgammon player [11]. In each case RL provided solutions that outperformed best known prior
solutions.

Concretely, consider the case of an offshore wave-powered electricity generator. Segments of the system
are articulated; as they ride the waves they drive shafts through magnetic fields and so generate power.1

The aim of the system is to maximise the power output over a period of time. Thus, the power output
supplies a reinforcement signal which the system aims to maximise. The system has various sensors that
indicate its state (e.g. the general size of waves, relative position of segments, position upon the current
wave, and so on). In each state the Reinforcement Learning algorithm can take various actions, such
as controlling its buoyancy or the stiffness of joints, each of which affects how much power is generated.
Also, the effects of some actions may not be immediate; actions taken now may result in rewards later.
For instance, the stiffness of the joints in the trough of a wave may affect how much power is generated
at its peak. Reinforcement Learning algorithms solve this delayed credit assignment problem.

2.2 Reinforcement Learning Algorithms and Dynamic Programming

Modelling a system such as the one above in simulation can be difficult, costly and error-prone (e.g.
real-world factors such as mechanical wear are difficult to factor in). RL algorithms require no such
model. They simply observe changes in reward following their actions and use this to learn better actions
in the future. They do this by learning a value-function; an evaluation of the long-term expected reward
of taking actions in states.

In cases where a model of the environment is available, or can be learned, then Dynamic Programming
(DP) methods also apply. Their approach to the solution is similar to RL methods. From here on we
refer to both fields generically as “RL”.

In cases where the RL task can be formalised as a small discrete (but unknown) Markov Decision
Process (MDP), due to their rigorously proven statistical foundations, several RL algorithms provide
guarantees of convergence upon optimal policies. However, this formalism seldom applies for real-world
tasks where environments are either often partially observable (i.e. non-Markov), very large or have
continuous state. As a result, despite much initial success, RL often has difficulty scaling to interesting
tasks. In addition, RL suffers from the “curse of dimensionality”; computational requirements tend to
increase exponentially with the number of input variables.

2.3 Evolutionary Computation

In contrast to RL, Evolutionary Computation (EC) methods make much weaker assumptions about the
task that allows them to succeed in places where RL fails. Also, the fundamental way in which they
search for the problem’s solution is different; EC methods directly search in the space of policies, while
RL methods search in the space of value functions (from which policies are indirectly derived). EC
methods work as follows:

1. create a population P of n random policies
2. repeat
3. evaluate each policy in P

4. replace P with a new population created with evolutionary methods

Step 4 consists of preferentially selecting higher-valued (“fitter”) policies as parents, and applying evolu-
tionary operators (e.g. crossover and mutation) to transform them stochastically into offspring.

We believe that directly searching for policies in this way can be more effective than RL in some cases,
e.g. when the Markov assumption does not hold. See also, e.g. [1], on the advantages of policy search.
On the other hand, a disadvantage of evolutionary search is that it may be prone to finding sub-optimal

1This example was inspired by the Pelamis wave energy converter currently in development by Ocean Power Delivery

Ltd. of Edinburgh.
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solutions. Additionally, for EC methods to improve their policies, they must evaluate their fitness. This
can be slow in cases where the environment is stochastic and there is a long delay between actions and
the rewards they generate. In contrast, RL methods evaluate policies incrementally, more efficiently and
at a much finer level of detail.

The power of our approach will be derived from combining the benefits of both methods, finding a
middle ground that is more powerful than either extreme.

3 Three Approaches to Scaling RL

We will attempt to scale RL up to larger tasks in three different ways as described in the following sections.
Section 3.1 details the main innovation. Sections 3.2 and 3.3 detail some interesting opportunities and
challenges that follow.

3.1 Population-Based Reinforcement Learning

To date, EC and standard (i.e. value function-based) RL have been considered quite separate. However,
the methods are complementary and we can combine them in the same algorithm. For example:

1. create a population P of n random policies
2. repeat
3. evaluate each policy in P

4. improve each policy in P based on value functions
5. replace (part of) P with a new population created with evolutionary methods

The details of this abstract algorithm are left unspecified; any number of instantiations are possible that
combine existing techniques derived from EC and RL. See [6] for more on the relationship between RL
and EC.

Why is it useful to combine these two approaches? Our approach has several novel advantages.
i) From EC we will take methods that allow direct search through policy space. Although value function
methods (RL methods) are efficient (and in some cases provably convergent), evolutionary operators allow
larger jumps in policy space. ii) From RL we will take rapid incremental learning methods that produce
detailed statistics about the quality of the learner’s policy in particular states that are not available to
standard evolutionary methods. This information will allow us to provide more directed alternatives
to the mutation and crossover operators standardly used by EC methods. iii) Because evolutionary
search evaluates and reproduces entire policies, it does not suffer in the ways that value function methods
do when the Markov property is violated [10]. In particular, existing attempts to scale up RL using
function approximators (e.g. with neural networks) have been shown to be unstable if attempts are made
to improve the policy during learning. Our approach allows the policy to be fixed from the perspective
of the RL element, yet the evolutionary element allows continued improvements to it. iv) Our method
allows the algorithms to make efficient use of experience through learning by observation (see section
3.2). v) Instances of our method are easily parallelised (see section 3.3). These five advantages should
allow us to solve RL tasks which cannot currently be solved.

Hybridising evolutionary search and local search [9] has often proved effective. If we consider the policy
improvement phase of the algorithm above as a form of local search, we can consider this algorithm as
another instance of the hybrid evolutionary/local search approach.

Why has this hybrid approach not already been investigated? First, Evolutionary Computation
and Reinforcement Learning are two different fields composed of different researchers. Second, they take
very different approaches to learning policies. Although the similarity between the two at a very abstract
level is apparent from the algorithms presented above, they are not usually presented in this way. Third,
although EAs can be applied to RL there has been little work in this area (apart from work on Learning
Classifier Systems), which helps explain why this novel approach to hybridising them has not occurred
until now.
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Challenges 1. We will need to characterise the space of policies as a fitness landscape, in order to bridge
the two approaches conceptually. 2. We anticipate that the presence of multiple optimal policies will
produce multiple global optima in the fitness landscape, introducing difficulties for crossover operators,
the need for restricted mating and, perhaps, other means of encouraging diversity.2 3. Sophisticated forms
of crossover which extract above-average subpolicies based on the value function and state transition
information are possible. However, it is as yet unclear which may be best. 4. It would be desirable
to derive policy fitness from the value function (mainly because Temporal Difference methods perform
evaluation rapidly), rather than using the obvious Monte Carlo approach. However, this will require
estimating the error in the value function, to avoid reproducing optimistic value functions preferentially.

3.2 Learning By Observation

In tasks such as the power generation scenario, there are different ways in which our hybrid population of
learners may interact together and with the environment. There may be many independent, but similar
controllable processes each with a Reinforcement Learning controller (e.g. in our scenario, consider that
we might have an array of power generators). However, given that experience of the environment is being
collected simultaneously and in parallel, and that such experience may be costly to obtain, it makes sense
for each agent to attempt to exploit the experience generated by the others by observing their actions
and their consequences. We call this model learning by observation. Some existing work tackles this
problem, but generally in the context of multi-agent RL, and differs from our approach in ways discussed
in section 4. One of our goals will be to find methods of learning by observation which suit the methods
of section 3.1.

3.3 Parallel Implementation

Writing algorithms to exploit parallel processing machines is often costly and difficult. Evolutionary
Algorithms, however, are easily parallelised since (typically) each element in the population can have
its fitness evaluated independently. In the context of RL, this means each individual’s policy can be
evaluated independently on its own processor. Furthermore, clusters of workstations are common and
inexpensive compared to massively parallel shared-memory machines. We expect to be able to employ
clusters to dramatically reduce real-time running costs. However, there is a communications latency
between such machines which makes learning by observation more difficult: by the time one machine can
broadcast its experience to another, a second can often generate much more experience independently.3

However, even when communications latencies preclude learning by observation, workstation clusters are
still compatible with our hybrid search approach. In this case, machines communicate at the policy
level, rather than at the experience level. Communicating policy information (i.e. using crossover) occurs
infrequently, so network latencies are not a significant problem.4

3.4 Summary

Existing RL methods have trouble scaling up as they make assumptions that do not apply for real-world
applications, and suffer from the curse of dimensionality. We propose to extend the range of tasks that
RL can handle using an approach which is novel in two ways: 1) we will combine evolutionary search
with existing RL methods yielding more efficient search, and 2) unlike existing RL methods, the resulting
algorithms will be well-suited to parallel implementation on inexpensive clusters of workstations. Where
possible, our approach will take advantage of learning by observation among the population of agents.

We wish to emphasise that we expect the performance of the new approach will be as good or better
than standard RL per unit of real-time. That is, the worst case is where only the best performing agent
is ultimately used and the others are disregarded. Finally, we note that our approach is universal in the
sense that it can be used with any RL algorithm, including other approaches to extending scalability
(such as function approximation).

2In the present context, a fitness landscape is a mapping from each policy to a measure of its value, i.e. a value function

over complete policies. It is this function which evolutionary search attempts to optimise.
3There are situations where generating experience is slow and communications latency is not an obstacle to sharing it,

for example using real robots, whose physical movements involve greater latencies than the communications latencies.
4This parallels the situation in nature where children cannot inherit the experiences of their parents but only their genes.
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4 Novelty and Related Work

Our approach differs from existing, loosely related work using evolutionary methods, Learning Classifier
Systems, ensemble methods, hierarchical RL, and Ant-Q algorithms. None of these methods apply
a population of non-interacting agents with homogeneous reward functions to the same task, as our
approach does. All these areas either address different problems to ours, or address our problem in a
fundamentally different way.

Evolutionary Methods and Learning Classifier Systems It must be emphasised that we are nei-
ther simply proposing a form of evolution-only search in policy space, nor are we proposing any form of
Learning Classifier System. We are, rather, proposing a new class of algorithms, which combine features
of both value function methods and Evolutionary Algorithms. Although Learning Classifier Systems are
hybrids of value function and Evolutionary Algorithms, the proposed work hybridises them in a funda-
mentally different way. Where Learning Classifier Systems use evolutionary methods for generalisation
and value function methods for policy learning, in the hybrid approach proposed here, both are applied to
policy learning. Generalisation is an orthogonal issue, which can be addressed using the range of function
approximators normally employed in RL (e.g. neural networks or Learning Classifier Systems).

Multi-agent RL The proposed work differs from the considerable work on multi-agent RL in that in
multi-agent RL agents may affect each other through the environment and consequently are attempting
to optimise Multi-Agent Markov Decision Processes (MAMDPs). For example, they may compete or
collaborate, or simply change the state of the environment, all of which complicates matters considerably.
Our approach (in its basic formulation) optimises MDPs, not MAMDPs, and so many of the difficulties
of multi-agent RL do not apply. We expect to extend convergence proofs to our methods in special cases.

Of note are two works on multi-agent RL which employ forms of learning by observation. Crites’s
work on elevator scheduling employed a population of agents (one for each elevator), which, in one
configuration, updated a common value function [2]. Pendrith’s Distributed Q-learning (DQL) resembles
Crites’s work, except that only nearby agents can sense each other, and the Q-updates are averages of
the values generated by the agents taking a given action in a given state [7]. Both, however, apply agents
with a common policy to MAMDPs, whereas our approach applies agents with different policies to MDPs.

Ensemble Methods Our approach differs from ensemble methods [8, 3], in which heterogeneous agents
share one body and adapt to different aspects of the task. In our basic approach we assume that agents are
homogeneous, but we could extend our approach to use agents with different representations (e.g. agents
which use different function approximators to represent their value functions) in which case ensemble
methods might be applicable. Ensemble methods are typically applied to classification tasks and we are
unaware of any application of ensemble methods per se to RL (but see the discussion of Humphrys’s work
below).

Hierarchical RL Humphrys’s work on RL with a collection of agents could be seen as a form of
ensemble method for RL [5]. In it, a task is divided into sub-goals, and one agent assigned to each
sub-goal. Each agent has its own reward function, and access to its own subset of the state space. It is
therefore a way of decomposing RL tasks into simpler tasks, and achieving (hand-coded) generalisation
by restricting access to the state space. The main focus of Humphrys’s work was an investigation of
methods for coordinating the agents involved. Our approach differs in that each agent has the same task
and reward function, and the same access to the state space. Our approach could, however, be extended
to incorporate ideas from Humphrys’s work; we could give agents heterogeneous reward functions and
subsets of the state space. Evolutionary methods could be used to adapt both. In this way, the task
might be decomposed automatically rather than by hand.

The Ant-Q Algorithm The Ant-Q algorithm [4] resembles our population-based approach in that
a population of agents collectively solve an MDP. The approaches differ in that the ants share a single
value function and derive different policies from it, whereas our agents each have their own policy and
value function. Ant-Q was developed for the travelling salesman problem, and consequently includes a
form of memory and a shorter-path heuristic which our approach does not.
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