
Genetics-based Machine Learning

Tim Kovacs
Department of Computer Science

University of Bristol

This is the author’s final version (dated April 2009) of a chapter to appear in Springer Verlag’s
Handbook of Natural Computing in 2010. The published version will be available at
www.springerlink.com. In this version 3.5 Learning Classifier Systems had a new sub-
subsection 3.5.2 Representation and several other subsubsections were moved into the new one.
This version also has a more detailed table of contents and its bibliography lists the pages each
reference is cited on. Any other differences are due to the proofreader. By default please cite the
published version:

• Tim Kovacs. Genetics-based Machine Learning. To appear in Grzegorz Rozenberg, Thomas
Bäck, and Joost Kok, editors, Handbook of Natural Computing: Theory, Experiments, and
Applications. Springer Verlag, 2010.

Abstract

This is a survey of the field of Genetics-based Machine Learning (GBML): the applica-
tion of evolutionary algorithms to machine learning. We assume readers are familiar with
evolutionary algorithms and their application to optimisation problems, but not necessarily
with machine learning. We briefly outline the scope of machine learning, introduce the more
specific area of supervised learning, contrast it with optimisation and present arguments for
and against GBML. Next we introduce a framework for GBML which includes ways of clas-
sifying GBML algorithms and a discussion of the interaction between learning and evolution.
We then review the following areas with emphasis on their evolutionary aspects: GBML for
sub-problems of learning, genetic programming, evolving ensembles, evolving neural net-
works, learning classifier systems, and genetic fuzzy systems.

1

www.springerlink.com

Contents 2

1 Introduction 3
1.1 Machine Learning . 3
1.2 Arguments For and Against GBML . 5

2 A Framework for GBML 7
2.1 Classifying GBML Systems by Role . 7
2.2 Classifying GBML Systems Algorithmically 8
2.3 The Interaction of Learning and Evolution 10
2.4 Other GBML Models . 12

3 GBML Areas 13
3.1 GBML for Sub-problems of Learning . 13
3.2 Genetic Programming . 14

3.2.1 GP Trees . 14
3.2.2 Decision Trees . 15
3.2.3 Extensions to GP . 16
3.2.4 Conclusions . 16

3.3 Evolving Ensembles . 17
3.3.1 Evolutionary Ensembles . 17
3.3.2 Conclusions . 18

3.4 Evolving Neural Networks . 18
3.4.1 Ensembles of NNs . 21
3.4.2 Yao’s Framework for Evolving NNs 22
3.4.3 Conclusions . 22

3.5 Learning Classifier Systems . 24
3.5.1 Production Systems and Rule(Set) Parameters 24
3.5.2 Representation . 25
3.5.3 Rule Discovery . 28
3.5.4 LCS Credit Assignment . 32
3.5.5 Conclusions . 34

3.6 Genetic Fuzzy Systems . 34
3.6.1 Evolution of FRBSs . 35
3.6.2 Genetic Neuro-fuzzy Systems . 36
3.6.3 Conclusions . 37

4 Conclusions 38

Glossary 39

References 39

2

1 Introduction
Genetics-based Machine Learning (GBML) is the application of Evolutionary Algorithms
(EAs) to machine learning. We assume readers are familiar with EAs, which are well docu-
mented elsewhere, and their application to optimisation problems. In this introductory sec-
tion we outline the scope of machine learning, introduce the more specific area of supervised
learning, and contrast it with optimisation. However, the treatment is necessarily brief and
readers who desire to work in GBML are strongly advised to first gain a solid foundation
in non-evolutionary approaches to machine learning. Section §2 describes a framework for
GBML which includes ways of classifying GBML algorithms and a discussion of the inter-
action between learning and evolution. Section §3 reviews the work of a number of GBML
communities with emphasis on their evolutionary aspects. Finally, section §4 concludes.

What’s Missing Given the breadth of the field and the volume of the literature the cov-
erage herein is necessarily somewhat arbitrary and misses a number of significant subjects.
These include a general introduction to machine learning including the structure of learning
problems and their fitness landscapes (which we must exploit in order to learn efficiently),
non-evolutionary algorithms (which constitute the majority of machine learning methods,
and include both simple and effective methods), and theoretical limitations of learning (such
as the no free lunch theorem for supervised learning [311] and the conservation law of gener-
alisation [245]). Also missing is coverage of GBML for clustering, reinforcement learning,
Bayesian networks, artificial immune systems, artificial life, and application areas. Finally,
some areas which have been touched on have been given an undeservedly cursory treatment,
including EAs for data preparation (e.g. feature selection), co-evolution, and comparisons
between GBML and non-evolutionary alternatives. However, [94] contains good treatments
of GBML for, among others, clustering and data preparation.

1.1 Machine Learning
Machine learning is concerned with machines which improve with experience and reason
inductively or abductively in order to: optimise, approximate, summarise, generalise from
specific examples to general rules, classify, make predictions, find associations, propose ex-
planations, and propose ways of grouping things. For simplicity we will restrict ourselves to
classification and optimisation problems.

Inductive Generalisation Inductive generalisation refers to the inference of unknown
values from known values. Induction differs from deduction in that the unknown values are
in fact unknowable, which gives rise to fundamental limitations in what can be learned. (If at
a later time new data makes all such values known the problem ceases to be inductive.) Given
the unknown values are unknowable, we assume they are correlated with the known values
and we seek to learn the correlations. We formulate our objective as maximising a function of
the unknown values. In evolutionary computation this objective is called the fitness function,
whereas in other areas the analogous feedback signal may be known as the error function,
or by other names. There is no need for induction if: i) all values are known and ii) there

3

is enough time to process them. We consider two inductive problems: function optimisation
and learning. We will not deal with abduction.

1-Max: a Typical Optimisation Problem The 1-max problem is to maximise the
number of 1s in a binary string of length n. The optimal solution is trivial for humans al-
though it is less so for EAs. The representation of this problem follows. Input: none. Output:
bit strings of length n. Data generation: we can generate as many output strings as time al-
lows, up to the point where we have enumerated the search space (in which case the problem
ceases to be inductive). Training: the fitness of a string is the number of 1s it contains. We
can evaluate a learning method on this task by determining how close it gets to the known
optimal solution. In more realistic problems the optimum is not known and we may not even
know the maximum possible fitness. Nonetheless, for both toy and realistic problems we can
evaluate how much training was needed to reach a certain fitness and how a learning method
compares to others.

Classification of Mushrooms: a Typical Learning Problem Suppose we want to
classify mushroom species as poisonous or edible given some training data consisting of
features of each species (colour, size and so on) including edibility. Our task is to learn a
hypothesis which will classify new species whose edibility is unknown. Representation: the
input is a set of nominal attributes and the output is a binary label indicating edibility. Data
generation: a fixed dataset of input/output examples derived from a book. Typically the
dataset is far, far smaller than the set of possible inputs, and we partition it into train and test
sets. Training: induce a hypothesis which maximises classification accuracy on the train set.
Evaluation: evaluate the accuracy of the induced hypothesis on the test set, which we take as
an indication of how well a newly encountered species might be classified.

Terminology in Supervised Learning Although many others exist, we focus on the
primary machine learning paradigm: standard Supervised Learning (SL), of which the pre-
ceding mushroom classification task is a good example. In SL we have a dataset of labelled
input/output pairs. Inputs are typically called instances, examples or exemplars and are fac-
tored into attributes (also called features) while outputs are called classes (for classification
tasks) or the output is called the dependent variable (for regression tasks).

Comparison of Supervised Learning and Optimisation In SL we typically have
limited training data and it is crucial to find a good inductive bias for later use on new data.
Consequently, we must evaluate the generalisation of the induced hypothesis from the train
set to the previously unused test set. In contrast, in optimisation we can typically can generate
as much data as time allows and we can typically evaluate any output. We are concerned
with finding the optimum output in minimum time, and, specifically, inducing which output
to evaluate next. As a result no test set is needed.

Issues in Supervised Learning A great many issues arise in SL including overfitting,
underfitting, producing human readable results, dealing with class imbalances in the train-
ing data, asymmetric cost functions, noisy and non-stationary data, online learning, stream

4

mining, learning from particularly small datasets, learning when there are very many at-
tributes, learning from positive instances only, incorporating bias and prior knowledge, han-
dling structured data, and using additional unlabelled data for training. None of these will be
dealt with here.

1.2 Arguments For and Against GBML
GBML methods are a niche approach to machine learning and much less well-known than
the main non-evolutionary methods, but there are many good reasons to consider them.

Accuracy Importantly, the classification accuracy of the best evolutionary and non-evolutionary
methods are comparable [94] §12.1.1.

Synergy of Learning and Evolution GBML methods exploit the synergy of learning and
evolution, combining global and local search and benefitting from the Baldwin effect’s
smoothing of the fitness landscape §2.3.

Epistasis There is some evidence the accuracy of GBML methods may not suffer from
epistasis as much as typical non-evolutionary greedy search [94] §12.1.1.

Integrated Feature Selection and Learning GBML methods can combine feature selec-
tion and learning in one process. For instance feature selection is intrinsic in LCS
methods §3.5.

Adapting Bias GBML methods are well-suited to adapting inductive bias. We can adapt
representational bias by e.g. selecting rule condition shapes §3.5.2, and algorithmic
bias by e.g. evolving learning rules §3.4.

Exploiting Diversity We can exploit the diversity of a population of solutions to combine
and improve predictions (the ensemble approach §3.3) and to generate Pareto sets for
multiobjective problems.

Dynamic Adaptation All the above can be done dynamically, to improve accuracy, to deal
with non-stationarity, and to minimise population size. This last is of interest in order
to reduce overfitting, improve run-time and improve human-readability.

Universality Evolution can be used as a wrapper for any learner.

Parallelisation Population-based search is easily parallelised.

Suitable Problem Characteristics From an optimisation perspective, learning problems are
typically large, non-differentiable, noisy, epistatic, deceptive, and multimodal [207].
To this list we could add high-dimensional and highly constrained. EAs are a good
choice for such problems.

See [61] and §3.4 for more arguments in favour of GBML. At the same time there are
arguments against using GBML.

Algorithmic Complexity GBML algorithms are typically more complex than their non-
evolutionary alternatives. This makes them harder to implement, harder to analyse,
and means there is less theory to guide parameterisation and development of new algo-
rithms.

5

Increased Run-time GBML methods are generally much slower than the non-evolutionary
alternatives.

Suitability for a Given Problem No single learning method is a good choice for all prob-
lems. For one thing the bias of a given GBML method may be inappropriate for a
given problem. Problems to which GBML methods are particularly prone include pro-
hibitive run-time (or set-up time) and that simpler and/or faster methods may suffice.
Furthermore, even where GBML methods perform better the improvements may be
marginal.

See the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of GBML in
[224] for more.

6

2 A Framework for GBML
The aim of the framework presented in this section is to structure the range of GBML systems
into more specific categories about which we can make more specific observations than we
could about GBML systems as a whole. We present two categorisations. In the first (§2.1),
GBML systems are classified by their role in learning; specifically their application to i)
sub-problems of machine learning, ii) learning itself, or iii) meta-learning. In the second
categorisation (§2.2), GBML systems are classified by their high-level algorithmic approach
as either Pittsburgh or Michigan systems. Following this, in §2.3 we briefly review ways in
which learning and evolution interact and in §2.4 we consider various models of GBML not
covered earlier.

Before proceeding we note that evolution can output a huge range of phenotypes, from
scalar values to complex learning agents, and that agents can be more or less plastic (inde-
pendent of evolution). For example, if evolution outputs a fixed hypothesis, that hypothesis
has no plasticity. In contrast, evolution can output a neural net which, when trained with
backpropagation, can learn much. (In the latter approach evolution may specify the network
structure while backpropagation adapts the network weights.)

Structure of GBML Systems We can divide any evolutionary (meta)-learning system
into the following parts: i) Representation, which consists of the genotype (the learner’s
genes) and phenotype (the learner itself, built according to its genes). In simple cases the
genotype and phenotype may be identical, for example with the simple ternary LCS rules of
§3.5.2. In other cases the two are very different and the phenotype may be derived through a
complex developmental process (as in nature); see §3.4 on developmental encodings for neu-
ral networks. ii) Feedback, which consists of the learner’s objective function (e.g. the error
function in supervised learning) and the fitness function which guides evolution. iii) The pro-
duction system, which applies the phenotypes to the learning problem. iv) The evolutionary
system, which adapts genes.

2.1 Classifying GBML Systems by Role
In order to contrast learning and meta-learning we define learning as a process which outputs
a fixed hypothesis. Accordingly, when evolution adapts hypotheses it is a learner and when
it adapts learners it is a meta-learner. However, this distinction between learning and meta-
learning should not be overemphasised; if evolution outputs a learner with little plasticity
then evolution may be largely responsible for the final hypothesis, and in this case plays
both a learning and meta-learning role. Furthermore, both contribute to the ultimate goal of
adaptation, and in §2.3 we will see ways in which they interact.

Evolution as learning is illustrated in the left of figure 1 which shows a GBML agent in-
teracting directly with the learning problem. In contrast, the right of the figure shows GBML
as meta-learning: the learner (or a set of learners) is the output of evolution, and the learner
interacts directly with the learning problem while evolution interacts with it only through
learners. At time step 1 of each generation evolution outputs a learning agent and at the gen-
eration’s final step T it receives an evaluation of the learner’s fitness. During the intervening
time steps the learner interacts with the problem. This approach to meta-learning is universal

7

Figure 1: Left: GBML as learner. Input, Output and Fitness shown. Right: GBML as meta-
learner. Subscripts denote generation and time step (1 . . .T)

as any learner can be augmented by GBML, and is related to the wrapper approach to feature
selection in 3.1.

Meta-learning is a broad term with different interpretations but the essential idea is learn-
ing about learning. A meta-learner may optimise parameters of a learner, learn which learner
to apply to a given input or a given problem, learn which representation(s) to use, optimise
the update rules used to train learners, learn an algorithm which solves the problem, evolve
an ecosystem of learners, and potentially be open-ended. See [288, 107] on non-evolutionary
meta-learning and [43, 162, 163, 42] on the hyperheuristics (heuristics to learn heuristics)
approach, of which a subset is evolutionary.

A third role for evolution is application to various sub-problems of learning including
feature selection, feature construction, and other optimisation roles within learning agents.
In these cases evolution neither outputs the final hypothesis nor outputs a learning agent
which does so. Section §3.1 deals with such applications.

2.2 Classifying GBML Systems Algorithmically
In the Pittsburgh (Pitt) approach one chromosome encodes one solution. We assume fitness
is assigned to chromosomes, so in Pitt systems it is assigned to solutions. This leaves a credit
assignment problem: how did the chromosome’s component genes contribute to the observed
fitness of the chromosome? This is left to evolution as this is what EAs are designed to deal
with. In the Michigan approach one solution is (typically) represented by many chromosomes
and so fitness is assigned to partial solutions. Credit assignment differs from the Pitt case as
chromosomes not only compete for reproduction but may also complement and cooperate
with each other. This gives rise to the issues of how to encourage cooperation, complemen-

8

Figure 2: Michigan and Pittsburgh rule-based systems compared. The F:x associated with each
chromosome indicates its fitness

tarity, and coverage of inputs, all of which makes designing an effective fitness function more
complex than in Pitt systems. In Michigan systems the credit assignment problem is how to
measure a chromosome’s contributions to the overall solution, as reflected in the various as-
pects of fitness just mentioned. To sum up the difficulty in Michigan systems: the best set
of chromosomes may not be the set of best (i.e. fittest) chromosomes [94]. To illustrate,
figure 2 depicts the representation used by Pitt and Michigan versions of the rule-based sys-
tems called Learning Classifier Systems (see §3.5). In a Pittsburgh LCS a chromosome is a
variable-length set of rules while in a Michigan LCS a chromosome is a single fixed-length
rule.

Although the Pittsburgh and Michigan approaches are generally presented as two discrete
cases some hybrids exist e.g. [297].

Pittsburgh and Michigan Compared Pittsburgh systems (especially naive implemen-
tations) are slower, since they evolve more complex structures and they assign credit at a
less specific (and hence less informative) level.1 Additionally, since their chromosomes are
more complex so are their genetic operators. On the other hand they face less complex credit
assignment problems and are hence more robust, that is, more likely to adapt successfully.
Michigan systems use a finer grain of credit assignment than the Pittsburgh approach, which
means bad partial solutions can be deleted without restarting from scratch. This makes them
more efficient and also more suitable for incremental learning. However, credit assignment
is more complex in Michigan systems. Since the solution is a set of chromosomes: i) the

1See, however, §3.5.3 on the windowing approach to improving run-time and [9] for an approach which avoids
performing matching operations between rule conditions and irrelevant features.

9

On each time step:
1. Identify match set: subset of population which match current input
2. Compute support in match set for each class
3. Select class
4. Identify action set: subset of match set which advocate selected class
5. Update action set based on feedback
6. Optionally alter population

Figure 3: A basic Michigan algorithm

population must not converge fully, and ii) as noted the best set of chromosomes may not be
the set of best chromosomes.

The two approaches also tend to be applied in different ways. Pitt systems are typically
used offline and are algorithm-driven; the main loop processes each chromosome in turn
and seeks out data to evaluate them (which is how a standard GA works, although fitness
evaluation is typically simpler in a GA). In contrast, Michigan systems are typically used
online and are data-driven; the main loop processes each data input in turn and seeks out
applicable chromosomes (see figure 3). As a result Michigan systems are more often used
as learners (though not necessarily more often as meta-learners) for reinforcement learning,
which is almost always on-line. The Michigan approach has mainly been used with LCS.
See [110, 141, 297, 95, 154] for comparison of the approaches.

Iterative Rule Learning IRL is a variation on the Michigan approach in which, as usual,
one solution is represented by many chromosomes, but only the single best chromosome is
selected after each run, which alters the co-evolutionary dynamics of the system. The output
of multiple runs is combined to produce the solution. The approach originated with SIA
(Supervised Inductive Algorithm) [287, 190], a supervised genetic rule learner.

Genetic Cooperative-Competitive Learning GCCL is another Michigan approach
in which on each generation is ranked by fitness and a coverage-based filter then allocates
inputs to the first rule which correctly covers them. Inputs are only allocated to one rule
per generation and rules which have no inputs allocated die at the end of a generation. The
remaining rules’ collective accuracy is compared to the previous best generation, which is
stored offline. If the new generation is more accurate (or the same but has fewer rules)
it replaces the previous best. Examples include COGIN [110, 111], REGAL [104], and
LOGENPRO [312].

2.3 The Interaction of Learning and Evolution
This section briefly touches on the rich interactions between evolution and learning.

Memetic Learning We can characterise evolution as a form of global search, which is
good at finding good basins of attraction, but poor at finding the optimum of those basins. In

10

contrast, many learning methods are forms of local search and have the opposite characteris-
tics. We can get the best of both by combining them, which generally generally outperforms
either alone [316]. For example, evolving the initial weights of a neural network and then
training them with gradient descent can be two orders of magnitude faster than using ran-
dom initial weights [92]. Methods which combine global and local search are called memetic
algorithms [117, 118, 214, 212, 252, 213, 240]. See [161] for a self-contained tutorial.

Darwinian and Lamarckian Evolution In Lamarckian evolution/inheritance, learn-
ing during an individual’s lifetime directly alters genes passed to offspring, so offspring
inherit the result of their parents’ learning. This does not occur in nature but can in com-
puters and has the potential to be more efficient than Darwinian evolution since the results of
learning are not thrown away. Indeed, Ackley and Littman [2] showed Lamarckian evolution
was much faster on stationary learning tasks but Saski and Tokoro [243] showed Darwinian
evolution is generally better on non-stationary tasks. See also [296, 315, 228, 293].

The Baldwin Effect The Baldwin effect is a two-part dynamic between learning and
evolution which depends on Phenotypic Plasticity (PP): the ability to adapt (e.g. learn) during
an individual’s lifetime. The first aspect is this. Suppose a mutation would have no benefit
except for PP. Without PP, the mutation does not increase fitness, but with PP it does. Thus PP
helps evolution to adopt beneficial mutations; it effectively smooths the fitness landscape. A
possible example from nature is lactose tolerance in human adults. At a recent point in human
evolution a mutation occurred which allows adult humans to digest milk. Subsequently,
humans learned to keep animals for milk, which in turn made the mutation more likely to
spread. The smoothing effect on the fitness landscape depends on PP; the greater the PP
the more potential there is for smoothing. All GBML methods exploit the Baldwin effect
to the extent that they have PP. See [293] §7.2 for a short review of the Baldwin effect in
reinforcement learning.

The second aspect of the Baldwin effect is genetic assimilation. Suppose PP has a cost
(e.g. learning involves making mistakes). If PP can be replaced by new genes, it will be;
for instance a learned behaviour can become instinctive. This allows learned behaviours to
become inherited without Lamarckian inheritance.

Turney [280] has connected the Baldwin effect to inductive bias. All inductive algorithms
have a bias and the Baldwin effect can be seen as a shift from weak to strong bias. When bias
is weak agents rely on learning; when bias is strong agents rely on instinctive behaviour.

Evaluating Evolutionary Search by Evaluating Accuracy Kovacs and Kerber [157]
point out that high classification accuracy does not imply effective genetic search. To illus-
trate, they initialised XCS [301] with random condition/action rules and disabled evolution-
ary search. Updates to estimates of rule utility, however, were made as usual. They found
the system was still able to achieve very high training set accuracy on the widely-used 6
and 11 multiplexer tasks since ineffective rules were simply given low weight in decision
making, though neither removed nor replaced. Care is therefore warranted when attributing
good accuracy to genetic search. A limitation of this work is that test set accuracy was not
evaluated.

11

2.4 Other GBML Models
This section covers some models which are orthogonal to those discussed earlier.

Online Evolutionary Computation In many problems, especially sequential ones,
feedback is very noisy and needs averaging. Whiteson and Stone [293] allocated trials to
chromosomes in proportion to their fitness with the following procedure. At each new gener-
ation evaluate each chromosome once only. Allocate subsequent evaluations using a softmax
distribution based on the initial fitnesses and recalculate the average fitness of a chromosome
after each evaluation. In non-stationary problems a recency-weighted average of fitness sam-
ples is used. They call this approach online Evolutionary Computation. Its advantages are
that less time is wasted evaluating weaker chromosomes, and, in cases where mistakes mat-
ter, fewer mistakes are made by agents during fitness evaluations. However, the improvement
is only on average; worst-case performance is not improved. This is related to other work on
optimising noisy fitness functions [262, 19], except that they do not reduce online mistakes.

Steady State EAs Whereas standard generational EAs replace the entire population each
generation, steady-state EAs replace a subset (e.g. only two in XCS). This approach is stan-
dard in Michigan LCS because they minimise disruption to the population, which is useful
for on-line learning. Steady-state EAs introduce selection for deletion as well as reproduction
and this is typically biased toward lower fitness chromosomes or to reduce crowding.

Co-evolving Learners and Problems Another possibility not mentioned in our earlier
classifications is to co-evolve both learners and problems. When successful, this allows
learners to gradually solve harder problems rather than tackling the most difficult problems
from the start. It also allows us to search the space of problems to find those which are harder
for a given learner, and to explore the dynamics between learners and problems.

12

3 GBML Areas
This section covers the main GBML research communities. These communities are more
disjoint than the methods they use and the lines between them are increasingly blurring. For
example, LCS often evolve NNs and fuzzy rules, and some are powered by GP. Nonetheless,
the differences between the communities and their approaches is such that it seemed most
useful to structure this section by community and not e.g. by phenotype or learning paradigm;
such integrated surveys of GBML are left to the future. Many communities have reinvented
the same ideas yet each has its own focus and strengths and so each has much to learn from
the others.

3.1 GBML for Sub-problems of Learning
This section briefly reviews ways in which evolution has been used not for the primary task
of learning – generating hypotheses – but for sub-problems including data preparation and
optimisation within other learning methods.

Evolutionary Feature Selection Some attributes (features) of the input are of little or
no use in classification. We can simplify and speed learning by selecting only useful attributes
to work with, especially when there are very many attributes and many contribute little. EAs
are widely used in the wrapper approach to feature selection [143] in which the base learner
(the one which generates hypotheses) is treated as a black box to be optimised by a search
algorithm. In this EAs usually give good results compared to non-evolutionary methods
[139, 250, 166] but there are exceptions [139]. In [62], Estimation of Distribution Algorithms
were found to give similar accuracy but run more slowly than a GA. More generally we can
weight features (instead of making an all-or-nothing selection) and some learners can use
weights directly e.g. weighted k-nearest neighbours [234]. The main drawback of EAs for
feature selection is their slowness compared to non-evolutionary methods. See [201, 94, 95]
for overviews and [266, 11] for some recent real-world applications.

Evolutionary Feature Construction Some features are not very useful by themselves
but can be when combined with others. We can leave the base learner to discover this itself or
we can preprocess data to construct informative new features by combining existing ones e.g.
new feature fnew = f1 AND f3 AND f8. This is also called constructive induction and there
are different approaches. GP has been used to construct features out of the original attributes
e.g. [131, 164, 253]. The original features have also been linearly transformed by evolving a
vector of coefficients [145, 232]. Simultaneous feature transformation and selection has had
good results [234].

Other Sub-problems of Learning EAs have been used in a variety of other ways.
One is training set optimisation in which we can partition the data into training sets [238],
select the most useful training inputs [137], and even generate synthetic inputs [322, 69].
EAs have also been used for optimisation within a learner e.g. [145] optimised weighted k-
nearest neighbours with a GA, [61] optimised decision tree tests using a GA and an Evolution
Strategy and [272, 273] optimised voting weights in an ensemble. [141] replaced beam

13

A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Figure 4: Two representations of the 3 multiplexer function: truth table (left) and GP tree (right)

search in AQ with a genetic algorithm and similarly [269, 82, 80, 81, 270] have investigated
Inductive Logic Programming driven by a GA.

3.2 Genetic Programming
Genetic Programming (GP) is a major evolutionary paradigm which evolves programs [286].
The differences between GP and GAs are not precise but typically GP evolves variable-length
structures, typically trees, in which genes can be functions. See [314] for discussion. [94]
discusses differences between GAs and GP which arise because GP representations are more
complex. Among the pros of GP: i) it is easier to represent complex languages, such first-
order logic, in GP, ii) it is easier to represent complex concepts compactly, and iii) GP is
good at finding novel, complex patterns overlooked by other methods. Among the cons of
GP: i) expressive representations have large search spaces, ii) GP tends to overfit / does not
generalise well, and iii) variable-length representations suffer from bloat (see e.g. [231]).

While GAs are typically applied to function optimisation, GP is widely applied to learn-
ing. To illustrate, of the set of “typical GP problems” defined by Koza [158], which have be-
come more-or-less agreed benchmarks for the GP community [286], there are many learning
problems. These include the multiplexer and parity Boolean functions, symbolic regression
of mathematical functions and the Intertwined Spirals problem, which involves classification
of 2-dimensional points as belonging to one of two spirals. GP usually follows the Pittsburgh
approach. We cover the two representations most widely used for learning with GP: GP trees
and decision trees.

3.2.1 GP Trees

GP Trees for Classification Figure 4 shows the 3 multiplexer Boolean function as a
truth table on the left and as a GP tree on the right. To classify an input with the GP tree: i)
instantiate the leaf variables with the input values, ii) propagate values upwards from leaves
though the functions in the non-leaf nodes and iii) output the value of the root (top) node as
the classification.

14

x2 +2y2−13

Figure 5: Two representations of a real-valued function

A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Figure 6: Two representations of the 3 multiplexer function: truth table (left) and decision tree
(right)

GP Trees for Regression In regression problems leaves may be constants or variables
and non-leaves are mathematical functions. Figure 5 shows a real-valued function as an
algebraic expression on the left and as a GP tree on the right. (Note that x2 + 2y2− 13 =
((x ∗ x)+ (2 ∗ (y ∗ y)))− 13.) The output of the tree is computed in the same way as in the
preceding classification example.

3.2.2 Decision Trees

Figure 6 shows the 3 multiplexer as a truth table and as a decision tree. To classify an input
in such a tree: i) start at the root (top) of tree, ii) follow the branch corresponding to the value
of the attribute in the input, iii) repeat until a leaf is reached, and iv) output the value of the
leaf as the classification of the input.

15

Evolving First-order Trees First-order trees use both propositional and first-order in-
ternal nodes. [239] found first-order logic made trees more expressive and allowed much
smaller solutions than found by the rule learner CN2 or the tree learner C4.5, with similar
accuracy.

Oblique (Linear) Trees Whereas conventional tree algorithms learn axis-parallel deci-
sion boundaries, oblique trees make tests on a linear combination of attributes. The resulting
trees and more expressive but have a larger search space. See [31].

Evolving Individual Nodes in Decision Trees In most GP-based tree evolvers an
individual is a complete tree but in [199] each individual is a tree node. The tree is built
incrementally: one GP run is made for each node. This is similar to IRL in §2.2 but results
are added to a tree structure rather than a list.

3.2.3 Extensions to GP

Ensemble Methods and GP Ensemble ideas have been used in two ways. First, to
reduce fitness computation time and memory requirements by training on subsamples of
the data. The bagging approach has been used in [93, 135] and the boosting approach in
[260]. Although not an ensemble technique, the Limited Error Fitness method introduced in
[100] as a way of reducing GP run-time works in a similar manner: in LEF the proportion
of the training set used to evaluate fitness depends on the individual’s performance. The
second ensemble approach has improved accuracy by building an ensemble of GP trees. In
[148, 227] each run adds one tree to the ensemble and weights are computed with standard
boosting.

GP Hyperheuristics Schmidhuber [247] proposed a meta-GP system evolving evolu-
tionary operators as a way of expanding the power of GP’s evolutionary search. Instead of
evolving decision rules Krasnogor proposes applying GP to the much harder task of evolving
classification algorithms, represented using grammars [160, 162, 163]. Freitas [94] §12.2.3
sketches a similar approach which he calls algorithm induction while in [226] Pappa and
Freitas go into the subject at length. [41] also deals with GP hyperheuristics.

3.2.4 Conclusions

Lack of Test Sets in GP GP terminology follows a convention in the GA field since at
least [124] in which brittleness refers to overfitting or poor generalisation to unseen cases,
and robustness refers to good generalisation. A feature of the GP literature is that GP is
usually evaluated only on the training set [168, 286]. Kushchu has also criticised the way
in which test sets have been used [168]. Nonetheless GP has the same need for test sets to
evaluate generalisation as other methods [168] and as a result the ability of GP to perform
inductive generalisation is one of the open issues for GP identified in [286]. See [168, 286]
for methods which have been used to encourage generalisation in GP, many of which can be
applied to other methods.

16

Reading See Koza’s 1994 book [159] for the basics of evolving decision trees with GP,
Wong and Leung’s 2000 book on data mining with grammar-based GP [312], Freitas’ 2002
book [94] for a good introduction to GP, decision trees and both evolutionary and non-
evolutionary learning, Poli, Langdon and McPhee’s free 2008 GP book [231], and Vanneschi
and Poli’s 2010 survey of GP [286]. The GP bibliography has over 5000 entries [171].

3.3 Evolving Ensembles
Ensembles, also called Multiple Classifier Systems and Committee Machines, is the field
which studies how to combine predictions from multiple sources. Ensemble methods are
widely applicable to evolutionary systems where a population provides multiple predictors.
Ensemble techniques can be used with any learning method, although they are most useful
for unstable learners, whose hypotheses are sensitive to small changes in their training. En-
sembles can be heterogeneous (composed of different types of predictors) in which case they
are called hybrid ensembles. Relatively few studies of hybrid systems exist [36] but see e.g.
[313, 71, 68] for examples. Ensembles some enjoy good theoretical foundations [36, 279],
perform very well in practice [63] and were identified by Dietterich as one of four current
directions for machine learning in 1998 [79]. While the key advantage of using ensembles
is better test set generalisation there are others: ensembles can perform more complex tasks
than individual members, the overall system can be easier to understand and modify and
ensembles are more robust / degrade more gracefully than individual predictors [249].

Working with an ensemble raises a number of issues. How to create or select ensemble
members? How many members are needed? When to remove ensemble members? How
to combine their predictions? How to encourage diversity in members? There are many
approaches to these issues, among the best known of which are bagging [32, 33] and boosting
[96, 97, 202].

Creating a good ensemble is an inherently multiobjective problem [281]. In addition to
maximising accuracy we also want to maximise diversity in errors; after all, having multi-
ple identical predictors provides no advantage On the other hand, an ensemble of predictors
which make different errors is very useful since we can combine their predictions so that the
ensemble output is at least as good on the training set as the average predictor [165]. Hence
we want to create accurate predictors with diverse errors [79, 116, 165, 216, 215] In addition
we may want to minimise ensemble size in order to reduce run time and to make the ensem-
ble easier to understand. Finally, evolving variable-length chromosomes without pressure
towards parsimony results in bloat [231], in which case we have a reason to minimise the
size of individual members.

3.3.1 Evolutionary Ensembles

Although most ensembles are non-evolutionary, evolution has many applications within en-
sembles. i) Classifier creation and adaptation: providing the ensemble with a set of can-
didate members. ii) Voting: [169, 272, 273, 70] evolve weights for the votes of ensemble
members. iii) Classifier selection: the winners of evolutionary competition are added to the
ensemble. iv) Feature selection: generating diverse classifiers by training them on different
features (see §3.1 and [167] §8.1.4). v) Data selection: generating diverse classifiers by train-

17

ing on different data (see §3.1). All these approaches have non-evolutionary alternatives. We
now go into more detail on two of the above applications.

Classifier Creation and Adaptation Single-objective evolution is common in evolving
ensembles. For example, [191] combines accuracy and diversity into a single objective. In
comparison, multi-objective evolutionary ensembles are rare [68] but they are starting to
appear e.g. [1, 68, 67]. In addition to upgrading GBML to multi-objective GBML other
measures can be taken to evolve diversity, for example fitness sharing e.g. [192] and the
co-evolutionary fitness method we describe next. Gagné et al. [99] compare boosting and
co-evolution of learners and problems – both gradually focus on cases which are harder to
learn – and argue that co-evolution is less likely to overfit noise. Their co-evolution inspired
fitness works as follows: Let Q be a set of reference classifiers. The hardness of a training
input xi is based on how many members of Q misclassify it. The fitness of a classifier is the
sum of hardnesses of the inputs xi it classifies correctly. This method results in accurate yet
error-diverse classifiers since both are required to obtain high fitness. Gagné et al. exploit the
population of classifiers to provide Q. They also introduce a greedy margin-based scheme
for selection of ensemble members. They find that a simpler off-line version of their EEL
(Evolving Ensemble Learning) approach dominates their on-line version as the latter lacks a
way to remove bad classifiers. Good results were obtained compared to Adaboost on 6 UCI
[8] datasets.

Evolutionary Selection of Members There are two extremes. Usually each run pro-
duces one member of the ensemble and many runs are needed. Sometimes, however, the
entire population is eligible to join the ensemble, in which case only one run is needed. The
latter does not resolve the ensemble selection problem: which candidates to use? There are
many combinations possible from just a small pool of candidates, and, as with selecting a
solution set from a Michigan populations, the set of best individuals may not be the best set
of individuals (that is, the best ensemble). The selection problem is formally equivalent to
the feature selection problem [99] §3.2. See e.g. [251, 241] for evolutionary approaches.

3.3.2 Conclusions

Research directions for evolutionary ensembles include multi-objective evolution [68], hy-
brid ensembles [68] and minimising ensemble complexity [192].

Reading Key works include Opitz and Shavlik’s classic 1996 paper on evolving NN en-
sembles [216], Kuncheva’s 2004 book on ensembles [167], Chandra and Yao’s 2006 discus-
sion of multi-objective evolution of ensembles [67], Yao and Islam’s 2008 review of evolving
NN ensembles [317] and Brown’s 2005 and 2010 surveys of ensembles [36, 34]. We cover
evolving NN ensembles in §3.4.

3.4 Evolving Neural Networks
The study of Neural Networks (NNs) is a large and interdisciplinary area. The term Arti-
ficial Neural Network (ANN) is often used to distinguish simulations from biological NNs,

18

but having noted this we shall refer simply to NNs. When evolution is involved such sys-
tems may be called EANNs (Evolving Artificial Neural Networks) [316] or ECoSs (Evolving
Connectionist Systems) [147].

A neural network consists of a set of nodes, a set of directed connections between a
subset of nodes and a set of weights on the connections. The connections specify inputs
and outputs to and from nodes and there are three forms of nodes: input nodes (for input to
the network from the outside world), output nodes, and hidden nodes which only connect
to other nodes. Nodes are typically arranged in layers: the input layer, hidden layer(s) and
output layer. Nodes compute by integrating their inputs using an activation function and
passing on their activation as output. Connection weights modulate the activation they pass
on and in the simplest form of learning weights are modified while all else remains fixed. The
most common approach to learning weights is to use a gradient descent-based learning rule
such as backpropagation. The architecture of a NN refers to the set of nodes, connections,
activation functions and the plasticity of nodes; whether they can be updated or not. Most
often all nodes use the same activation function and in virtually all cases all nodes can be
updated. Evolution has been applied at three levels: weights, architecture and learning rules.
In terms of architecture, evolution has been used to determine connectivity, select activation
functions, and determine plasticity.

Representations Three forms of representation have been used: i) direct encoding [316,
92] in which all details (connections and nodes) are specified, ii) indirect encoding [316, 92]
in which general features are specified (e.g. number of hidden layers and nodes) and a learn-
ing process determines the details, and iii) developmental encoding [92] in which a develop-
mental process is genetically encoded [149, 114, 210, 134, 225, 268]. Implicit and develop-
mental representations are more flexible and tend to be used for evolving architectures while
direct representations tend to be used for evolving weights alone.

Credit Assignment Evolving NNs virtually always use the Pittsburgh approach although
there are a few Michigan systems: [5, 256, 259]. In Michigan systems each chromosome
specifies only one hidden node which raises issues. How should the architecture be defined?
A simple method is to fix it in advance. How can we make nodes specialise? Two options
are to encourage diversity during evolution, e.g. with fitness sharing, or after evolution, by
pruning redundant nodes [5].

Adapting Weights Most NN learning rules are based on gradient descent, including
the best known: backpropagation (BP). BP has many successful applications, but gradient
descent-based methods require a continuous and differentiable error function and often get
trapped in local minima [267, 294].

An alternative is to evolve the weights which has the advantages that EAs don’t rely
on gradients and can work on discrete fitness functions. Another advantage of evolving
weights is that the same evolutionary method can be used for different types of network
(feedforward, recurrent, higher order), which is a great convenience for the engineer [316].
Consequently, much research has been done on evolution of weights. Unsurprisingly fitness
functions penalise NN error but they also typically penalise network complexity (number
of hidden nodes) in order to control overfitting. The expressive power of a NN depends on

19

the number of hidden nodes: fewer nodes = less expressive = fits training data less while
more nodes = more expressive = fits data better. As a result, if a NN has too few nodes it
underfits while with too many nodes it overfits. In terms of training rate there is no clear win-
ner between evolution and gradient descent; which is better depends on the problem [316].
However, Yao [316] states that evolving weights AND architecture is better than evolving
weights alone and that evolution seems better for reinforcement learning and recurrent net-
works. Floreano [92] suggests evolution is better for dynamic networks. Happily we don’t
have to choose between the two approaches.

Evolving AND Learning Weights Evolution is good at finding a good basin of at-
traction but poor at finding the optimum of the basin. In contrast, gradient descent has the
opposite characteristics. To get the best of both [316] we should evolve initial weights and
then train them with gradient descent. [92] claims this can be two orders of magnitude faster
than beginning with random initial weights.

Evolving Architectures Architecture has an important impact on performance and can
determine whether a NN under- or over-fits. Designing architectures by hand is a tedious,
expert, trial-and-error process. Alternatives include constructive NNs which grow from a
minimal network and destructive NNs which shrink from a maximal network. Unfortunately
both can become stuck in local optima and can only generate certain architectures [6]. An-
other alternative is to evolve architectures. Miller et al. [207] make the following suggestions
(quoted from [316]) as to why EAs should be suitable for searching the space of architectures.

1. The surface is infinitely large since the number of possible nodes and con-
nections is unbounded;

2. the surface is nondifferentiable since changes in the number of nodes or
connections are discrete and can have a discontinuous effect on EANN’s
performance;

3. the surface is complex and noisy since the mapping from an architecture to
its performance is indirect, strongly epistatic, and dependent on the evalua-
tion method used;

4. the surface is deceptive since similar architectures may have quite different
performance;

5. the surface is multimodal since different architectures may have similar per-
formance.

There are good reasons to evolve architectures and weights simultaneously. If we learn
with gradient descent there is a many-to-one mapping from NN genotypes to phenotypes
[318]. Random initial weights and stochastic learning lead to different outcomes, which
makes fitness evaluation noisy, and necessitates averaging over multiple runs, which means
the process is slow. On the other hand, if we evolve architectures and weights simultaneously
we have a one-to-one genotype to phenotype mapping which avoids the problem above and
results in faster learning. Furthermore, we can co-optimise other parameters of the network
[92] at the same time. For example, [20] found the best networks had a very high learning

20

rate which may have been optimal due to many factors such as initial weights, training order,
and amount of training. Without co-optimising architecture and weights evolution would not
have been able to take all factors into account at the same time.

Evolving Learning Rules There is no one best learning rule for all architectures or
problems. Selecting rules by hand is difficult and if we evolve the architecture then we
don’t a priori know what it will be. A way to deal with this is to evolve the learning rule,
but we must be careful: the architectures and problems used in learning the rules must be
representative of those to which it will eventually be applied. To get general rules we should
train on general problems and architectures, not just one kind. On the other hand, to obtain
a training rule specialised for a specific architecture or problem type, we should train just on
that architecture or problem.

One approach is to evolve only learning rule parameters [316] such as the learning rate
and momentum in backpropagation. This has the effect of adapting a standard learning rule to
the architecture or problem at hand. Non-evolutionary methods of adapting training rules also
exist. Castillo [65], working with multi-layer perceptrons, found evolving the architecture,
initial weights and rule parameters together as good or better than evolving only first two or
the third.

We can also evolve new learning rules [316, 233]. Open-ended evolution of rules was
initially considered impractical and instead Chalmers [66] specified a generic, abstract form
of update and evolved its parameters to produce different concrete rules. The generic update
was a linear function of ten terms, each of which had an associated evolved real-valued
weight. Four of the terms represented local information for the node being updated while the
other six terms were the pairwise products of the first four. Using this method Chalmers was
able to rediscover the delta rule and some of its variants. This approach has been used by
a number of others and has been reported to outperform human-designed rules [77]. More
recently, GP was used to evolve novel types of rules from a set of mathematical functions
and the best new rules consistently outperformed standard backpropagation [233]. Whereas
architectures are fixed, rules could potentially change over their lifetime (e.g. their learning
rate could change) but evolving dynamic rules would naturally be much more complex than
evolving static ones.

3.4.1 Ensembles of NNs

Most methods output a single NN [317] but a population of evolving NNs is naturally treated
as an ensemble and recent work has begun to do so. Evolving NNs is inherently multi-
objective: we want accurate yet simple and diverse networks. Some work combines these
objectives into one fitness function while others is explicitly multi-objective.

Single-objective Ensembles Yao [319] used EPNet’s [318] population as an ensem-
ble without modifying the evolutionary process. By treating the population as an ensemble
the result outperformed the population’s best individual. Liu and Yao [191] pursued accu-
racy and diversity in two ways. The first was to modify backpropagation to minimise error
and maximise diversity using an approach they call Negative Correlation Learning (NCL) in
which the errors of members become negatively correlated and hence diverse. The second

21

method was to combine accuracy and diversity in a single objective. EENCL (Evolutionary
Ensembles for NCL) [192] automatically determines the size of an ensemble. It encourages
diversity with fitness sharing and NCL and it deals with the ensemble member selection prob-
lem §3.3.1 with a cluster-and-select method (see [142]). First we cluster candidates based on
their errors on the training set so that clusters of candidates make similar errors. Then we
select the most accurate in each cluster to join the ensemble; the result is the ensemble can
be much small than the population. CNNE (Cooperative Neural Net Ensembles) [138] used
a constructive approach to determine the number of individuals and how many hidden nodes
each has. Both contribute to the expressive power of the ensemble and CNNE was able to
balance the two to obtain suitable ensembles. Unsurprisingly it was found that more complex
problems needed larger ensembles.

Multi-objective Ensembles MPANN (Memetic Pareto Artificial NN) [1] was the first
ensemble of NNs to use multi-objective evolution. It also uses gradient-based local search to
optimise network complexity and error. DIVACE (diverse and accurate ensembles) [67] uses
multiobjective evolution to maximise accuracy and diversity. Evolutionary selection is based
on non-dominated sorting [261], a cluster-and-select approach is used to form the ensemble,
and search is provided by simulated annealing and a variant of differential evolution [265].
DIVACE-II [68] is a heterogeneous multiobjective Michigan approach using NNs, Support
Vector Machines and Radial Basis Function Nets. The role of crossover and mutation is
played by bagging [32] and boosting [96] which produce accurate and diverse candidates.
Each generation bagging and boosting makes candidate ensemble members and only dom-
inated members are replaced. The accuracy of DIVACE-II was very good compared to 25
other learners on the Australian credit card and diabetes datasets and it outperformed the
original DIVACE.

3.4.2 Yao’s Framework for Evolving NNs

Figure 7 shows Yao’s framework for evolving architectures, training rules and weights as
nested processes [316]. Weight evolution is innermost as it occurs at the fastest time scale
while either rule or architecture evolution is outermost. If we have prior knowledge, or are
interested in a specific class of either rule or architecture, this constrains the search space and
Yao suggests the outermost should be the one which constrains it most. The framework can
be thought of as a 3-dimensional space of evolutionary NNs where 0 on each axis represents
one-shot search and infinity represents exhaustive search. If we remove references to EAs
and NNs it becomes a general framework for adaptive systems.

3.4.3 Conclusions

Evolution is widely used with NNs, indeed according to Floreano et al. [92] most studies of
neural robots in real environments use some form of evolution. Floreano et al. go on to claim
evolving NNs can be used to study “brain development and dynamics because it can encom-
pass multiple temporal and spatial scales along which an organism evolves, such as genetic,
developmental, learning, and behavioral phenomena. The possibility to co-evolve both the
neural system and the morphological properties of agents . . . adds an additional valuable per-

22

Figure 7: Yao’s framework for evolving architectures, training rules and weights

23

spective to the evolutionary approach that cannot be matched by any other approach.” [92]
(p. 59).

Reading Key reading on evolving NNs includes Yao’s classic 1999 survey [316], Kasabov’s
2007 book, Floreano, Dürr and Mattiussi’s 2008 survey [92] which includes reviews of evolv-
ing dynamic and neuromodulatory NNs, and Yao and Islam’s 2008 survey of evolving NN
ensembles [317].

3.5 Learning Classifier Systems
Learning Classifier Systems (LCS) originated in the GA community as a way of applying
GAs to learning problems. The LCS field is one of the oldest, largest and most active areas
of GBML. The majority of LCS research is currently carried out on XCS [301, 49] and its
derivatives XCSF [305, 306] for regression/function approximation and UCS [22, 222] for
supervised learning.

The Game of the Name Terminology has been contentious in this area [120]. LCS
are also widely simply called Classifier Systems (abbreviated CS or CFS) and sometimes
evolutionary (learning) classifier systems. At one time GBML referred exclusively to LCS.
None of these names is very satisfactory but the field appears to have settled on LCS.

The difficulty in naming the field relates in part to the difficulty in defining what an LCS
is [254, 125]. In practise, what is accepted as an LCS has become more inclusive over the
years. A reasonable definition of an LCS would be an evolutionary rule-based system –
except that a significant minority of LCS are not evolutionary! On the other hand, most non-
evolutionary rule-based systems are not considered LCS, so the boundaries of the field are
defined more by convention than principle. Even EA practitioners are far from unanimous;
work continues to be published which some would definitely consider forms of LCS, but
which make no reference to the term and which contain few or no LCS references.

(L)CS has at times been taken to refer to Michigan systems only (see e.g. [110]) but it
now generally includes Pitt systems as well, as implied by the name and content of IWLCS
– the International Workshop on Learning Classifier Systems – which includes both Pitt and
Michigan, evolutionary and non-evolutionary systems. As a final terminological note, rules
in LCS are often referred to as “classifiers”.

3.5.1 Production Systems and Rule(Set) Parameters

LCS evolve condition-action (IF-THEN) rules. Recall from §2.2 and figure 2 that in Michi-
gan rule-based systems a chromosome is a single rule while in Pittsburgh systems a chro-
mosome is a variable-length set of rules. Pittsburgh, Michigan, IRL and GCCL are all used.
Michigan systems are rare elsewhere but are the most common form of LCS. Within LCS,
IRL is most common with fuzzy systems, but see [3] for a non-fuzzy version. In LCS, we typ-
ically evolve rule conditions and actions although non-evolutionary operators may act upon
them. In addition, each phenotype has parameters associated with it and these parameters
are typically learned rather than evolved using the Widrow-Hoff update or similar (see [178]
for examples). In Michigan LCS parameters are associated with each rule but in Pittsburgh

24

systems they are associated with each ruleset. For example, in UCS the parameters are: fit-
ness, mean action set size (to bias a deletion process which seeks to balance action set sizes)
and experience (a count of the number of times a rule has been applied, in order to estimate
confidence in its fitness). In GAssist (a supervised Pittsburgh system) the only parameter is
fitness. Variations of the above exist; in some cases rules predict the next input or read and
write to memory.

3.5.2 Representation

Representing Conditions and Actions The most common representation in LCS uses
fixed-length strings with binary inputs and outputs and ternary condition. In a simple Michi-
gan version (see e.g. [301]) each rule has one action and one condition from {0,1,#} where
is a wildcard, matching both 0 and 1 in inputs. For example, the condition 01# matches two
inputs: 010 and 011. Similar representations were used almost exclusively prior to approxi-
mately 2000 and are inherited from GAs and their preference for minimal alphabets. (Indeed,
ternary conditions have an interesting parallel with ternary schemata [235] for binary GAs.)
Such rules individually have limited expressive power [248] (but see also [27]) which neces-
sitates that solutions are sets of rules. More insidiously, the lack of individual expressiveness
can be a factor in pathological credit assignment (strong/fit overgenerals [154]). Various
extensions to the simple scheme described above have been studied (see [154] §2.2.2).

Real-valued Intervals Following [12] (p. 87) we distinguish two approaches to real-
valued interval representation in conditions. The first is representations based on discreti-
sation: HIDER* uses natural coding [106], ECL clusters attribute values and evolves con-
straints on them [81] while GAssist uses adaptive discretisation intervals [12]. The second
approach is to handle real values directly. In HIDER (unlike HIDER*) genes specify a lower
and upper bound (where lower is always less than upper) [3]. In [72] a variation of HIDER’s
scheme is used where the attribute is ignored when the upper bound is less than the lower.
Interval representations are also used in [298, 264]. Finally [303] specifies bounds using
centre and spread genes.

Default/Exception Structures Various forms of default/exception rule structures
have been used with LCS. It has been argued that they should increase the number of so-
lutions possible without increasing the search space and should allow gradual refinement of
knowledge by adding exceptions [126]. However, the the space of combinations of rules
is much larger than the set of rules and the evolutionary dynamics of default/exception rule
combinations has proved difficult to manage in Michigan systems. Nonetheless, default rules
can significantly reduce the number of rules needed for a solution [282] and there have been
some successes. Figure 8 illustrates three representations for a Boolean function. The left-
most is a truth table, which lists all possible inputs and their outputs. The middle repre-
sentation is the ternary language commonly used by LCS, which requires only four rules to
represent the eight input/output pairs, thanks to the generalisation provided by the # symbol.
Finally, on the right a default rule (### →1) has been added to the ternary representation.
This rule matches all inputs and states that the output is always 1. This rule is incorrect by
itself, but the two rules above it provide exceptions and, taken together, the three accurately

25

Truth table
A B C Output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Ternary
Rules

0 0 # →0
0 1 # →1
1 # 0→0
1 # 1→1

Default
Rule

0 0 # →0
1 # 0→0
→1

Figure 8: Three representations for the 3 multiplexer function

represent the function using one less rule than the middle representation. One difficulty in
evolving such default/exception structures lies in identifying which rules are the defaults and
which the exceptions; a simple solution is to maintain the population in some order and make
earlier rules exceptions to later ones (as in a decision list [237]). This is straightforward in
Pitt systems in which individual rulesets are static but is more complex in Michigan popula-
tions in which individual rules are created and deleted dynamically. The other issue is how to
assign credit to the overall multi-rule structure. In Pittsburgh systems this is again straight-
forward since fitness is assigned only at the level of rulesets, but in Michigan systems each
rule has a fitness, and it is not obvious how to credit the three rules in the default/exception
structure in a way which recognises their cooperation.

The Pittsburgh GABIL [144] and GAssist [12] use decision lists and often evolve default
rules spontaneously (e.g. a fully general last rule). Bacardit found that enforcing a fully
general last rule in each ruleset in GAssist (and allowing evolution to select the most useful
class for such rules) was effective [12].

In Michigan systems default/exception structures are called default hierarchies. Rule
specificity has been used as the criterion for determining which rules are exceptions and
accordingly conflict resolution methods have been biased according to specificity. There are,
however, many problems with this approach [258]. It is difficult for evolution to produce
these structure since they depend on cooperation between otherwise competing rules. The
structures are unstable since they are interdependent; unfortunate deletion of one member
alters the utility of the entire structure. As noted they complicate credit assignment and
conflict resolution since exception rules must override defaults [299, 258]. There are also
problems with the use of specificity to prioritise rules. For one, having fewer #s does not
mean a rule actually matches fewer inputs; counting #s is a purely syntactic measure of
generality. For another, there is no reason why exception rules should be more specific. The
consequence of these difficulties is that there has not been much interest in Michigan default
hierarchies since the early 1990s (but see [285]) and indeed not all Michigan LCS support
them (e.g. ZCS [300], XCS/XCSF and UCS do not). Nonetheless, the idea should perhaps
be revisited and an ensembles perspective might prove useful.

26

Other Representations for Conditions and Actions A great range of other rep-
resentations have been used, particularly in recent years. These include VL1 logic [206] as
used in GIL [140], first-order logic [203, 204, 205], decision lists as used in GABIL [144]
and GAssist [12], messy encoding [172], ellipses [50] and hyperellipses [56], hyperspheres
[200], convex hulls [187], tile coding [177] and a closely related hyperplane coding [29, 28],
GP trees [4, 173, 174], Boolean networks defined by GP [37], support vectors [198], edges of
an Augmented Transition Network [170], Gene Expression Programming [309], fuzzy rules
(see §3.6) and neural networks [257, 74, 259, 40, 211, 75, 130, 129]. GALE [194, 193, 197]
has used particularly complex representations, including the use of GP to evolve trees defin-
ing axis-parallel and oblique hyper-rectangles [197], and evolved prototypes which are used
with a k-nearest-neighbour classifier. The prototypes need not be fully specified; some at-
tributes can be left undefined. This representation has also been used in GAssist [12]. There
has been limited work with alternative action representations including computed actions
[278, 186] and continuous actions [308].

Evolutionary Selection of Representations As we have seen there are many repre-
sentations to chose from. Unfortunately it is generally not clear which might be best for a
given problem or part of a problem. One approach is to let evolution make these choices.
This can be seen as a form of meta-learning in which evolution adapts the inductive bias
of the learner. In [12, 13] evolution was used to select default actions in decision lists in
GAssist. GAssist’s initial population was seeded with last rules which together advocated
all possible classes and over time evolution selected the most suitable of these rules. To ob-
tain good results it was necessary to encourage diversity in default actions. In GALE [193]
evolution selects both classification algorithms and representations. GALE has elements Cel-
lular Automata and Artificial Life: individuals are distributed on a 2-dimensional grid. Only
neighbours within r cells interact: two neighbours may perform crossover, an individual may
be cloned and copied to a neighbouring cell, and an individual may die if its neighbours are
fitter. A number of representations have been used: rule sets, prototypes, and decision trees
(orthogonal, oblique, and multivariate based on nearest neighbor). Decision trees are evolved
using GP while prototypes are used by a k-nearest-neighbour algorithm to select outputs. An
individual uses a particular representation and classification algorithm and hence evolution-
ary selection operates on both. Populations may be homogeneous or heterogeneous and in
[197] GALE was modified to interbreed orthogonal and oblique trees.

In the representational ecology approach [200] condition shapes were selected by evolu-
tion. Two Boolean classification tasks were used: a plane function which is easy to describe
with hyperplanes but hard with hyperspheres, and a sphere function which has the opposite
characteristics. Three versions of XCS were used: with hyperplane conditions (XCS-planes),
with hyperspheres (XCS-spheres), and both (XCS-both). XCS was otherwise unchanged, but
in XCS-both the representations compete due to XCS’s pressure against overlapping rules
[154]. In XCS-both planes and spheres do not interbreed; they constitute genetically inde-
pendent populations, that is, species. In terms of classification accuracy XCS-planes did
well on the plane function and poorly on the sphere function while XCS-sphere showed the
opposite results. XCS-both performed well on both; there was no significant difference in ac-
curacy compared to the better single-representation version on each problem. Furthermore,
XCS-both selected the more appropriate representation for each function. In terms of the

27

Rule Cond. Action Strength
m # # 0 0 1 1 1 200.0
m′ # # 0 0 1 1 1 220.0
n # # 0 0 1 1 0 100.0
o 0 0 1 1 1 0 1 100.0

Rule Cond. Action Strength Numerosity
m # # 0 0 1 1 1 200.0 2
n # # 0 0 1 1 0 100.0 1
o 0 0 1 1 1 0 1 100.0 1

Figure 9: A population of microclassifiers (top) and the equivalent macroclassifiers (bottom)

amount of training needed, XCS-both was similar to XCS-sphere on the sphere function but
was significantly slower than XCS-plane on the plane function.

Selecting Discretisation Methods and Cut Points GAssist’s Adaptive Discretiza-
tion Intervals (ADI) approach has two parts [12]. The first consists of adapting interval sizes.
To begin, a discretisation algorithm proposes cut points for each attribute and this defines the
finest discretisation possible, said to be composed of micro-intervals. Evolution can merge
and split macro-intervals, which are composed of micro-intervals, and each individual can
have different macro-intervals. The second part consists of selecting discretisation algo-
rithms. Evolution is allowed to select discretisation algorithms for each attribute or rule from
a pool including uniform-width, uniform-frequency, ID3, Fayyad and Irani, Màntaras, USD,
ChiMerge and random. Unfortunately, evolving the best discretisers was found to be difficult
and the use of ADI resulted in only small improvements in accuracy. However, further work
was suggested.

Optimisation of Population Representation: Macroclassifiers In [301] Wilson in-
troduced an optimisation for Michigan populations called macroclassifiers. He noted that as
an XCS population converges on the solution set many identical copies of this set accu-
mulate. A macroclassifier is simply a rule with an additional numerosity parameter which
indicates how many identical virtual rules it represents. Using macroclassifiers saves a great
deal of run-time compared to processing a large number of identical rules. Furthermore,
macroclassifiers provide interesting statistics on evolutionary dynamics. Empirically macro-
classifiers perform essentially as the equivalent ‘micro’classifiers [151]. Figure 9 illustrates
how the rules m and m′ in the top can be represented by m alone in the bottom by adding a
numerosity parameter.

3.5.3 Rule Discovery

LCS are interesting from an evolutionary perspective, particularly Michigan systems in which
evolutionary dynamics are more complex than in Pittsburgh systems. Where Pittsburgh sys-
tems face two objectives (evolving accurate and parsimonious rulesets) Michigan systems

28

face a third: coverage of the input (or input/output) space. Furthermore, Michigan systems
have coevolutionary dynamics as rules both cooperate and compete. Since the level of selec-
tion (rules) is lower than the level of solutions (rulesets) researchers have attempted to coax
better results by modifying rule fitness calculations with various methods. Fitness sharing
and crowding have been used to encourage diversity and hence coverage. Fitness sharing is
naturally based on inputs (see ZCS) while crowding has been implemented by making dele-
tion probability proportional to the degree of overlap with other rules (as in XCS). Finally,
restricted mating as implemented by a niche GA plays an important role in XCS and UCS
(see §3.5.3).

Windowing in Pittsburgh LCS As noted in §2.2 naive implementations of the Pitts-
burgh approach are slower than Michigan systems, which are themselves slow compared to
non-evolutionary methods. The naive Pitt approach is to evaluate each individual on the en-
tire data set but much can be done to improve this. Instead, windowing methods [98] learn
on subsets of the data to improve runtime. Windowing has been used in Pitt LCS since at
least ADAM [112]. More recently GAssist used ILAS (Incremental Learning by Alternating
Strata) [12] which partitions the data into n strata, each with the same class distribution as
the entire set. A different stratum is used for fitness evaluation each generation. On larger
data sets speed-up can be an order of magnitude. Windowing has become a standard part of
recent Pittsburgh systems applied to real-world problems (e.g. [14, 10, 9]).

Many ensemble methods improve classification accuracy by sampling data in similar
ways to windowing techniques which suggests the potential for both improved accuracy and
run-time but this has not been investigated in LCS.

Michigan Rule Discovery Most rule discovery work focuses on Michigan LCS as they
are more common and their evolutionary dynamics are more complex. The rest of this section
deals with Michigan systems although many ideas, such as self-adaptive mutation, could be
applied to Pitt systems. Michigan LCS use the steady-state GAs introduced in §2.4 as they
minimise disruption to the rule population during on-line learning. An unusual feature of
Michigan LCS is the emphasis placed on minimising population size, for which various
techniques are use: niche GAs, the addition of a generalisation term in fitness, subsumption
deletion, condensation and various compaction methods.

Niche GAs Whereas in a standard panmictic GA all rules are eligible for reproduction, in
a niche GA mating is restricted to rules in the same action set (which is considered a niche).
(See figure 3 on action sets.) The inputs spaces of rules in an action set overlap and their
actions agree, which suggests their predictions will tend to be related. Consequently, mating
these related rules is more effective, on average, than mating rules drawn from the entire
population. This is a form of speciation since it creates non-interbreeding sub-populations.
However, the niche GA has many other effects [301]. First, a strong bias towards general
rules, since they match more inputs and hence appear in more action sets. Second, pressure
against overlapping rules, since they compete for reproduction [154]. Third, complete cover-
age of the input space, since competition occurs for each input. The niche GA was introduced
in [26] and originally operated in the match set but was later further restricted to the action
set [302]. It is used in in XCS and UCS and is related to universal suffrage [105].

29

EDAs instead of GAs Recently Butz et al. [58, 57, 59] replaced XCS’s usual crossover
with an an Estimation of Distribution Algorithm (EDA)-based method to improve solving
of difficult hierarchical problems while [195, 196] introduced CCS: a Pitt LCS based on
compact GAs (a simple form of EDA).

Subsumption Deletion A rule x logically subsumes a rule y when x matches a superset
of the inputs y matches and they have the same action. For example, 00#→0 subsumes 000
→ 0 and 001→ 0. In XCS x is allowed to subsume y if: i) x logically subsumes y, ii) x is
sufficiently accurate and iii) x is sufficiently experienced (has been evaluated sufficiently) so
we can have confidence in its accuracy. Subsumption deletion was introduced in XCS (see
[49]) and takes two forms. In GA subsumption, when a child is created we check to see if its
parents subsume it, which constrains accurate parents to only produce more general children.
In action set subsumption, the most general of the sufficiently accurate and experienced rules
in the action set is given the opportunity to subsume the others. This removes redundant,
specific rules from the population but is too aggressive for some problems.

Michigan Evolutionary Dynamics Michigan LCS have interesting evolutionary dy-
namics and plotting macroclassifiers is a useful way to monitor population convergence and
parsimony. Figure 10 illustrates by showing XCS learning the 11 multiplexer function. The
performance curve is a moving average of the proportion of the last 50 inputs which were
classified correctly, %[O] shows the proportion of the minimal set of 16 ternary rules XCS
needs to represent this function (indicated by the straight line labelled “Size of minimal DNF
solution” in the figure) and macroclassifiers were explained in §3.5.2. In this experiment the
population was initially empty and was seeded by covering §3.5.3. “Cycles” refers to the
number of inputs presented, inputs were drawn uniform randomly from the input space, the
population size limit was 800, all input/output pairs were in both the train and test sets, GA
subsumption was used but action set subsumption was not and curves are the average of 10
runs. Other settings are as in [301].

Note that XCS continues to refine its solution (population) after 100% performance is
reached and that it finds the minimal representation (at the point where %[O] reaches the top
of the figure) but that continued crossover and mutation generate extra transient rules which
make the population much larger.

Condensation As illustrated by figure 10 an evolved population normally contains many
redundant and low-fitness rules. These rules are typically transient, but more are generated
while the GA continues to run. Condensation [301, 151] is a very simple technique to remove
such rules which consists of running the system with crossover and mutation turned off; we
only clone and delete existing rules. Figure 11 repeats the experiment from figure 10 but
switches after 15,000 cycles to condensation after which the population quickly converges to
the minimal solution. Other methods of compacting the population have been investigated
[152, 307, 83].

Tuning Evolutionary Search XCS is robust to class imbalances [217] but for very high
imbalances tuning the GA based on a facetwise model improved performance [217, 219].
Self-tuning evolutionary search has also been studied. The mutation rate can be adapted

30

Figure 10: Evolutionary dynamics of XCS on the 11 multiplexer

Figure 11: XCS with condensation on the 11 multiplexer

31

during evolution e.g. [132, 133, 130, 60], while [78] dynamically controls use of two gener-
alisation operators: each has a control bit specifying whether it can be used and control bits
evolve with the rest of the genotype.

Non-evolutionary Rule Discovery Evolution has been supplemented by heuristics in
various ways. Covering, first suggested in [123], creates a rule to match an unmatched input.
It can be used to an create (“seed”) the initial population [287, 301, 121] or to supplement
the GA throughout evolution [301]. Kovacs [154] (p. 42) found covering each action set
was preferable to covering the match set when applying XCS to sequential tasks. Most
covering/seeding is done as needed but instead [190] selects inputs at the center of same-
class clusters. For other non-evolutionary operators see [26, 236], the work on corporations
of rules [310, 255, 276, 275, 277], and the work on non-evolutionary LCS.

Non-evolutionary LCS Although LCS were originally conceived as a way of applying
GAs to learning problems [127], not all LCS include a GA. Various heuristics have been
used to create and refine rules in e.g. YACS [102] and MACS [101]. A number of systems
have been inspired by psychological models of learning. ACS [263, 46] and ACS2 [45] are
examples, although ACS was also later supplemented by a GA [47, 48]. Another is AgentP,
a specialised LCS for maze tasks [321, 320].

3.5.4 LCS Credit Assignment

While credit assignment in Pittsburgh LCS is a straightforward matter of multi-objective fit-
ness evaluation, as noted in §3.5.3 it is far more complex in Michigan systems with their more
complex evolutionary dynamics. Credit assignment is also more complex in some learning
paradigms, particularly reinforcement learning, which we will not cover here. Within super-
vised learning credit assignment is more complex in regression tasks than in classification.
These difficulties have been the major issue for Michigan LCS and have occupied a consid-
erable part of the literature, particularly prior to the development of XCS which provided a
reasonable solution for both supervised and reinforcement learning.

Strength and Accuracy in Michigan LCS Although we are not covering reinforce-
ment learning work, Michigan LCS have traditionally been designed for such problems.
XCS/XCSF are reinforcement learning systems but since supervised learning can be formu-
lated as simplified reinforcement learning they have been applied to SL tasks. Consequently,
we now very briefly outline the difference between the two major forms of Michigan rein-
forcement learning LCS.

In older (pre-1995) reinforcement learning LCS fitness is proportional to the magnitude
of reward and is called strength. Strength is used both for conflict resolution and as fitness
in the GA (see e.g. ZCS [300]). Such LCS are referred to as strength-based and they suffer
from many difficulties with credit assignment [154], the analysis of which is quite complex.
Although some strength-based systems incorporate accuracy as a component of fitness, their
fitness is still proportional to reward. In contrast, the main feature of XCS is that it adds
a prediction parameter which estimates the reward to be obtained if the action advocated
by a rule is taken. Rule fitness is proportional to the accuracy of reward prediction and

32

not to its magnitude which avoids many problems strength-based systems have with credit
assignment. In XCS accuracy is estimated from the variance in reward and since overgeneral
rules have high variance they have low fitness. Although XCS has proved robust in a range
of applications, a major limitation is that the accuracy estimate conflates several things: i)
overgenerality in rules, ii) noise in the training data and iii) stochasticity in the transition
function in sequential problems. In contrast, strength-based systems may be less affected
by noise and stochasticity since they are little affected by reward variance. See [154] for
analysis of the two approaches.

Prediction Updates To update rule predictions while training, the basic XCS system
[301, 49] uses the Widrow-Hoff update for non-sequential problems and the Q-learning up-
date for sequential ones. Various alternatives have been used: average rewards [271, 185],
gradient descent [54, 184] and eligibility traces [88]. The basic XCSF uses NLMS (linear
piecewise) prediction [305, 306] but Lanzi [178] has compared various alternative classi-
cal parameter estimation (RLS and Kalman filter) and gain adaptation algorithms (K1, K2,
IDBD, and IDD). He found that Kalman filter and RLS have significantly better accuracy
than the others and that Kalman filter produces more compact solutions than RLS. There has
also been recent work on other systems; UCS is essentially a supervised version of XCS and
the main difference is its prediction update. Bull has also studied simplified LCS [39].

Evolutionary Selection of Prediction Functions In [179] Lanzi selects prediction
functions in XCSFHP (XCSF with Heterogeneous Predictors) in a way similar to the se-
lection of condition types in the representational ecology approach in §3.5.2. Polynomial
functions (linear, quadratic and cubic) and constant, linear and NN predictors were avail-
able. XCSFHP selected the most suitable predictor for regression and sequential tasks and
performed almost as well as XCSF using the best single predictor.

Theoretical Results Among the notable theoretical works on LCS, [175] demonstrates
that XCS without generalisation implements tabular Q-learning, [53] investigates the com-
putational complexity of XCS in a Probably Approximately Correct (PAC) setting, and
[291, 290, 289, 292] analyse credit assignment and relate LCS to mainstream reinforce-
ment learning methods. [154] identifies pathological rule types: strong overgeneral and fit
overgeneral rules which are overgeneral yet stronger/fitter than not-overgeneral competitors.
Fortunately such rules are only possible under specific circumstances. A number of papers
seek to characterise problems which are hard for LCS [109, 156, 153, 154, 23, 15] while oth-
ers model evolutionary dynamics [44, 52, 51, 55, 220, 221] and others attempt to reconstruct
LCS from first principles using probabilistic models [90, 89, 91].

Hierarchies and Ensembles of LCS Hierarchical LCS have been studied for some
time and [17] reviews early work. [87] and [85, 86, 84] apply hierarchical LCS to robot
control while [18] uses hierarchical XCSs to learn long sequences of actions. The ensembles
field §3.3 studies how to combine predictions [167] and all the above could be reformulated
as ensembles of LCS. There has been some recent work on ensembles of LCS [76, 38] and
also treating a single LCS as an ensemble [35, 89, 91].

33

3.5.5 Conclusions

LCS face certain inherent difficulties; Michigan systems face complex credit assignment
problems while in Pittsburgh systems run-time can be a major issue. The same is true for all
GBML systems, but the Michigan approach has been explored far more extensively within
LCS than elsewhere. Recently there has been much integration with mainstream machine
learning and much research on representations and credit assignment algorithms. Most re-
cent applications have been to data mining and function approximation although some work
continues on reinforcement learning. Future directions are likely to include exposing more
of the LCS to evolution and further integration with machine learning, ensembles, memetic
algorithms and multi-objective optimisation.

Reading No general up-to-date introduction to LCS exists. For the basics see [108] and
the introductory parts of [154] or [51]. For a good introduction to representations and opera-
tors see chapter 6 of [94]. For a review of early LCS see [18]. For reviews of LCS research
see [310, 180, 176]. For a review of state-of-the-art GBML and empirical comparison to
non-evolutionary pattern recognition methods see [224]. For other comparisons with non-
evolutionary methods see [25, 113, 244, 304, 21, 22]. Finally, the LCS bibliography [155]
has over 900 references.

3.6 Genetic Fuzzy Systems
Following the section on LCS, this section covers a second actively developing approach to
evolving rule-based systems. We will see that the two areas overlap considerably and that the
distinction between them is somewhat arbitrary. Nonetheless the two communities and their
literatures are somewhat disjoint.

Fuzzy Logic is a major paradigm in soft computing which provides a means of approx-
imate reasoning not found in traditional crisp logic. Genetic Fuzzy Systems (GFS) apply
evolution to fuzzy learning systems in various ways: GAs, GP and Evolution Strategies
have all been used. We will cover a particular form of GFS called genetic Fuzzy Rule-
Based Systems (FRBS), which are also known as Learning Fuzzy Classifier Systems (LFCS)
[24] or referred to as e.g. “genetic learning of fuzzy rules” and (for Reinforcement Learn-
ing tasks) “fuzzy Q-learning”. Like other LCS, FRBS evolve if-then rules but in FRBS
the rules are fuzzy. Most systems are Pittsburgh but there are many Michigan examples
[283, 284, 103, 24, 218, 64, 223]. In addition to FRBS we briefly cover genetic fuzzy NNs
but we do not cover genetic fuzzy clustering (see [73]).

In the terminology of fuzzy logic, ordinary scalar values are called crisp values. A mem-
bership function defines the degree of match between crisp values and a set of fuzzy linguistic
terms. The set of terms is a fuzzy set. The following figure shows a membership function for
the set {cold, warm, hot}.

34

Each crisp value matches each term to some degree in the interval [0,1], so, for example,
a membership function might define 5◦ as 0.8 cold, 0.3 warm and 0.0 hot. The process of
computing the membership of each term is called fuzzification and can be considered a form
of discretisation. Conversely, defuzzification refers to computing a crisp value from fuzzy
values.

Fuzzy rules are condition/action (IF-THEN) rules composed of a set of linguistic vari-
ables (e.g. temperature, humidity) which can each take on linguistic terms (e.g. cold, warm,
hot). For example:

IF temperature IS cold AND humidity IS high THEN heater IS high
IF temperature IS warm AND humidity IS low THEN heater IS medium

As illustrated in figure 12 (adapted from [122]), a fuzzy rule-based system consists of:

• A Rule Base (RB) of fuzzy rules

• A Data Base (DB) of linguistic terms and their membership functions

• Together the RB and DB are the knowledge base (KB)

• A fuzzy inference system which maps from fuzzy inputs to a fuzzy output

• Fuzzification and defuzzification processes

3.6.1 Evolution of FRBSs

We distinguish i) genetic tuning and ii) genetic learning of DB, RB or inference engine
parameters.

Genetic Tuning The concept behind genetic tuning is to first train a hand-crafted FRBS
and then to evolve the DB (linguistic terms and membership functions) to improve perfor-
mance. In other words, we do not alter the hand-crafted rule base but only tune its parame-
ters. Specifically, we can adjust the shape of the membership functions, adjust parameterised
expressions in the (adaptive) inference system and adapt defuzzification methods.

Genetic Learning The concept of genetic learning is to evolve the DB, RB or inference
engine parameters. There are a number of approaches. In genetic rule learning we usually
predefine the DB by hand and evolve the RB. In genetic rule selection we use the GA to

35

Figure 12: Components and information flow in a fuzzy rule-based system

remove irrelevant, redundant, incorrect or conflicting rules. This is a similar role to conden-
sation in LCS (see §3.5.3). In genetic KB learning we learn both the DB and RB. We either
learn the DB first and then learn the RB or we iteratively learn a series of DBs and evaluate
each one by learning an RB using it.

It is also possible to learn components simultaneously which may produce better results
though the larger search space makes it slower and more difficult than adapting components
independently. As examples, [209] learns the DB and RB simultaneously while [128] simul-
taneously learns KB components and inference engine parameters.

Recently [242] claimed that all existing GFS have been applied to crisp data and that with
such data the benefits of GFS compared to other learning methods are limited to linguistic
interpretability. However, GFS has the potential to outperform other methods on fuzzy data
and they identify three cases ([242] p. 558):

1. crisp data with hand-added fuzziness

2. transformations of data based on semantic interpretations of fuzzy sets

3. inherently fuzzy data

They argue GFS should use fuzzy fitness functions in such cases to deal directly with
the uncertainty in the data and propose such systems as a new class of GFS to add to the
taxonomy of [122].

3.6.2 Genetic Neuro-fuzzy Systems

A Neuro-Fuzzy System (NFS) or Fuzzy Neural Network (FNN) is any combination of fuzzy
logic and neural networks. Among the many examples of such systems, [188] uses a GA to
minimise the error of the NN, [115] uses both a GA and backpropagation to minimise error,

36

[229] optimises a fuzzy expert system using a GA and NN, and [209] uses a NN to approxi-
mate the fitness function for a GA which adapts membership functions and control rules. See
[73] for an introduction to NFS, [189] for a review of EAs, NNs and fuzzy logic from the
perspective of intelligent control, and [119] for a discussion of combining the three. [150] in-
troduces Fuzzy All-permutations Rule-Bases (FARBs) which are mathematically equivalent
to NNs.

3.6.3 Conclusions

Herrera [122] p. 38 lists the following active areas within GFS:

1. Multiobjective genetic learning of FRBSs: interpretability-precision trade-off

2. GA-based techniques for mining fuzzy association rules and novel data mining ap-
proaches

3. Learning genetic models based on low quality data (e.g. noisy data)

4. Genetic learning of fuzzy partitions and context adaptation

5. Genetic adaptation of inference engine components

6. Revisiting the Michigan-style GFSs

Herrera also lists (p. 42) current issues for GFS:

1. Human readability

2. New data mining tasks: frequent and interesting pattern mining, mining data streams
. . .

3. Dealing with high dimensional data

Reading There is a substantial GFS literature. Notable works include the four seminal
1991 papers on genetic tuning of the DB [146], the Michigan approach [283], the Pittsburgh
approach [274] and relational matrix-based FRBS [230]. Subsequent work includes Geyer-
Schulz’s 1997 book on Michigan fuzzy LCS learning RBs with GP [103], Bonarini’s 2000
introductory chapter from an LCS perspective [24], Mitra and Hayashi’s 2000 survey of
neuro-fuzzy rule generation methods [208], Cordon et al.’s 2001 book on Genetic Fuzzy
Systems in general [73], Angelov’s 2002 book on evolving FRBS [7], chapter 10 of Freitas’
2002 book on evolutionary data mining [94], Herrera’s 2008 survey article on GFS [122]
(which lists further key reading), and finally Kolman and Margaliot’s 2009 book on the neuro-
fuzzy FARB approach [150].

37

4 Conclusions
The reader should need no convincing that GBML is a very diverse and active area. Although
much integration with mainstream machine learning and has taken place in the last ten years
more is needed. The use of multi-objective EAs in GBML is spreading. Integration with en-
sembles is natural given the population-based nature of EAs but is only just beginning. Other
areas which need attention are memetics, meta-learning, hyperheuristics and Estimation of
Distribution Algorithms. In addition to further integration with other areas the constituent
areas of GBML need more interaction with each other.

Two persistent difficulties for GBML are worth highlighting. First, run-time speed re-
mains an issue as EAs are much slower than most other methods. While this sometimes
matters little (e.g. in off-line learning with modest datasets), equally it is sometimes critical
(e.g. in stream mining). Various methods to speed up GBML exist (see e.g. [94] §12.1.3) and
more research is warranted, but this may simply remain a weakness. The second difficulty
is theory. EA theory is notoriously difficult and when coupled with other processes becomes
even less tractable. Nonetheless, substantial progress has been made in the past ten years,
most notably with LCS.

Other active research directions will no doubt include meta-learning such as the evolution
of bias (e.g. selection of representation), evolving heuristics and learning rules for specific
problem classes, and other forms of self-adaptation. In the area of data preparation, Freitas
[94] §12.2.1 argues that attribute construction is a promising area for GBML and that filter
methods for feature selection are faster than wrappers and deserve more GBML research.
Finally, many specialised learning problems (not to mention specific applications) remain
little- or un-explored with GBML, including ranking, semi-supervised learning, transductive
learning, inductive transfer, learning to learn, stream mining and no doubt others which have
not yet been formulated.

38

Acknowledgements
Thanks to my editor Thomas Bäck for his patience and encouragement, and to Larry Bull,
John R. Woodward, Natalio Krasnogor, Gavin Brown and Arjun Chandra for comments.

Glossary
EA Evolutionary Algorithm
FRBS Fuzzy Rule-Based System
GA Genetic Algorithm
GBML Genetics-based Machine Learning
GFS Genetic Fuzzy System
GP Genetic Programming
LCS Learning Classifier System
NN Neural Network
SL Supervised Learning

References
[1] H.A. Abbass. Speeding up backpropagation using multiobjective evolutionary algo-

rithms. Neural Computation, 15(11):2705–2726, 2003. 18, 22

[2] D.H. Ackley and M.L. Littman. Interactions between learning and evolution. In
C. Langton, C. Taylor, S. Rasmussen, and J. Farmer, editors, Artificial Life II: Santa Fe
Institute Studies in the Sciences of Complexity, volume 10, pages 487–509. Addison
Wesley, 1992. 11

[3] J. Aguilar-Ruiz, J. Riquelme, and M. Toro. Evolutionary learning of hierarchical deci-
sion rules. IEEE Transactions on Systems, Man and Cybernetics, Part B, 33(2):324–
331, 2003. 24, 25

[4] Manu Ahluwalia and Larry Bull. A Genetic Programming-based Classifier System.
In Banzhaf et al. [16], pages 11–18. 27

[5] H.C. Andersen and A.C. Tsoi. A constructive algorithm for the training of a multi-
layer perceptron based on the genetic algorithm. Complex Systems, 7(4):249–268,
1993. 19

[6] P.J. Angeline, G.M. Sauders, and J.B. Pollack. An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Trans. Neural Networks, 5:54–65, 1994. 20

[7] Plamen Angelov. Evolving Rule-based Models. A tool for design of flexible adaptive
systems, volume 92 of Studies in fuzziness and soft computing. Springer-Verlag, 2002.
37

[8] A. Asuncion and D.J. Newman. UCI machine learning repository
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2009. 18

[9] J. Bacardit, E.K. Burke, and N. Krasnogor. Improving the scalability of rule-based
evolutionary learning. Memetic Computing, 1(1):55–67, 2009. 9, 29

39

[10] J. Bacardit, M. Stout, J.D. Hirst, and N. Krasnogor. Data mining in proteomics with
learning classifier systems. In L. Bull, E. Bernadó Mansilla, and J. Holmes, editors,
Learning Classifier Systems in Data Mining, pages 17–46. Springer, 2008. 29

[11] J. Bacardit, M. Stout, J.D. Hirst, A. Valencia, R.E. Smith, and N. Krasnogor. Au-
tomated alphabet reduction for protein datasets. BMC Bioinformatics, 10(6), 2009.
13

[12] Jaume Bacardit. Pittsburgh Genetic-Based Machine Learning in the Data Mining era:
Representations, generalization, and run-time. PhD thesis, Universitat Ramon Llull,
2004. 25, 26, 27, 28, 29

[13] Jaume Bacardit, David E. Goldberg, and Martin V. Butz. Improving the perfor-
mance of a pittsburgh learning classifier system using a default rule. In Tim Kovacs,
Xavier LLòra, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-
art W. Wilson, editors, Learning Classifier Systems. International Workshops, IWLCS
2003-2005, Revised Selected Papers, volume 4399 of LNCS, pages 291–307. Springer,
2007. 27

[14] Jaume Bacardit and Natalio Krasnogor. Empirical evaluation of ensemble tech-
niques for a pittsburgh learning classifier system. In Jaume Bacardit, Ester Bernadó-
Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007),
volume 4998/2008 of Lecture Notes in Computer Science, pages 255–268. Springer,
2008. 29

[15] A.J. Bagnall and Z.V. Zatuchna. On the classification of maze problems. In L. Bull
and T. Kovacs, editors, Applications of Learning Classifier Systems, pages 307–316.
Springer, 2005. 33

[16] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors. GECCO-99: Proceedings of the Genetic and Evolutionary Computa-
tion Conference. Morgan Kaufmann, 1999. 39, 51

[17] Alwyn Barry. Hierarchy Formulation Within Classifiers System – A Review. In E. G.
Goodman, V. L. Uskov, and W. F. Punch, editors, Proceedings of the First Interna-
tional Conference on Evolutionary Algorithms and their Application EVCA’96, pages
195–211, Moscow, 1996. The Presidium of the Russian Academy of Sciences. 33

[18] Alwyn Barry. XCS Performance and Population Structure within Multiple-Step Envi-
ronments. PhD thesis, Queens University Belfast, 2000. 33, 34

[19] Thomas Beielstein and Shandor Markon. Threshold selection, hypothesis tests and
DOE methods. In 2002 Congress on Evolutionary Computation, pages 777–782,
2002. 12

[20] R.K. Belew, J. McInerney, and N.N. Schraudolph. Evolving networks: using the
genetic algorithm with connectionistic learning. In C.G. Langton, C. Taylor, J.D.
Farmer, and S. Rasmussen, editors, Proceedings of the 2nd Conference on Artificial
Life, pages 51–548. Addison-Wesley, 1992. 20

[21] Ester Bernadó, Xavier Llorà, and Josep M. Garrell. XCS and GALE: A Comparative
Study of Two Learning Classifier Systems on Data Mining. In Lanzi et al. [183], pages
115–132. 34

40

[22] Ester Bernadó-Mansilla and Josep M. Garrell-Guiu. Accuracy-Based Learning Classi-
fier Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary
Computation, 11(3):209–238, 2003. 24, 34

[23] Ester Bernadó-Mansilla and T.K. Ho. Domain of competence of XCS classifier system
in complexity measurement space. IEEE Trans. Evolutionary Computation, 9(1):82–
104, 2005. 33

[24] Andrea Bonarini. An Introduction to Learning Fuzzy Classifier Systems. In Lanzi
et al. [181], pages 83–104. 34, 37

[25] Pierre Bonelli and Alexandre Parodi. An Efficient Classifier System and its Experi-
mental Comparison with two Representative learning methods on three medical do-
mains. In Booker and Belew [30], pages 288–295. 34

[26] Lashon B. Booker. Triggered rule discovery in classifier systems. In Schaffer [246],
pages 265–274. 29, 32

[27] Lashon B. Booker. Representing Attribute-Based Concepts in a Classifier System.
In Gregory J. E. Rawlins, editor, Proceedings of the First Workshop on Foundations
of Genetic Algorithms (FOGA91), pages 115–127. Morgan Kaufmann: San Mateo,
1991. 25

[28] Lashon B. Booker. Adaptive value function approximations in classifier systems. In
GECCO ’05: Proceedings of the 2005 workshops on Genetic and evolutionary com-
putation, pages 90–91. ACM, 2005. 27

[29] Lashon B. Booker. Approximating value functions in classifier systems. In L. Bull
and T. Kovacs, editors, Foundations of Learning Classifier Systems, volume 183/2005
of Studies in Fuzziness and Soft Computing, pages 45–61. Springer, 2005. 27

[30] Lashon B. Booker and Richard K. Belew, editors. Proceedings of the 4th International
Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann, July 1991. 41, 59

[31] M.C.J. Bot and W.B. Langdon. Application of genetic programming to induction of
linear classification trees. In Genetic Programming: Proceedings of the 3rd European
Conference (EuroGP 2000), volume 1802 of LNCS, pages 247–258. Springer, 2000.
16

[32] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. 17, 22

[33] L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801–845, 1998. 17

[34] Gavin Brown. Ensemble learning. In Claude Sammut and Geoffrey Webb, editors,
Encyclopedia of Machine Learning. Springer-Verlag, 2010. 18

[35] Gavin Brown, Tim Kovacs, and James Marshall. UCSpv: Principled Voting in UCS
Rule Populations. In Hod Lipson et al., editor, GECCO’07: the Genetic and Evolu-
tionary Computation Conference, pages 1774–1781. ACM, 2007. 33

[36] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods:
A survey and categorisation. Journal of Information Fusion (Special issue on Diversity
in Multiple Classifier Systems), 6(1):5–20, 2005. 17, 18

41

[37] L. Bull. On dynamical genetic programming: Simple boolean networks in learning
classifier systems. International Journal of Parallel, Emergent and Distributed Sys-
tems, 24(5):421–442, 2009. 27

[38] L. Bull, M. Studley, T. Bagnall, and I. Whittley. On the use of rule-sharing in learning
classifier system ensembles. IEEE Trans. Evolutionary Computation, 11:496–502,
2007. 33

[39] Larry Bull. Two Simple Learning Classifier Systems. In Larry Bull and Tim Ko-
vacs, editors, Foundations of Learning Classifier Systems, number 183 in Studies in
Fuzziness and Soft Computing, pages 63–90. Springer-Verlag, 2005. 33

[40] Larry Bull and Toby O’Hara. Accuracy-based neuro and neuro-fuzzy classifier sys-
tems. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Bal-
akrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Ge-
netic and Evolutionary Computation Conference, pages 905–911. Morgan Kaufmann
Publishers, 9-13 July 2002. 27

[41] Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Oz-
can, and John R. Woodward. Exploring hyper-heuristic methodologies with genetic
programming. In C. Mumford and L. Jain, editors, Collaborative Computational In-
telligence. Springer, 2009. 16

[42] E.K. Burke and G. Kendall. Introduction. In E.K. Burke and G. Kendall, editors,
Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques, pages 5–18. Springer, 2005. 8

[43] E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Russ, and S. Schulenburg. Hyper-
heuristics: An emerging direction in modern search technology. In F. Glover and
G. Kochenberger, editors, Handbook of Meta-heuristics, pages 457–474. Kluwer,
2003. 8

[44] Martin Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson. Toward a theory of
generalization and learning in XCS. IEEE Transactions on Evolutionary Computation,
8(1):8–46, 2004. 33

[45] Martin V. Butz. An Algorithmic Description of ACS2. In Lanzi et al. [183], pages
211–229. 32

[46] Martin V. Butz. Anticipatory learning classifier systems. Kluwer Academic Publish-
ers, 2002. 32

[47] Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann. Introducing a Genetic
Generalization Pressure to the Anticipatory Classifier System – Part 1: Theoretical
Approach. In Whitley et al. [295], pages 34–41. Also Technical Report 2000005 of
the Illinois Genetic Algorithms Laboratory. 32

[48] Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann. Introducing a Genetic
Generalization Pressure to the Anticipatory Classifier System – Part 2: Performance
Analysis. In Whitley et al. [295], pages 42–49. Also Technical Report 2000006 of the
Illinois Genetic Algorithms Laboratory. 32

42

[49] Martin V. Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In Lanzi
et al. [182], pages 253–272. 24, 30, 33

[50] M.V. Butz. Kernel-based, ellipsoidal conditions in the real-valued XCS classifier sys-
tem. In H.G. Beyer et al., editor, Proc. genetic and evolutionary computation confer-
ence (GECCO 2005), pages 1835–1842. ACM, 2005. 27

[51] M.V. Butz. Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Studies in Fuzziness and Soft Computing.
Springer–Verlag, 2006. 33, 34

[52] M.V. Butz, D.E. Goldberg, and P.L. Lanzi. Bounding learning time in XCS. In Genetic
and evolutionary computation (GECCO 2004), volume 3103/2004 of LNCS, pages
739–750. Springer, 2004. 33

[53] M.V. Butz, D.E. Goldberg, and P.L. Lanzi. Computational complexity of the XCS
classifier system. In Larry Bull and Tim Kovacs, editors, Foundations of Learning
Classifier Systems, number 183 in Studies in Fuzziness and Soft Computing, pages
91–126. Springer-Verlag, 2005. 33

[54] M.V. Butz, D.E. Goldberg, and P.L. Lanzi. Gradient descent methods in learning
classifier systems: improving XCS performance in multistep problems. IEEE Trans.
Evolutionary Computation, 9(5):452–473, 2005. 33

[55] M.V. Butz, D.E. Goldberg, P.L. Lanzi, and K. Sastry. Problem solution sustenance in
XCS: Markov chain analysis of niche support distributions and the impact on compu-
tational complexity. Genetic Programming and Evolvable Machines, 8(1):5–37, 2007.
33

[56] M.V. Butz, P.L. Lanzi, and S.W. Wilson. Hyper-ellipsoidal conditions in XCS: ro-
tation, linear approximation, and solution structure. In M. Cattolico, editor, Proc.
genetic and evolutionary computation conference (GECCO 2006), pages 1457–1464.
ACM, 2006. 27

[57] M.V. Butz and M. Pelikan. Studying XCS/BOA learning in boolean functions: struc-
ture encoding and random boolean functions. In M. Cattolico et al., editor, Genetic
and evolutionary computation conference, GECCO 2006, pages 1449–1456. ACM,
2006. 30

[58] M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg. Extracted global structure makes
local building block processing effective in XCS. In H.G. Beyer and U.M. O’Reilly,
editors, Genetic and evolutionary computation conference, GECCO 2005, pages 655–
662. ACM, 2005. 30

[59] M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg. Automated global structure
extraction for effective local building block processing in XCS. Evolutionary Compu-
tation, 14(3):345–380, 2006. 30

[60] M.V. Butz, P. Stalph, and P.L. Lanzi. Self-adaptive mutation in XCSF. In GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary computation,
pages 1365–1372. ACM, 2008. 32

[61] E. Cantu-Paz and C. Kamath. Inducing oblique decision trees with evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation, 7(1):54–68, 2003. 5,
13

43

[62] Erick Cantú-Paz. Feature subset selection by estimation of distribution algorithms. In
GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference,
pages 303–310. Morgan Kaufmann, 2002. 13

[63] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In ICML ’06: Proceedings of the 23rd international conference
on Machine learning, pages 161–168. ACM, 2006. 17

[64] J. Casillas, B. Carse, and L. Bull. Fuzzy-XCS: a michigan genetic fuzzy system. IEEE
Trans. Fuzzy Systems, 15:536–550, 2007. 34

[65] P.A. Castilloa, J.J. Merelo, M.G. Arenas, and G. Romero. Comparing evolutionary
hybrid systems for design and optimization of multilayer perceptron structure along
training parameters. Information Sciences, 177(14):2884–2905, 2007. 21

[66] D. Chalmers. The evolution of learning: An experiment in genetic connectionism. In
E. Touretsky, editor, Proc. 1990 Connectionist Models Summer School, pages 81–90.
Morgan Kaufmann, 1990. 21

[67] Arjun Chandra and Xin Yao. Ensemble learning using multi-objective evolutionary
algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.
Introduces DIVACE. 18, 22

[68] Arjun Chandra and Xin Yao. Evolving hybrid ensembles of learning machines for
better generalisation. Neurocomputing, 69(7–9):686–700, 2006. Introduces DIVACE-
II. 17, 18, 22

[69] S. Cho and K. Cha. Evolution of neural net training set through addition of virtual
samples. In Proc. 1996 IEEE Int. Conf. Evol. Comp., ICEC’96, pages 685–688. IEEE,
1996. 13

[70] S.-B. Cho. Pattern recognition with neural networks combined by genetic algorithm.
Fuzzy Sets and Systems, 103:339–347, 1999. See Kuncheva2004a p.167. 17

[71] Sung-Bae Cho and Chanho Park. Speciated GA for optimal ensemble classifiers in
DNA microarray classification. In Congress on Evolutionary Computation (CEC
2004), volume 1, pages 590–597, 2004. 17

[72] A.L. Corcoran and S. Sen. Using real-valued genetic algorithms to evolve rule sets for
classification. In Proceedings of the IEEE Conference on Evolutionary Computation,
pages 120–124. IEEE Press, 1994. 25

[73] Oscar Cordón, Francisco Herrera, Frank Hoffmann, and Luis Magdalena. Genetic
Fuzzy Systems. World Scientific, 2001. 34, 37

[74] Henry Brown Cribbs III and Robert E. Smith. Classifier system renaissance: New
analogies, new directions. In John R. Koza, David E. Goldberg, David B. Fogel, and
Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 547–552, Stanford University, CA, USA, 28–31 July 1996. MIT
Press. 27

[75] Hai Huong Dam, Hussein A. Abbass, Chris Lokan, and Xin Yao. Neural-based learn-
ing classifier systems. IEEE Trans. Knowl. Data Eng., 20(1):26–39, 2008. 27

44

[76] H.H. Dam, H.A. Abbass, and C. Lokan. DXCS: an XCS system for distributed data
mining. In H.G. Beyer and U.M. O’Reilly, editors, Genetic and evolutionary compu-
tation conference, GECCO 2005, pages 1883–1890, 2005. 33

[77] A. Dasdan and K. Oflazer. Genetic synthesis of unsupervised learning algorithms.
Technical Report BU-CEIS-9306, Department of Computer Engineering and Infor-
mation Science, Bilkent University, Ankara, 1993. 21

[78] Kenneth A. De Jong, William M. Spears, and Dianna F. Gordon. Using Genetic Al-
gorithms for Concept Learning. Machine Learning, 3:161–188, 13. 32

[79] T.G. Dietterich. Machine-learning research: four current directions. AI Magazine,
18(4):97–136, 1998. 17

[80] F. Divina, M. Keijzer, and E. Marchiori. Non-universal suffrage selection operators
favor population diversity in genetic algorithms. In Benelearn 2002: Proceedings of
the 12th Belgian-Dutch Conference on Machine Learning (Technical report UU-CS-
2002-046), pages 23–30, 2002. 14

[81] F. Divina, M. Keijzer, and E. Marchiori. A method for handling numerical attributes in
GA-based inductive concept learners. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2003), pages 898–908. Springer-Verlag, 2003. 14,
25

[82] Federico Divina and Elena Marchiori. Evolutionary concept learning. In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 343–350, New York, 9-13 July 2002.
Morgan Kaufmann Publishers. 14

[83] P.W. Dixon, D. Corne, and M.J. Oates. A ruleset reduction algorithm for the XCS
learning classifier system. In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors,
Learning classifier systems, 5th international workshop (IWLCS 2002), volume 2661
of LNCS, pages 20–29. Springer, 2002. 30

[84] Jean-Yves Donnart. Cognitive Architecture and Adaptive Properties of an Motivation-
ally Autonomous Animat. PhD thesis, Université Pierre et Marie Curie. Paris, France,
1998. 33

[85] Jean-Yves Donnart and Jean-Arcady Meyer. Hierarchical-map Building and Self-
positioning with MonaLysa. Adaptive Behavior, 5(1):29–74, 1996. 33

[86] Jean-Yves Donnart and Jean-Arcady Meyer. Learning Reactive and Planning Rules
in a Motivationally Autonomous Animat. IEEE Transactions on Systems, Man and
Cybernetics - Part B: Cybernetics, 26(3):381–395, 1996. 33

[87] Marco Dorigo and Marco Colombetti. Robot Shaping: An Experiment in Behavior
Engineering. MIT Press/Bradford Books, 1998. 33

[88] J. Drugowitsch and A. Barry. XCS with eligibility traces. In H.G. Beyer and U.M.
O’Reilly, editors, Genetic and evolutionary computation conference, GECCO 2005,
pages 1851–1858. ACM, 2005. 33

45

[89] Jan Drugowitsch. Design and Analysis of Learning Classifier Systems: A Probabilistic
Approach. Springer, 2008. 33

[90] Jan Drugowitsch and Alwyn Barry. A Formal Framework and Extensions for Func-
tion Approximation in Learning Classifier Systems. Machine Learning, 70(1):45–88,
2007. 33

[91] Narayanan E. Edakunni, Tim Kovacs, Gavin Brown, and James A.R. Marshall. Model-
ing UCS as a mixture of experts. In Proceedings of the 2009 Genetic and Evolutionary
Computation Conference (GECCO’09), pages 1187–1194. ACM, 2009. 33

[92] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence, 1(1):47–62, 2008. 11, 19, 20, 22, 24

[93] G. Folino, C. Pizzuti, and G. Spezzano. Ensemble techniques for parallel genetic
programming based classifiers. In Proc. European Conf. on Genetic Programming
(EuroGP’03), pages 59–69, 2003. 16

[94] A.A. Freitas. Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Spinger-Verlag, Berlin, 2002. 3, 5, 9, 13, 14, 16, 17, 34, 37, 38

[95] A.A. Freitas. A survey of evolutionary algorithms for data mining and knowledge dis-
covery. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary Computation,
pages 819–845. Springer-Verlag, 2002. 10, 13

[96] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proc. of
the INt. Conf. on Machine Learning (ICML’96), pages 148–156, 1996. 17, 22

[97] Y. Freund and R. Schapire. A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence, 14(5):771–780, 1999. 17

[98] J. Fürnkranz. Integrative windowing. Journal of Artificial Intelligence Research,
8:129–164, 1998. 29

[99] Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini. Ensemble
learning for free with evolutionary algorithms? In GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, pages 1782–1789.
ACM, 2007. 18

[100] C. Gathercole and P. Ross. Tackling the boolean even n parity problem with genetic
programming and limited-error fitness. In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel,
M. Garzon, H. Iba, and R.L. Riolo, editors, Genetic Programming 1997: Proc. Second
Annual Conference, pages 119–127. Morgan Kaufmann, 1997. 16

[101] Pierre Gérard and Olivier Sigaud. Designing efficient exploration with MACS: Mod-
ules and function approximation. In E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis,
R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and
J. Miller, editors, Genetic and Evolutionary Computation – GECCO-2003, volume
2724 of LNCS, pages 1882–1893. Springer-Verlag, 2003. 32

[102] Pierre Gerard, Wolfgang Stolzmann, and Olivier Sigaud. YACS, a new learning clas-
sifier system using anticipation. Journal of Soft Computing, 6(3–4):216–228, 2002.
32

46

[103] Andreas Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine
Learning. Physica Verlag, 1997. 34, 37

[104] Attilio Giordana and Filippo Neri. Search-Intensive Concept Induction. Evolutionary
Computation, 3:375–416, 1995. 10

[105] Attilio Giordana and L. Saitta. Learning disjunctive concepts by means of genetic
algorithms. In Proc. Int. Conf. on Machine Learning, pages 96–104, 1994. 29

[106] R. Giraldez, J. Aguilar-Ruiz, and J. Riquelme. Natural coding: A more efficient rep-
resentation for evolutionary learning. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2003), pages 979–990. Springer-Verlag, 2003. 25

[107] C. Giraud-Carrier and J. Keller. Meta-learning. In J. Meij, editor, Dealing with the
data flood. STT/Beweton, 2002. 8

[108] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, Mass., 1989. 34

[109] David E. Goldberg, Jeffrey Horn, and Kalyanmoy Deb. What Makes a Problem Hard
for a Classifier System? In Collected Abstracts for the First International Work-
shop on Learning Classifier System (IWLCS-92), 1992. (Also technical report 92007
Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign).
Available from ENCORE (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the sec-
tion on Classifier Systems. 33

[110] David Perry Greene and Stephen F. Smith. Competition-based induction of decision
models from examples. Machine Learning, 13:229–257, 1993. 10, 24

[111] David Perry Greene and Stephen F. Smith. Using Coverage as a Model Building
Constraint in Learning Classifier Systems. Evolutionary Computation, 2(1):67–91,
1994. 10

[112] D.P. Greene and S.F. Smith. A genetic system for learning models of consumer choice.
In Proceedings of the Second International Conference on Genetic Algorithms and
their Applications, pages 217–223. Morgan Kaufmann, 1987. 29

[113] A. Greenyer. The use of a learning classifier system JXCS. In P. van der Putten
and M. van Someren, editors, CoIL Challenge 2000: The Insurance Company Case.
Leiden Institute of Advanced Computer Science, June 2000. Technical report 2000-
09. 34

[114] F. Gruau. Automatic definition of modular neural networks. Adaptive Behavior,
3(2):151–183, 1995. 19

[115] D. Hanebeck and K. Schmidt. Genetic optimization of fuzzy networks. Fuzzy sets
and systems, 79:59–68, 1996. 36

[116] L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, pages 993–1001, 1990. 17

[117] W.E. Hart, N. Krasnogor, and J.E. Smith (editors). Special issue on memetic algo-
rithms. Evolutionary Computation, 12(3), 2004. 11

47

[118] William E. Hart, N. Krasnogor, and J.E. Smith, editors. Recent Advances in Memetic
Algorithms, volume 166 of Studies in Fuzziness and Soft Computing. Springer, 2005.
11

[119] Lin He, Ke jun Wang, Hong zhang Jin, Guo bin Li, and X.Z. Gao. The combina-
tion and prospects of neural networks, fuzzy logic and genetic algorithms. In IEEE
Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages
52–57. IEEE, 1999. 37

[120] Jörg Heitkötter and David Beasley. The Hitch-Hiker’s Guide to Evo-
lutionary Computation (FAQ for comp.ai.genetic). Accessed 28/2/09.
http://www.aip.de/˜ast/EvolCompFAQ/, 2001. 24

[121] J. Hekanaho. Symbiosis in multimodal concept learning. In Proc. 1995 Int. Conf. on
Machine Learning (ML’95), pages 278–285, 1995. 32

[122] Francisco Herrera. Genetic fuzzy systems: taxonomy, current research trends and
prospects. Evolutionary Intelligence, 1(1):27–46, 2008. 35, 36, 37

[123] John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors, Progress in
Theoretical Biology. New York: Plenum, 1976. 32

[124] John H. Holland. Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In T. Mitchell, R. Michalski, and
J. Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II,
chapter 20, pages 593–623. Morgan Kaufmann, 1986. 16

[125] John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo, David E.
Goldberg, Stephanie Forrest, Rick L. Riolo, Robert E. Smith, Pier Luca Lanzi, Wolf-
gang Stolzmann, and Stewart W. Wilson. What is a Learning Classifier System? In
Lanzi et al. [181], pages 3–32. 24

[126] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard. Induction:
Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, 1986. 25

[127] John H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed Inference Systems.
New York: Academic Press, 1978. Reprinted in: Evolutionary Computation. The
Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7. 32

[128] A. Homaifar and E. Mccormick. Simultaneous design of membership functions and
rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy. Syst.,
3(2):129–139, 1995. 36

[129] D. Howard and L. Bull. On the effects of node duplication and connection-orientated
constructivism in neural XCSF. In M. Keijzer et al., editor, GECCO-2008: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 1977–1984.
ACM, 2008. 27

[130] D. Howard, L. Bull, and P.L. Lanzi. Self-Adaptive Constructivism in Neural XCS and
XCSF. In M. Keijzer et al., editor, GECCO-2008: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1389–1396. ACM, 2008. 27, 32

48

[131] Y.-J. Hu. A genetic programming approach to constructive induction. In Genetic Pro-
gramming 1998: Proceedings of the 3rd Annual Conference, pages 146–151. Morgan
Kaufmann, 1998. 13

[132] J. Hurst and L. Bull. Self-adaptation in classifier system controllers. Artificial Life
and Robotics, 5(2):109–119, 2003. 32

[133] J. Hurst and L. Bull. A self-adaptive neural learning classifier system with construc-
tivism for mobile robot control. In X. Yao et al., editor, Parallel problem solving from
nature (PPSN VIII), volume 3242 of LNCS, pages 942–951. Springer, 2004. 32

[134] P. Husbands, I. Harvey, D. Cliff, and G. Miller. The use of genetic algorithms for
the development of sensorimotor control systems. In P. Gaussier and J.-D. Nicoud,
editors, From perception to action, pages 110–121. IEEE Press, 1994. 19

[135] H. Iba. Bagging, boosting and bloating in genetic programming. In Proc. of the
Genetic and Evolutionary Computation Conference (GECCO’99), pages 1053–1060,
1999. 16

[136] IEEE. Proceedings of the 2000 Congress on Evolutionary Computation (CEC00).
IEEE Press, 2000. 53, 56

[137] H. Ishibuchi and T. Nakashima. Multi-objective pattern and feature selection by a
genetic algorithm. In Proceedings of the 2000 Genetic and Evolutionary Computation
Conference (GECCO’2000), pages 1069–1076. Morgan Kaufmann, 2000. 13

[138] M.M. Islam, X. Yao, and K. Murase. A constructive algorithm for training coopera-
tive neural network ensembles. IEEE Transactions on Neural Networks, 14:820–834,
2003. 22

[139] A. Jain and D. Zongker. Feature selection: evaluation, application and small sample
performance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(2):153–
158, 1997. 13

[140] C.Z. Janikow. Indictive learning of decision rules in attribute-based examples: a
knowledge-intensive genetic algorithm approach. PhD thesis, University of North
Carolina, 1991. 27

[141] C.Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning. Ma-
chine Learning, 13:189–228, 1993. 10, 13

[142] Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and
neural network ensembles. In Genetic and Evolutionary Computation Conference
(GECCO–2004), volume 3102 of Lecture Notes in Computer Science, pages 688–699.
Springer, 2004. 22

[143] G. John, R. Kohavi, and K. Phleger. Irrelevant features and the feature subset prob-
lem. In Proceedings of the 11th International Conference on Machine Learning, pages
121–129. Morgan Kaufmann, 1994. 13

[144] Kenneth A. De Jong and William M. Spears. Learning Concept Classification Rules
using Genetic Algorithms. In Proceedings of the Twelfth International Conference on
Artificial Intelligence IJCAI-91, volume 2, pages 651–656. Morgan Kaufmann, 1991.
26, 27

49

[145] J.D. Kelly Jr. and L. Davis. Hybridizing the genetic algorithm and the k nearest neigh-
bors classification algorithm. In Lashon B. Booker and Richard K. Belew, editors,
Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91),
pages 377–383. Morgan Kaufmann, July 1991. 13

[146] C. Karr. Genetic algorithms for fuzzy controllers. AI Expert, 6(2):26–33, 1991. 37

[147] N. Kasabov. Evolving Connectionist Systems: The Knowledge Engineering Approach.
Springer, 2007. 19

[148] M. Keijzer and V. Babovic. Genetic programming, ensemble methods, and the
bias/variance/tradeoff – introductory investigation. In Proc. of the European Conf.
on Genetic Programming (EuroGP’00), pages 76–90, 2000. 16

[149] H. Kitano. Designing neural networks by genetic algorithms using graph generation
system. Journal of Complex System, 4:461–476, 1990. 19

[150] Eyal Kolman and Michael Margaliot. Knowledge-Based Neurocomputing: A Fuzzy
Logic Approach, volume 234 of Studies in Fuzziness and Soft Computing. Springer,
2009. 37

[151] Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Master’s
thesis, University of Birmingham, Birmingham, UK, 1996. 28, 30

[152] Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and Mini-
mal Representations for Boolean Functions. In Roy, Chawdhry, and Pant, editors, Soft
Computing in Engineering Design and Manufacturing, pages 59–68. Springer-Verlag,
London, 1997. ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html. 30

[153] Tim Kovacs. Strength or Accuracy? Fitness calculation in learning classifier systems.
In Lanzi et al. [181], pages 143–160. 33

[154] Tim Kovacs. Strength or Accuracy: Credit Assignment in Learning Classifier Systems.
Springer, 2004. 10, 25, 27, 29, 32, 33, 34

[155] Tim Kovacs. A Learning Classifier Systems Bibliography. De-
partment of Computer Science, University of Bristol, 2009.
http://www.cs.bris.ac.uk/˜kovacs/lcs/search.html. 34

[156] Tim Kovacs and Manfred Kerber. What makes a problem hard for XCS? In Lanzi
et al. [182], pages 80–99. 33

[157] Tim Kovacs and Manfred Kerber. High classification accuracy does not imply effec-
tive genetic search. In K. Deb et al., editor, Proceedings of the 2004 Genetic and
Evolutionary Computation Conference (GECCO), volume 3102 of LNCS, pages 785–
796. Springer, 2004. 11

[158] J.R. Koza. Genetic Programming: on the programming of computers by means of
natural selection. MIT Press, 1992. 14

[159] J.R. Koza. Genetic Programming II. MIT Press, 1994. 17

[160] N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms. PhD
thesis, University of the West of England, 2002. 16

50

[161] N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation,
9(5):474–488, 2005. 11

[162] Natalio Krasnogor. Self-generating metaheuristics in bioinformatics: the protein
structure comparison case. Genetic Programming and Evolvable Machines, 5(2):181–
201, 2004. 8, 16

[163] Natalio Krasnogor and S. Gustafson. A study on the use of self-generation in memetic
algorithms. Natural Computing, 3(1):53–76, 2004. 8, 16

[164] K. Krawiec. Genetic programming-based construction of features for machine learn-
ing and knowledge discovery tasks. Genetic Programming and Evolvable Machines,
3(4):329–343, 2002. 13

[165] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. Neural Information Processing Systems, 7:231–238, 1995. 17

[166] M. Kudo and J. Skalansky. Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33:25–41, 2000. 13

[167] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wi-
ley, 2004. 17, 18, 33

[168] I. Kushchu. An evaluation of evolutionary generalization in genetic programming.
Artificial Intelligence Review, 18(1):3–14, 2002. 16

[169] L. Lam and C.Y. Suen. Optimal combination of pattern classifiers. Pattern Recognition
Letters, 16:945–954, 1995. See Kuncheva2004a p.167. 17

[170] Samuel Landau, Olivier Sigaud, and Marc Schoenauer. ATNoSFERES revisited. In
Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2005,
pages 1867–1874. ACM, 2005. 27

[171] William Langdon, Steven Gustafson, and John Koza. The genetic programming bib-
liography http://www.cs.bham.ac.uk/ wbl/biblio/, 2009. 17

[172] Pier Luca Lanzi. Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding. In Banzhaf et al. [16], pages 337–344. 27

[173] Pier Luca Lanzi. Extending the Representation of Classifier Conditions Part II: From
Messy Coding to S-Expressions. In Banzhaf et al. [16], pages 345–352. 27

[174] Pier Luca Lanzi. Mining interesting knowledge from data with the XCS classifier
system. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon,
and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2001), pages 958–965, San Francisco, California, USA,
7-11 July 2001. Morgan Kaufmann. 27

[175] Pier Luca Lanzi. Learning classifier systems from a reinforcement learning perspec-
tive. Journal of Soft Computing, 6(3–4):162–170, 2002. 33

[176] Pier Luca Lanzi. Learning classifier systems: then and now. Evolutionary Intelligence,
1(1):63–82, 2008. 34

51

[177] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Clas-
sifier prediction based on tile coding. In Genetic and Evolutionary Computation –
GECCO-2006, pages 1497–1504. ACM, 2006. 27

[178] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Pre-
diction Update Algorithms for XCSF: RLS, Kalman Filter and Gain Adaptation. In
Genetic and Evolutionary Computation – GECCO-2006, pages 1505–1512. ACM,
2006. 24, 33

[179] Pier Luca Lanzi, Daniele Loiacono, and Matteo Zanini. Evolving classifiers ensembles
with heterogeneous predictors. In Jaume Bacardit, Ester Bernadó-Mansilla, Martin
Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning Classifier
Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of
Lecture Notes in Computer Science, pages 218–234. Springer, 2008. 33

[180] Pier Luca Lanzi and Rick L. Riolo. A Roadmap to the Last Decade of Learning
Classifier System Research (from 1989 to 1999). In Lanzi et al. [181], pages 33–62.
34

[181] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learn-
ing Classifier Systems. From Foundations to Applications, volume 1813 of LNAI.
Springer-Verlag, Berlin, 2000. 41, 48, 50, 52, 57

[182] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Advances in
Learning Classifier Systems, volume 1996 of LNAI. Springer-Verlag, Berlin, 2001.
43, 50

[183] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Advances in
Learning Classifier Systems, volume 2321 of LNAI. Springer-Verlag, Berlin, 2002.
40, 42, 61

[184] P.L. Lanzi, M.V. Butz, and D.E. Goldberg. Empirical analysis of generalization and
learning in XCS with gradient descent. In H. Lipson, editor, Genetic and Evolutionary
Computation Conference, GECCO 2007, Proceedings, volume 2, pages 1814–1821.
ACM, 2007. 33

[185] P.L. Lanzi and D. Loiacono. Standard and averaging reinforcement learning in XCS.
In M. Cattolico, editor, GECCO 2006: Proceedings of the 8th annual conference on
genetic and evolutionary computation, pages 1480–1496. ACM, 2006. 33

[186] P.L. Lanzi and D. Loiacono. Classifier systems that compute action mappings. In
H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007,
Proceedings, pages 1822–1829. ACM, 2007. 27

[187] P.L. Lanzi and S.W. Wilson. Using convex hulls to represent classifier conditions. In
M. Cattolico, editor, Proc. genetic and evolutionary computation conference (GECCO
2006), pages 1481–1488. ACM, 2006. 27

[188] Z. Liangjie and L. Yanda. A new global optimizing algorithm for fuzzy neural net-
works. Int. J. Electronics, 80(3):393–403, 1996. 36

[189] D.A. Linkens and H.O. Nyongesa. Learning systems in intelligent control: an ap-
praisal of fuzzy, neural and genetic algorithm control applications. IEE Proceedings -
Control Theory and Applications, 143(4):367–386, 1996. 37

52

[190] Juliet Juan Liu and James Tin-Yau Kwok. An extended genetic rule induction algo-
rithm. In Proceedings of the 2000 Congress on Evolutionary Computation (CEC00)
[136], pages 458–463. 10, 32

[191] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks,
12:1399–1404, 1999. 18, 21

[192] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Trans. on Evolutionary Computation, 4(4):380–387, 2000. 18, 22

[193] Xavier Llorà. Genetic Based Machine Learning using Fine-grained Parallelism for
Data Mining. PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University,
2002. 27

[194] Xavier Llorà and Josep M. Garrell. Knowledge-Independent Data Mining with Fine-
Grained Parallel Evolutionary Algorithms. In Lee Spector, Erik D. Goodman, Annie
Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,
Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2001), pages 461–468.
Morgan Kaufmann Publishers, 2001. 27

[195] Xavier Llorà, K. Sastry, and D.E. Goldberg. Binary rule encoding schemes: a study
using the compact classifier system. In F. Rothlauf, editor, GECCO ’05: Proceedings
of the 2005 conference on genetic and evolutionary computation, workshop proceed-
ings, pages 88–89. ACM Press, 2005. 30

[196] Xavier Llorà, K. Sastry, and D.E. Goldberg. The compact classifier system: scalability
analysis and first results. In F. Rothlauf, editor, Proceedings of the IEEE congress on
evolutionary computation, CEC 2005, pages 596–603. IEEE, 2005. 30

[197] Xavier Llorà and Stewart W. Wilson. Mixed Decision Trees: Minimizing Knowledge
Representation Bias in LCS. In Kalyanmoy Deb et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2004), volume 3103 of
Lecture Notes in Computer Science, pages 797–809. Springer, 2004. 27

[198] D. Loiacono, A. Marelli, and P.L. Lanzi. Support vector regression for classifier pre-
diction. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1806–1813. ACM, 2007. 27

[199] R.E. Marmelstein and G.B. Lamont. Pattern classification using a hybrid genetic al-
gorithm – decision tree approach. In Genetic Programming 1998: Proceedings of the
3rd Annual Conference (GP’98), pages 223–231. Morgan Kaufmann, 1998. 16

[200] James A. R. Marshall and Tim Kovacs. A representational ecology for learning clas-
sifier systems. In Maarten Keijzer et al., editor, Proceedings of the 2006 Genetic
and Evolutionary Computation Conference (GECCO 2006), pages 1529–1536. ACM,
2006. 27

[201] M.J. Martin-Bautista and M.-A. Vila. A survey of genetic feature selection in mining
issues. In Proceedings of the Congress on Evolutionary Computation (CEC’99, pages
1314–1321. IEEE, 1999. 13

[202] Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In Ad-
vanced lectures on machine learning, pages 118–183. Springer-Verlag, 2003. 17

53

[203] Drew Mellor. A first order logic classifier system. In F. Rothlauf, editor, GECCO ’05:
Proceedings of the 2005 conference on genetic and evolutionary computation, pages
1819–1826. ACM Press, 2005. 27

[204] Drew Mellor. Policy transfer with a relational learning classifier system. In GECCO
Workshops 2005, pages 82–84. ACM Press, 2005. 27

[205] Drew Mellor. A learning classifier system approach to relational reinforcement learn-
ing. In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier
Llorà, and Keiki Takadama, editors, Learning Classifier Systems. 10th and 11th Inter-
national Workshops (2006-2007), volume 4998/2008 of Lecture Notes in Computer
Science, pages 169–188. Springer, 2008. 27

[206] R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive learning
system: an overview and experiments. Technical Report UIUCDCS-R-86-1260, Uni-
versity of Illinois, 1986. 27

[207] G.F. Miller, P.M. Todd, and S.U. Hegde. Designing neural networks using genetic
algorithms. In J.D. Schaffer, editor, Proc. 3rd Int. Conf. Genetic Algorithms and Their
Applications, pages 379–384. Morgan Kaufmann, 1989. 5, 20

[208] Sushmita Mitra and Yoichi Hayashi. Neurofuzzy rule generation: Survey in soft com-
puting framework. IEEE Transactions on Neural Networks, 11(3):748–768, 2000.
37

[209] T. Morimoto, J. Suzuki, and Y. Hashimoto. Optimization of a fuzzy controller for
fruit storage using neural networks and genetic algorithms. Engineering Applications
of Art. Int., 10(5):453–461, 1997. 36, 37

[210] S. Nolfi, O. Miglino, and D. Parisi. Phenotypic plasticity in evolving neural networks.
In P. Gaussier and J.-D. Nicoud, editors, From perception to action, pages 146–157.
IEEE Press, 1994. 19

[211] T. O’Hara and L. Bull. A memetic accuracy-based neural learning classifier system.
In Proceedings of the IEEE congress on evolutionary computation (CEC 2005), pages
2040–2045. IEEE, 2005. 27

[212] Y.-S. Ong, N. Krasnogor, and H. Ishibuchi (editors). Special issue on memetic algo-
rithms. IEEE Transactions on Systems, Man and Cybernetics - Part B, 37(1), 2007.
11

[213] Yew-Soon Ong, Meng-Hiot Lim, Ferrante Neri, and Hisao Ishibuchi. Special issue on
memetic algorithms. Soft Computing, 13(8-9), 2009. 11

[214] Y.S. Ong, M.H. Lim, N. Zhu, and K.W. Wong. Classification of adaptive memetic al-
gorithms: A comparative study. IEEE Transactions on Systems Man and Cybernetics
– Part B, 36(1):141–152, 2006. 11

[215] D. Opitz and R. Maclin. Popular ensemble methods: an empirical study. J. Artificial
Intelligence Research, 11:169–198, 1999. 17

[216] D.W. Opitz and J.W. Shavlik. Generating Accurate and Diverse Members of a Neural-
network Ensemble. Advances in Neural Information Processing Systems, pages 535–
541, 1996. 17, 18

54

[217] A. Orriols-Puig and E. Bernadó-Mansilla. Bounding XCS’s parameters for unbal-
anced datasets. In Maarten Keijzer et al., editor, Proceedings of the 2006 Genetic
and Evolutionary Computation Conference (GECCO 2006), pages 1561–1568. ACM,
2006. 30

[218] A. Orriols-Puig, J. Casillas, and E. Bernadò-Mansilla. Fuzzy-UCS: preliminary re-
sults. In H. Lipson, editor, Genetic and Evolutionary Computation Conference,
GECCO 2007, Proceedings, pages 2871–2874. ACM, 2007. 34

[219] A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla. Modeling XCS
in class imbalances: population size and parameter settings. In H. Lipson et al., editor,
Genetic and evolutionary computation conference, GECCO 2007, pages 1838–1845.
ACM, 2007. 30

[220] A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla. Modeling XCS
in class imbalances: population size and parameter settings. In H. Lipson, editor, Ge-
netic and Evolutionary Computation Conference, GECCO 2007, Proceedings, pages
1838–1845. ACM, 2007. 33

[221] A. Orriols-Puig, K. Sastry, P.L. Lanzi, D.E. Goldberg, and E. Bernadò-Mansilla. Mod-
eling selection pressure in XCS for proportionate and tournament selection. In H. Lip-
son, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Pro-
ceedings, page 18461853. ACM, 2007. 33

[222] Albert Orriols-Puig and Ester Bernadó-Mansilla. Revisiting UCS: Description, Fit-
ness Sharing, and Comparison with XCS. In Jaume Bacardit, Ester Bernadó-Mansilla,
Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning
Classifier Systems. 10th and 11th International Workshops (2006-2007), volume
4998/2008 of Lecture Notes in Computer Science, pages 96–111. Springer, 2008. 24

[223] Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla. Evolving fuzzy rules
with ucs: Preliminary results. In Jaume Bacardit, Ester Bernadó-Mansilla, Martin
Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors, Learning Classifier
Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of
Lecture Notes in Computer Science, pages 57–76. Springer, 2008. 34

[224] Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla. Genetic-based ma-
chine learning systems are competitive for pattern recognition. Evolutionary Intelli-
gence, 1(3):209–232, 2008. 6, 34

[225] S. Pal and D. Bhandari. Genetic algorithms with fuzzy fitness function for object
extraction using cellular networks. Fuzzy Sets and Systems, 65(2–3):129–139, 1994.
19

[226] Gisele L. Pappa and Alex A. Freitas. Automating the Design of Data Mining Algo-
rithms. An Evolutionary Computation Approach. Natural Computing Series. Springer,
2010. 16

[227] G. Paris, D. Robilliard, and C. Fonlupt. Applying boosting techniques to genetic
programming. In Artificial Evolution 2001, volume 2310 of LNCS, pages 267–278.
Springer, 2001. 16

55

[228] F.B. Pereira and E. Costa. Understanding the role of learning in the evolution of busy
beaver: A comparison between the Baldwin Effect and Lamarckian strategy. In Proc.
of the Genetic and Evol. Computation Conf. (GECCO–2001), pages 884–891, 2001.
11

[229] Christiaan Perneel and Jean-Marc Themlin. Optimization of fuzzy expert systems us-
ing genetic algorithms and neural networks. IEEE Trans. on fuzzy systems, 3(3):301–
312, 1995. 37

[230] D.T. Pham and D. Karaboga. Optimum design of fuzzy logic controllers using genetic
algorithms. J. Systems Eng, 1:114–118, 1991. 37

[231] R. Poli, W.B. Langdon, and N.F. McPhee. A field guide to genetic programming, freely
available at http://www.gp-field-guide.org.uk. lulu.com, 2008. 14, 17

[232] W.F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody. Fur-
ther research on feature selection and classification using genetic algorithms. In
Stephanie Forrest, editor, Proceedings of the 5th International Conference on Genetic
Algorithms (ICGA93), pages 557–564. Morgan Kaufmann, 1993. 13

[233] Amr Radi and Riccardo Poli. Discovering efficient learning rules for feedforward
neural networks using genetic programming. In Ajith Abraham, Lakhmi Jain, and
Janusz Kacprzyk, editors, Recent Advances in Intelligent Paradigms and Applications,
pages 133–159. Springer Verlag, 2003. 21

[234] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain. Dimensionality
reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation,
4(2):164–171, 2000. 13

[235] C.R. Reeves and J.E. Rowe. Genetic Algorithms – Principles and Perspectives. A
Guide to GA Theory. Kluwer, 2002. 25

[236] Rick L. Riolo. Bucket Brigade Performance: I. Long Sequences of Classifiers. In
John J. Grefenstette, editor, Proceedings of the 2nd International Conference on Ge-
netic Algorithms (ICGA87), pages 184–195, Cambridge, MA, July 1987. Lawrence
Erlbaum Associates. 32

[237] R.L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987. 26

[238] S. Romaniuk. Towards minimal network architectures with evolutionary growth net-
works. In Proc. IEEE Int. Conf. on NNs, IEEE World Congress on Computational
Intelligence, volume 3, pages 1710–1713. IEEE, 1994. 13

[239] S. E. Rouwhorst and A. P. Engelbrecht. Searching the forest: Using decision trees as
building blocks for evolutionary search in classification databases. In Proceedings of
the 2000 Congress on Evolutionary Computation (CEC00) [136], pages 633–638. 16

[240] Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors. Handbook of Natural
Computing: Theory, Experiments, and Applications. Springer Verlag, 2010. 11

[241] D. Ruta and B. Gabrys. Application of the evolutionary algorithms for classifier se-
lection in multiple classifier systems with majority voting. In J. Kittler and F. Roli,
editors, Proc. 2nd International Workshop on Multiple Classifier Systems, volume
2096 of LNCS, pages 399–408. Springer–Verlag, 2001. See Kuncheva2004a p.321.
18

56

[242] L. Sánchez and I. Couso. Advocating the use of imprecisely observed data in genetic
fuzzy systems. IEEE Transactions on Fuzzy Systems, 15(4):551–562, 2007. 36

[243] T. Sasaki and M. Tokoro. Adaptation toward changing environments: Why darwinian
in nature? In P. Husbands and I. Harvey, editors, Proceedings of the 4th European
conference on artificial life, pages 145–153. MIT Pess, 1997. 11

[244] Shaun Saxon and Alwyn Barry. XCS and the Monk’s Problems. In Lanzi et al. [181],
pages 223–242. 34

[245] Cullen Schaffer. A conservation law for generalization performance. In Haym Hirsh
and Willian W. Cohen, editors, Machine Learning: Proceedings of the Eleventh Inter-
national Conference, pages 259–265, San Francisco, CA, 1994. Morgan Kaufmann.
3

[246] J. David Schaffer, editor. Proceedings of the 3rd International Conference on Genetic
Algorithms (ICGA-89), George Mason University, June 1989. Morgan Kaufmann. 41,
57, 61

[247] Jürgen Schmidhuber. Evolutionary principles in self-referential learning. (On learn-
ing how to learn: The meta-meta-... hook.). PhD thesis, Institut f. Informatik, Tech.
Univ. Munich, 1987. 16

[248] Dale Schuurmans and Jonathan Schaeffer. Representational Difficulties with Classifier
Systems. In Schaffer [246], pages 328–333. 25

[249] A.J.C. Sharkey. On combining artificial neural nets. Connection Science, 8(3–4):299–
313, 1996. 17

[250] P.K. Sharpe and R.P. Glover. Efficient ga based techniques for classification. Applied
Intelligence, 11:277–284, 1999. 13

[251] K. Sirlantzis, M.C. Fairhurst, and M.S. Hoque. Genetic algorithms for multi-classifier
system configuration: a case study in character recognition. In J. Kittler and F. Roli,
editors, Proc. 2nd International Workshop on Multiple Classifier Systems, volume
2096 of LNCS, pages 99–108. Springer–Verlag, 2001. See Kuncheva2004a p.321. 18

[252] J.E. Smith. Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):6–17,
2007. 11

[253] M.G. Smith and L. Bull. Genetic programming with a genetic algorithm for feature
construction and selection. Genetic Programming and Evolvable Machines, 6(3):265–
281, 2005. 13

[254] Robert E. Smith. A Report on The First International Workshop on Learning Clas-
sifier Systems (IWLCS-92). NASA Johnson Space Center, Houston, Texas, Oct.
6-9. ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from EN-
CORE, The Electronic Appendix to the Hitch-Hiker’s Guide to Evolutionary Com-
putation (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier
Systems, 1992. 24

[255] Robert E. Smith. Memory Exploitation in Learning Classifier Systems. Evolutionary
Computation, 2(3):199–220, 1994. 32

57

[256] Robert E. Smith and H. Brown Cribbs. Is a Learning Classifier System a Type of
Neural Network? Evolutionary Computation, 2(1):19–36, 1994. 19

[257] Robert E. Smith and H. Brown Cribbs. Is a Learning Classifier System a Type of
Neural Network? Evolutionary Computation, 2(1):19–36, 1994. 27

[258] Robert E. Smith and David E. Goldberg. Variable default hierarchy separation in a
classifier system. In Gregory J. E. Rawlins, editor, Proceedings of the First Workshop
on Foundations of Genetic Algorithms, pages 148–170, San Mateo, July 15–18 1991.
Morgan Kaufmann. 26

[259] Robert E. Smith and H. B. Cribbs III. Combined biological paradigms. Robotics and
Autonomous Systems, 22(1):65–74, 1997. 19, 27

[260] D. Song, M.I. Heywood, and A.N. Zincir-Heywood. Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Transactions on
Evolutionary Computation, 9(3):225–239, 2005. 16

[261] N. Srinivas and K. Deb. Multi-objective function optimization using non-dominated
sorting genetic algorithm. Evolutionary Computation, 2(3):221–248, 1994. 22

[262] Peter Stagge. Averaging efficiently in the presence of noise. In Parallel problem
solving from nature, volume 5, pages 188–197, 1998. 12

[263] Wolfgang Stolzmann. Learning classifier systems using the cognitive mechanism of
anticipatory behavioral control, detailed version. In Proceedings of the First European
Workshop on Cognitive Modelling, pages 82–89. Berlin: TU, 1996. 32

[264] Chris Stone and Larry Bull. For real! XCS with continuous-valued inputs. Evolution-
ary Computation, 11(3):298–336, 2003. 25

[265] R. Storn and K. Price. Minimizing the real functions of the icec’96 contest by differ-
ential evolution. In Proc. of the IEEE Int. Conf. on Evolutionary Computation, pages
842–844. IEEE, 1996. 22

[266] M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor. Prediction of recursive convex
hull class assignment for protein residues. Bioinformatics, 24(7):916–923, 2008. 13

[267] R.S. Sutton. Two problems with backpropagation and other steepest-descent learning
procedures for networks. In Proc. 8th Annual Conf. Cognitive Science Society, pages
823–831. Erlbaum, 1986. 19

[268] T. Sziranyi. Robustness of cellular neural networks in image deblurring and texture
segmentation. Int. J. Circuit Theory App., 24(3):381–396, 1996. 19

[269] A. Tamaddoni-Nezhad and S.H. Muggleton. Searching the subsumption lattice by
a genetic algorithm. In J. Cussens and A. Frisch, editors, Proceedings of the 10th
International Conference on Inductive Logic Programming, pages 243–252. Springer-
Verlag, 2000. 14

[270] Alireza Tamaddoni-Nezhad and Stephen Muggleton. A Genetic Algorithms Approach
to ILP. In Inductive Logic Programming, volume 2583/2003 of LNCS, pages 285–300.
Springer, 2003. 14

58

[271] K. Tharakannel and D. Goldberg. XCS with average reward criterion in multi-step
environment. Technical report, Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, 2002. 33

[272] S. Thompson. Pruning boosted classifiers with a real valued genetic algorithm. In
Research and Development in Expert Systems XV – Proceedings of ES’98, pages 133–
146. Springer, 1998. 13, 17

[273] S. Thompson. Genetic algorithms as postprocessors for data mining. In Data Mining
with Evolutionary Algorithms: Research Directions – Papers from the AAAI Work-
shop. Tech report WS–99–06, pages 18–22. AAAI Press, 1999. 13, 17

[274] P. Thrift. Fuzzy logic synthesis with genetic algorithms. In Lashon B. Booker and
Richard K. Belew, editors, Proceedings of 4th international conference on genetic
algorithms (ICGA’91), pages 509–513. Morgan Kaufmann, 1991. 37

[275] Andy Tomlinson. Corporate Classifier Systems. PhD thesis, University of the West
of England, 1999. 32

[276] Andy Tomlinson and Larry Bull. A Corporate Classifier System. In A. E. Eiben,
T. Bäck, M. Shoenauer, and H.-P. Schwefel, editors, Proceedings of the Fifth Interna-
tional Conference on Parallel Problem Solving From Nature – PPSN V, number 1498
in LNCS, pages 550–559. Springer Verlag, 1998. 32

[277] Andy Tomlinson and Larry Bull. An accuracy-based corporate classifier system. Jour-
nal of Soft Computing, 6(3–4):200–215, 2002. 32

[278] T.H. Tran, C. Sanza, Y. Duthen, and T.D. Nguyen. XCSF with computed continuous
action. In Genetic and evolutionary computation conference (GECCO 2007), pages
1861–1869. ACM, 2007. 27

[279] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition, 29(2):341–348, 1996. 17

[280] Peter Turney. How to shift bias: Lessons from the baldwin effect. Evolutionary
Computation, 4(3):271–295, 1996. 11

[281] Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. In WIRN
VIETRI 2002: Proceedings of the 13th Italian Workshop on Neural Nets-Revised Pa-
pers, pages 3–22. Springer-Verlag, 2002. 17

[282] Manuel Valenzuela-Rendón. Two analysis tools to describe the operation of classifier
systems. PhD thesis, University of Alabama, 1989. Also TCGA technical report
89005. 25

[283] Manuel Valenzuela-Rendón. The Fuzzy Classifier System: a Classifier System for
Continuously Varying Variables. In Booker and Belew [30], pages 346–353. 34, 37

[284] Manuel Valenzuela-Rendón. Reinforcement learning in the fuzzy classifier system.
Expert Systems Applications, 14:237–247, 1998. 34

[285] R. Vallim, D. Goldberg, X. Llorà, T. Duque, and A. Carvalho. A new approach for
multi-label classification based on default hierarchies and organizational learning. In
Proceedings of the Genetic and Evolutionary Computation Conference, Worrkshop
Sessions: Learning Classifier Systems, pages 2017–2022, 2003. 26

59

[286] Leonardo Vanneschi and Riccardo Poli. Genetic programming: Introduction, applica-
tions, theory and open issues. In Grzegorz Rozenberg, Thomas Bäck, and Joost Kok,
editors, Handbook of Natural Computing: Theory, Experiments, and Applications.
Springer Verlag, 2010. 14, 16, 17

[287] G. Venturini. SIA: A supervised inductive algorithm with genetic search for learning
attributes based concepts. In P.B. Brazdil, editor, ECML-93 - Proc. of the European
Conference on Machine Learning, pages 280–296. Springer-Verlag, 1993. 10, 32

[288] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002. 8

[289] A. Wada, K. Takadama, K. Shimohara, and O. Katai. Learning classifier systems with
convergence and generalization. In L. Bull and T. Kovacs, editors, Foundations of
learning classifier systems, pages 285–304. Springer, 2005. 33

[290] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara. Counter example for Q-
bucket-brigade under prediction problem. In GECCO Workshops 2005, pages 94–99.
ACM Press, 2005. 33

[291] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara. Learning classifier sys-
tem equivalent with reinforcement learning with function approximation. In GECCO
Workshops 2005, pages 92–93. ACM Press, 2005. 33

[292] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara. Counter Example for
Q-Bucket-Brigade Under Prediction Problem. In Tim Kovacs, Xavier LLòra, Keiki
Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Learning Classifier Systems. International Workshops, IWLCS 2003-2005, Revised
Selected Papers, volume 4399 of LNCS, pages 128–143. Springer, 2007. 33

[293] Shimon Whiteson and Peter Stone. Evolutionary function approximation for rein-
forcement learning. J. Mach. Learn. Res., 7:877–917, 2006. 11, 12

[294] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks:
Optimizing connections and connectivity. Parallel Comput., 14(3):347–361, 1990. 19

[295] Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector, Ian Parmee, and
Hans-Georg Beyer, editors. Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2000). Morgan Kaufmann, 2000. 42

[296] Darrell Whitley, V. Scott Gordon, and Keith Mathias. Lamarckian evolution, the Bald-
win effect and function optimization. In Parallel Problem Solving from Nature (PPSN-
III), pages 6–15. Springer-Verlag, 1994. 11

[297] Jason R. Wilcox. Organizational Learning within a Learning Classifier System. Mas-
ter’s thesis, University of Illinois, 1995. Also Technical Report No. 95003 IlliGAL.
9, 10

[298] S. W. Wilson. Mining oblique data with XCS. In P.L. Lanzi, W. Stolzmann, and S.W.
Wilson, editors, Advances in learning classifier systems, third international workshop,
IWLCS 2000, volume 1996 of LNCS, pages 158–176. Springer, 2001. 25

[299] Stewart W. Wilson. Bid competition and specificity reconsidered. Complex Systems,
2:705–723, 1989. 26

60

[300] Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computation,
2(1):1–18, 1994. 26, 32

[301] Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2):149–175, 1995. 11, 24, 25, 28, 29, 30, 32, 33

[302] Stewart W. Wilson. Generalization in the XCS classifier system. In John R. Koza,
Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fo-
gel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pages 665–674.
Morgan Kaufmann, 1998. 29

[303] Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In L. Booker,
Stephanie Forrest, M. Mitchell, and Rick L. Riolo, editors, Festschrift in Honor of
John H. Holland, pages 111–121. Center for the Study of Complex Systems, 1999. 25

[304] Stewart W. Wilson. Mining Oblique Data with XCS. In Proceedings of the Inter-
national Workshop on Learning Classifier Systems (IWLCS-2000), in the Joint Work-
shops of SAB 2000 and PPSN 2000, 2000. Extended abstract. 34

[305] Stewart W. Wilson. Function approximation with a classifier system. In Lee Spec-
tor, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo
Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 974–981, San Francisco, California, USA, 7-11 July 2001.
Morgan Kaufmann. 24, 33

[306] Stewart W. Wilson. Classifiers that approximate functions. Natural Computing, 1(2–
3):211–234, 2002. 24, 33

[307] Stewart W. Wilson. Compact Rulesets from XCSI. In Lanzi et al. [183], pages 196–
208. 30

[308] Stewart W. Wilson. Three architectures for continuous action. In Tim Kovacs,
Xavier LLòra, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-
art W. Wilson, editors, Learning Classifier Systems. International Workshops, IWLCS
2003-2005, Revised Selected Papers, volume 4399 of LNCS, pages 239–257. Springer,
2007. 27

[309] Stewart W. Wilson. Classifier conditions using gene expression programming. In
Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and
Keiki Takadama, editors, Learning Classifier Systems. 10th and 11th International
Workshops (2006-2007), volume 4998/2008 of Lecture Notes in Computer Science,
pages 206–217. Springer, 2008. 27

[310] Stewart W. Wilson and David E. Goldberg. A Critical Review of Classifier Systems.
In Schaffer [246], pages 244–255. 32, 34

[311] David H. Wolpert. The lack of a priori distinctions between learning algorithms.
Neural Computation, 8(7):1341–1390, 1996. 3

[312] M.L. Wong and K.S. Leung. Data mining using grammar based genetic programming
and applications. Kluwer, 2000. 10, 17

61

[313] K. Woods, W. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers us-
ing local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:405–410, 1997. 17

[314] John R. Woodward. GA or GP? That is not the question. In Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, pages 1056–1063. IEEE, 2003. 14

[315] K. Yamasaki and M. Sekiguchi. Clear explanation of different adaptive behaviors
between Darwinian population and Larmarckian population in changing environment.
In Proc. Fifth Int. Symp. on Artificial Life and Robotics, pages 120–123, 2000. 11

[316] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999. 11, 19, 20, 21, 22, 24

[317] X. Yao and M.M. Islam. Evolving artificial neural network ensembles. IEEE Compu-
tational Intelligence Magazine, 3(1):31–42, 2008. 18, 21, 24

[318] X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural networks.
IEEE Trans. Neural Networks, 8:694–713, 1997. 20, 21

[319] X. Yao and Y. Liu. Making use of population information in evolutionary artificial
neural networks. IEEE Transactions on Systems, Man and Cybernetics B, 28(3):417–
425, 1998. 21

[320] Zhanna V. Zatuchna. AgentP: a learning classifier system with associative perception
in maze environments. PhD thesis, University of East Anglia, 2005. 32

[321] Z.V. Zatuchna. AgentP model: Learning Classifer System with Associative Percep-
tion. In 8th Parallel Problem Solving from Nature International Conference (PPSN
VIII), pages 1172–1182, 2004. 32

[322] B.-T. Zhang and G. Veenker. Neural networks that teach themselves through genetic
discovery of novel examples. In Proc. 1991 IEEE Int. Joint Conf. on Neural Networks
(IJCNN’91), volume 1, pages 690–695. IEEE, 1991. 13

62

	Contents
	Introduction
	Machine Learning
	Arguments For and Against GBML

	A Framework for GBML
	Classifying GBML Systems by Role
	Classifying GBML Systems Algorithmically
	The Interaction of Learning and Evolution
	Other GBML Models

	GBML Areas
	GBML for Sub-problems of Learning
	Genetic Programming
	GP Trees
	Decision Trees
	Extensions to GP
	Conclusions

	Evolving Ensembles
	Evolutionary Ensembles
	Conclusions

	Evolving Neural Networks
	Ensembles of NNs
	Yao's Framework for Evolving NNs
	Conclusions

	Learning Classifier Systems
	Production Systems and Rule(Set) Parameters
	Representation
	Rule Discovery
	LCS Credit Assignment
	Conclusions

	Genetic Fuzzy Systems
	Evolution of FRBSs
	Genetic Neuro-fuzzy Systems
	Conclusions

	Conclusions
	Glossary
	References

