
Genetics-based Machine Learning

Tim Kovacs

Dept. of Computer Science
University of Bristol

April 2009

These slides accompany the chapter Genetics-based Machine Learning by Tim Kovacs, in

Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors, a Handbook of Natural Computing:

Theory, Experiments, and Applications. Springer Verlag, 2010. Please note each has some

references the other does not so the numbers used to cite papers do not match.

1 / 243

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

2 / 243

Introduction

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

3 / 243

Introduction

Outline

This survey:
1 Introduces the subject

introduces Supervised Learning (SL)
contrasts SL with optimisation
assumes readers are familiar with Evolutionary Algorithms (EAs)
discusses pros and cons of GBML

2 Describes a framework for GBML

classifies forms of GBML (learning, meta-learning etc.)
reviews interaction of learning and evolution
outlines high-level algorithms

3 Reviews the major forms of GBML

with emphasis on evolutionary aspects
organised by research community (and not e.g. by learning paradigm)

4 Concludes

4 / 243

Introduction

What’s missing

Coverage is somewhat arbitrary and missing:

A general introduction to Machine Learning including:

Structure of learning problems and fitness landscapes
Non-evolutionary algorithms
Theoretical limitations (e.g. no free lunch theorem for learning)

Evolutionary methods for:

Clustering
Reinforcement Learning
Bayesian Networks
Artificial Immune Systems
Artificial Life
Application areas

There’s also little on:

EAs for data preprocessing e.g. feature selection

Comparisons between GBML and non-evolutionary alternatives

Co-evolution
5 / 243

Introduction

Machine Learning

ML is about machines which:

improve with experience

reason inductively or abductively

In order to:

optimise

approximate

summarise

generalise from specific examples to general rules

classify

make predictions

find associations

propose explanations

propose ways of grouping things

. . .
6 / 243

Introduction

GBML

We consider any stochastic search based method as GBML

Most are population-based

Most popular are:

Genetic Algorithms (GAs)
Genetic Programming (GP)

7 / 243

Introduction

Inductive generalisation

Inductive generalisation:

Inferring unknown values from known values

We assume they’re correlated!

Objective: to maximise a function of unknown cases

Called the fitness function

There’s no need for induction if:

all values are known, and . . .
there’s enough time to process them

We consider two forms of induction:

function optimisation
learning

We won’t deal with abduction

8 / 243

Introduction

1-max: a typical optimisation problem

1-max problem

Maximise the number of 1s in a binary string of length n

Optimal solution is trivial for humans

Representation:

Input: none

Output: bit strings of length n

Data generation:

Data: generate as many output strings as you like

Time is the limiting factor
If time allows you can enumerate the search space O

Training:

Fitness: number of 1s in output string

9 / 243

Introduction

Evaluation with 1-max

Evaluation:

How close did learner get to the known optimal solution?

1-max is a toy problem
In realistic problems optimum is often not known
And we may or may not know maximum possible fitness

Alternative measures for both toy and realistic problems

How much training was needed?
How did it compare to other solutions?

10 / 243

Introduction

Classification: a typical learning problem

Classifying mushrooms:

Given features of each species (colour, size . . .) including whether it
is edible

Learn a hypothesis which will classify new species

Representation:

Input: a set of nominal attributes for each species

Output: binary label: ’Poisonous’ or ’Edible’ for each species

11 / 243

Introduction

Classification continued

Data generation:

A fixed data set of input/output examples obtained from an expert on
mushrooms

D =
[
(i1, o1), . . . (in, on)

]
where

n is the number of examples
n is much smaller than the input space

Partition D into train and test sets to evaluate generalisation

Training:

Maximise classification accuracy on train set

Evaluation:

Accuracy on test set – an indication of how well a new species might
be classified

12 / 243

Introduction

Supervised Learning

We focus on the primary learning paradigm: standard SL

Many others exist

We have a set of input/output pairs
Defining feature of SL: outputs are part of data set

Mushroom example was SL

Inputs are factored into attributes
Divide available data into training and test sets

Problem is to predict correct output on future data

Find correlations between attributes and output on training set
We evaluate inductive generalisation on test set
Performance on test set assumed indicative of performance on future
data

13 / 243

Introduction

Learning and optimisation compared

Learning:

Typically have limited training data

Crucial to get inductive bias right for later use on new data

Hence must evaluate generalisation to unseen cases of same problem

Optimisation:

Typically can generate as much data as time allows

Typically any data point can be evaluated

Hence test set not needed

Concerned with finding optimum data point in minimum time
Specifically: inducing which data point to evaluate next

14 / 243

Introduction

Issues in Supervised Learning

Hypothesis complexity: overfitting, underfitting

Noise, missing attributes

Class imbalances (e.g. many poisonous, few edible)

Learning from one class only

Biased cost functions (e.g. false positives vs. false negatives)

Human readability

Non-stationary functions, online learning, stream mining

Learning from little data

Learning when there are too many attributes: feature selection

Incorporating bias and prior knowledge

Handling structured data

Using unlabelled data

...

15 / 243

Introduction

Reasons to use GBML 1

Accuracy is competitive with other methods ([99] §12.1.1)

Exploit the synergy of learning and evolution

Combine global and local search
Baldwin effect smooths fitness landscape

Combine feature selection and learning

E.g. feature selection is intrinsic in LCS

Adapt inductive bias

Representational bias by e.g. selecting condition shapes
Algorithmic bias by e.g. evolving learning rules

Exploit diversity in population

to combine and improve predictions (ensemble approach)
to generate Pareto sets for mulitiobjective problems

All the above can be done dynamically

16 / 243

Introduction

Reasons to use GBML 2

Adapt population dynamically

to improve accuracy
to deal with non-stationarity
to minimise population size

to reduce overfitting
to improve run-time
to improve human-readability

GBML’s accuracy may not suffer from epistasis as much greedy
search ([99] §12.1.1)

Evolution can be used as a wrapper for any learner

The approach is universal

Population-based search is naturally suited to parallel implementation

17 / 243

Introduction

Reasons to use GBML 3

[219] From an optimisation perspective, learning problems are
typically:

Large
Non-differentiable
Noisy
Epistatic
Deceptive
Multimodal

To which we can add:

High-dimensional
Highly constrained

EAs are a good choice for such problems

See [64] and §11 for more

18 / 243

Introduction

Reasons against using GBML

Algorithms typically more complex

Harder to implement
Harder to analyse
Less theory to guide development of new algorithms

Increased run-time

Not always appropriate

Run-time may be prohibitive
Same for set-up time
Simpler/faster methods may suffice
Improvements may be marginal
Bias of a given GBML method may be inappropriate for a given
problem

In other words: it may not work well!

See also SWOT (Strengths, Weaknesses, Opportunities, Threats)
analysis of GBML [236]

19 / 243

Introduction

Reading

General overviews of GBML

Goldberg’s classic 1989 text [113]

The Hitch-Hiker’s Guide to Evolutionary Computation is sadly no
longer being updated but is still a valuable resource [126]

Freitas’ excellent 2002 book [99]

20 / 243

A Framework for GBML

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

21 / 243

A Framework for GBML

Phenotypic complexity and plasticity

Terms:

Genotype: an individual’s genes

Phenotype: an individual’s body (built based on genes)

Evolution can output a huge range of phenotypes

From scalar values to complex learning agents

Agents can be more or less plastic (able to adapt)

A fixed hypothesis does not learn

A neural net with backprop can learn much, e.g.

Evolution specifies network structure and/or learning algorithm
But backprop adapts network weights

22 / 243

A Framework for GBML Classifying GBML Systems by Role

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

23 / 243

A Framework for GBML Classifying GBML Systems by Role

Classifying GBML systems by role

Categories:

Evolutionary optimisation for sub-problems of learning

GBML as learning

GBML as meta-learning

The output of learning is a fixed hypothesis

When evolution adapts hypotheses, it is the learner

When evolution adapts learners, it is a meta-learner

24 / 243

A Framework for GBML Classifying GBML Systems by Role

Evolutionary optimisation for sub-problems of learning

Feature selection

Which features should the learner use as input?

Feature construction

Can we combine existing feature to make more informative ones?

Other uses of evolutionary optimisation within learning agents
Not many, but some e.g.

selecting training inputs
optimising weights in weighted k-nearest neighbour algorithm
replacement for beam search in the AQ algorithm
a search method in Inductive Logic Programming

25 / 243

A Framework for GBML Classifying GBML Systems by Role

Structure of GBML systems

We can divide any evolutionary (meta)-learning system into parts:

Representation:

Genotype: learner’s genes
Phenotype: learner, built according to genes

In simple cases genotype and phenotype may be identical e.g. ternary
LCS rules

Feedback:

Learner’s objective function (e.g. error function in SL)
Evolution’s fitness function

Production system: applies the phenotype to the problem

Evolutionary system: adapts the genes

26 / 243

A Framework for GBML Classifying GBML Systems by Role

GBML as learning

GBML can evolve simple predictors which learn little or nothing
themselves

Input Output and Fitness shown

27 / 243

A Framework for GBML Classifying GBML Systems by Role

GBML as meta-learning

Universal: any learner can be augmented by GBML

The learner (or a set of learners) is the output of evolution

Subscripts denote generation and time step (1 . . .T)

28 / 243

A Framework for GBML Classifying GBML Systems by Role

Meta-learning

Meta-learning: learning about learning

A broad term with different interpretations

A meta-learner may:

optimise parameters of a learner
learn which learner to apply to a given input or a given problem
learn which representation(s) to use
discover update rules used to train learners
learn an algorithm which solves the problem
evolve an ecosystem of learners
potentially be open-ended

See [300, 112] on non-evolutionary meta-learning

Hyperheuristcs are another approach [46, 170, 171, 45]

‘Heuristics to learn heuristics’
A subset are evolutionary

29 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

30 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Classifying GBML systems algorithmically

Pittsburgh (Pitt) approach:

1 chromosome = 1 solution

Fitness assigned to complete solution

Credit assignment problem:
How did genes contribute to fitness of chromosome?
Left to EA to deal with

Michigan approach:

1 solution = many chromosomes

Fitness assigned to partial solutions

Credit assignment problem:
Chromosomes compete, complement and cooperate
How to encourage coverage of inputs, complementarity and
cooperation?
How to measure a chromosome’s contributions to solution (i.e. its
fitness)?

Some hybrids exist e.g. [309]
31 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Examples

LCS are rule-based systems

Pitt LCS: chromosome is a variable-length set of rules
Michigan LCS: chromosome is a fixed-length rule

The F:x associated with each chromosome indicates its fitness.
32 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Pitt and Michigan compared

Pittsburgh:

Slower

They evolve more complex structures
They assign credit at a less specific level
This is less informative
But see [9] and the slide on windowing

Less complex credit assignment / more robust

Since chromosomes are more complex so are genetic operators

33 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Pitt and Michigan compared

Michigan:

Finer grain of credit assignment than Pittsburgh approach

Bad partial solutions can be deleted without restarting from scratch

More efficient
Also more suitable for incremental learning

However: credit assignment is more complex
Solution is a set of chromosomes:

population must not converge fully
best set of chromosomes 6= set of best chromosomes

Mainly used in LCS

See [115, 149, 309, 100, 162] for comparisons

34 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Michigan vs. Pitt: training

Pitt:

Typically algorithm-driven

Typically offline

Michigan:

Typically data-driven

Typically online

More often used as learner for Reinforcement Learning (RL)

RL is almost always on-line
Not necessarily more often used a meta-learner for RL

35 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Michigan production system

On each time step:

1 Identify action set: subset of population which match current input

2 Compute support in match set for each class

3 Select class o

4 Identify action set: subset of match set which advocates selected class

5 Update action set based on error

6 Optionally alter population

36 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Iterative Rule Learning (IRL)

A variation on Michigan approach

1 solution = many chromosomes

But only 1 best chromosome selected after each run

Alters co-evolutionary dynamics

Output of multiple runs combined

Originated with SIA (Supervised Inductive Algorithm) [299, 200]

A supervised genetic rule learner

37 / 243

A Framework for GBML Classifying GBML Systems Algorithmically

Genetic Cooperative-Competitive Learning (GCCL)

A Michigan approach

On each generation:

A new population is produced genetically and ranked by fitness
A ’coverage-based filter’ allocates inputs to the first rule which
correctly covers them

inputs are only allocated to one rule per generation
rules which have no inputs allocated die at end of generation

The remaining rules’ collective accuracy is compared to the previous
best generation (stored offline)

If new generation is more accurate (or the same but has fewer rules) it
replaces the previous best

Examples include COGIN [115, 116], REGAL [109] and LOGENPRO
[323]

38 / 243

A Framework for GBML The Interaction of Learning and Evolution

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

39 / 243

A Framework for GBML The Interaction of Learning and Evolution

Evolution and learning as global and local search

Global search

Good at finding a good basin of attraction

Bad at finding optimum

EAs are generally global

Local search:

Opposite of above

Learning methods are often local

We can get the best of both [327]:
Memetic algorithms combine global and local search
[123, 124, 227, 225, 264, 226, 252]

See [169] for a self-contained tutorial

Generally outperform either alone

E.g. evolve initial NN weights, then train with gradient descent

2 orders of magnitude faster than random initial weights [96]
40 / 243

A Framework for GBML The Interaction of Learning and Evolution

Darwinian and Lamarckian evolution

Lamarckian Evolution/Inheritance

Learning directly alters genes passed to offspring

Offspring inherit the result of learning

Does not occur in nature but can in computers

Possibly more efficient than Darwinian evolution since result of
learning not thrown away

[2] showed Lamarckian evolution much faster on stationary learning
tasks
However, [256] showed Darwinian evolution generally better on
non-stationary tasks
See also [308, 326, 240, 305]

See [119] for a Lamarckian LCS

41 / 243

A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: smoothing

Baldwin effect I: smoothing fitness landscape

Phenotypic Plasticity: the ability to adapt (e.g. learn) during lifetime

Suppose a mutation would have no benefit except for PP

Without PP mutation does not increase fitness

With PP mutation increases fitness

Thus PP helps evolution (smooths fitness landscape)

Possible example: adult lactose tolerance

Mutation allows adult humans to digest milk

Humans learn to keep animals for milk

. . . which makes mutation more likely to spread

42 / 243

A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: smoothing

Smoothing effect depends on PP

The greater the PP the more potential for smoothing

ALL GBML methods exploit BE to the extent they have PP

See ([305] §7.2) for short review of BE in Reinforcement Learning

43 / 243

A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: assimilation

Baldwin effect II: genetic assimilation

Suppose PP has a cost (e.g. learning involves making mistakes)

If PP can be replaced by new genes, it will

E.g. a learned behaviour becomes instinctive

Allows learned behaviours to become inherited without Lamarckian
inheritance

44 / 243

A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: bias

Baldwin effect and bias [293]

All inductive algorithms have a bias

Baldwin effect can be seen as shift from weak to strong bias

Weak bias = learning

Strong bias = instinctive behaviour

45 / 243

A Framework for GBML Other GBML Models

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

46 / 243

A Framework for GBML Other GBML Models

Online evolutionary computation

In many problems (esp. sequential ones) feedback is very noisy and
needs averaging

[305] allocate trials to chromosomes in proportion to their fitness

At new generation evaluate each chrom. once
Allocate subsequent evaluations using softmax distribution
Recalculate average fitness after each evaluation
In non-stationary problems use recency-weighted average
They call this online EC

Less time is wasted evaluating weaker chromosomes

In online learning (where mistakes matter), fewer mistakes made

However, only on average; worst-case not improved

Related to other work on optimising noisy fitness functions [274, 19],
but they do not reduce online mistakes

47 / 243

A Framework for GBML Other GBML Models

Steady-state EAs

Generational EAs evaluate entire population before replacing any

Steady-state EAs [97] evaluate only a (typically small) proportion

E.g. in XCS only 2 individuals created and 2 deleted
Allows best individuals to reproduce immediately
Removes worst individuals more quickly
Less disruptive than generational
In online learning immediately improves population and hence decision
making

Applies selective pressure at two points:

Reproduction
Deletion

48 / 243

A Framework for GBML Other GBML Models

Co-evolving learners and problems

Evolve learners and problems

Learners can gradually solve harder problems

We can discover what kinds of problems are hard or easy for a learner

We can explore dynamics between them

49 / 243

GBML Areas

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

50 / 243

GBML Areas

GBML areas

Notes

This section organised by phenotype and research community

Communities are more disjoint than methods

Areas

Sub-problems of learning

Genetic Programming

Evolving ensembles

Evolving neural networks

Evolving rule-based systems

Learning Classifier Systems
Genetic Fuzzy Systems

51 / 243

GBML Areas Sub-problems

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

52 / 243

GBML Areas Sub-problems

Evolutionary feature selection

Some input attributes (features) contribute little or nothing

We can simplify and speed learning by selecting only useful ones
EAs are widely used in the wrapper approach [151]

Learner treated as a black box optimised by search algorithm

Usually give good results compared to non-evolutionary methods
[147, 262, 174] but there are exceptions [147]
EDAs found to give similar accuracy but run more slowly than a GA
[65]

More generally we can weight features (instead of all-or-nothing
selection)

Some learners use weights directly e.g. weighted k-nearest neighbours
[247]

See [279, 11] for recent real-world applications

Evolutionary methods are slower than non-evolutionary ones

See [212, 99, 100] for overviews

53 / 243

GBML Areas Sub-problems

Evolutionary feature construction

Some features not very useful by themselves, but can be when
combined with others

We can leave base learner to discover this itself
Or we can preprocess data to construct informative features
E.g. new feature fnew = f1 AND f3 AND f8

Also called constructive induction

Using GP to construct features out of the original attributes e.g.
[139, 172, 265]

Linear feature transformation by evolving a vector of coefficients
[153, 245]

Simultaneous feature transformation and selection had good results
[247]

54 / 243

GBML Areas Sub-problems

Other sub-problems of learning

Training set optimisation:

Selecting training inputs [145]
Generating synthetic inputs [333, 72]
Partitioning data into training sets [250]

Optimisation within a learner e.g.

Weighted k-nearest neighbours optimised with a GA [153]
Optimisation of decision tree tests using a GA and Evolutionary
Strategy [64]
Optimisation of voting weights in an ensemble [285, 286]
[149] replaced beam search in AQ with a genetic algorithm
Inductive Logic Programming driven by a GA [282, 86, 84, 85, 283]

Rule extraction

Extracting rules from NN e.g. [255, 209]

Fitness function approximation

No known evolutionary examples but see [221] which used backprop

55 / 243

GBML Areas Genetic Programming

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

56 / 243

GBML Areas Genetic Programming

Genetic Programming

A major evolutionary paradigm which evolves programs [298]

Difference between GP & GA is not precise but typically GP:

evolves variable-length structures, most commonly trees
genes/nodes can be functions

Usually Pittsburgh

We cover 2 representations:

GP trees
decision trees
see also [325]

57 / 243

GBML Areas Genetic Programming

GP and GAs compared

Following differences arise because GP representations are more
complex

Pros of GP:

Easier to represent complex languages e.g. first-order logic

Easier to represent complex concepts compactly

GP is good at finding novel, complex patterns overlooked by other
methods. See ([99] §7.6)

Cons of GP:

Expressive representations have large search spaces

GP tends to overfit / does not generalise well

Variable-length representations have problems with bloat (see e.g.
[244])

58 / 243

GBML Areas Genetic Programming

GP for learning

GAs typically applied to function optimisation

GP widely applied to learning

Koza defined a set of ‘typical GP problems’ [167]

More-or-less agreed benchmarks for GP community [298]

They include:

Multiplexer and Parity Boolean functions
Symbolic regression of mathematical functions
The Intertwined Spirals problem: classification of 2D points as
belonging to one of two spirals

All the above are more naturally posed as learning than optimisation

59 / 243

GBML Areas Genetic Programming

GP trees for classification

To classify an input:

Instantiate leaf variables with input’s values

Propagate values upwards from leaves though functions in non-leaf
nodes

Output is the value of the root (top) node

Attribute
A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

60 / 243

GBML Areas Genetic Programming

GP trees for regression

In regression problems:

leaves may be constants

non-leaves are mathematical functions

x2 + 2y 2 − 13

61 / 243

GBML Areas Genetic Programming

Decision trees

To classify an input:

start at root (top) of tree

follow branch corresponding to value of attribute in node

repeat until leaf reached

value of leaf is classification of input

Attribute
A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

62 / 243

GBML Areas Genetic Programming

Evolving decision trees

Basic approach:

leaf nodes are classes

non-leaf nodes are tests of attributes

branches are attribute values

fitness is accuracy of classification on training set

63 / 243

GBML Areas Genetic Programming

Evolving first-order and oblique decision trees

First-order trees: [251]

Uses both propositional and first-order internal nodes

First-order logic makes trees more expressive
Allows much smaller solutions than found by CN2 (a rule learner) or
C4.5 (tree learner)
Accuracy similar

Oblique (linear) trees: [31]

Conventional tree algorithms learn axis-parallel decision boundaries

Oblique trees make tests on a linear combination of attributes

More expressive but larger search space

64 / 243

GBML Areas Genetic Programming

Evolving individual nodes in DTs

In most GP-based tree evolvers an individual is a complete tree

In [210] each individual is a tree node

Tree is built incrementally

1 GP run is made for each node
Like IRL, but results are added to a tree structure, not a list

Results:

Non-leaf nodes (and hence trees) are more complex than usual
Trees are somewhat easier to understand as nodes can be analysed
separately

65 / 243

GBML Areas Genetic Programming

Ensemble methods and GP

Ensemble ideas have been used in different ways

To reduce fitness computation time and memory requirements
Training on subsamples of the data

Bagging approach: [98, 143]
Boosting approach: [272]

To improve accuracy using an ensemble of GP trees [156, 239]

Each run adds one tree to ensemble
Weights computed with standard Boosting

66 / 243

GBML Areas Genetic Programming

Limited Error Fitness

[105] introduced LEF

A way of reducing run-time

Proportion of training set used to evaluate fitness depends on
individual’s performance

No test set used in [105] but one could be

67 / 243

GBML Areas Genetic Programming

GP Hyperheuristics

Ways of expanding the power of evolutionary search

[259] proposes a meta-GP system which evolves evolutionary
operators

[99] (§12.2.3) sketches an approach to ‘algorithm induction’

Instead of evolving decision rules GP evolves classification algorithms
[238] is a book devoted to this subject

[44] discusses GP hyperheuristics

68 / 243

GBML Areas Genetic Programming

Lack of test sets in GP

GP terminology:

Follows convention in GA field since at least [130]

Brittleness: overfitting; poor generalisation to unseen cases

Robustness: good generalisation

Evaluation:

GP usually evaluated only on training set [176, 298]

Sometimes test set used inappropriately [176]

Nonetheless has same need for test sets as other methods [176]

Inductive generalisation:

One of the open issues for GP identified in [298]

See [176, 298] for various methods for encouraging generalisation in
GP

69 / 243

GBML Areas Genetic Programming

Research directions

Hyperheuristics

Generalisation to test sets

70 / 243

GBML Areas Genetic Programming

Reading

Koza’s 1994 book [168] for the basics of evolving decision trees with
GP

Wong and Leung’s 2000 book on data mining with grammar-based
GP [323]

Freitas’ 2002 book [99] for a good introduction to GP, decision trees
and evolutionary and non-evolutionary learning

Poli, Langdon and McPhee’s free 2008 GP book [244]

Vanneschi and Poli’s 2010 survey of GP [298]

The GP Bibliography has over 5000 entries [179]

71 / 243

GBML Areas Evolving Ensembles

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

72 / 243

GBML Areas Evolving Ensembles

Ensembles

Also called ’Multiple Classifier Systems’ and ’Committee Machines’

The field which studies how to combine predictions from multiple
sources

Widely applicable to evolutionary systems where a population provides
multiple predictors
But can be used with any learning method
Although most useful for unstable learners
Can be heterogeneous (composed of different types of predictors);
called hybrid ensembles

Few hybrid studies exist [36] but see e.g. [324, 74, 71]

Some good theoretical foundations [36, 292]

Identified by Dietterich as 1 of 4 current directions for Machine
Learning in 1998 [83]

73 / 243

GBML Areas Evolving Ensembles

Ensembles 2

Issues

How to create or select ensemble members?
How many members are needed?
When to remove ensemble members?
How to combine their predictions?
How to encourage diversity in members?

Key advantage: better test set generalisation [66]

Other advantages [261]

Can perform more complex tasks than individual members
Overall system can be easier to understand and modify
More robust / graceful degradation

Many approaches

Best known are bagging and boosting

74 / 243

GBML Areas Evolving Ensembles

Unstable learners

Ensembles are most effective with unstable learners:

Their hypotheses are sensitive to various parameters

Allows construction of an ensemble with diverse errors

Effectively, learners whose bias can be altered e.g.

by random initialisation of NN weights
by sampling data differently for each predictor
by weighting data according to errors made by other predictors
by altering features used
by altering representations used

Unstable learners: decision trees, Radial Basis Function networks,
evolutionary meta-learning . . .

Stable learners: majority class prediction, Support Vector Machines
. . .

75 / 243

GBML Areas Evolving Ensembles

Ensembles are multiobjective

Ensembles exploit diversity in predictors

Multiple identical predictors provide no advantage

But an ensemble of predictors making different errors is useful

Combine predictions so that ensemble output is at least as good on
training set as average predictor [173]

We want accurate predictors with diverse errors
[83, 122, 173, 229, 228]

Hence a multi-objective problem [294]

In addition we may want to minimise ensemble size

Reduces run time

Can make ensemble easier to understand

Evolving variable-length chromosomes results in bloat

76 / 243

GBML Areas Evolving Ensembles

Diversity from bagging and boosting

Families of well-known methods for training ensembles

Bagging: [32, 33]

Generate training subsets by sampling uniformly with replacement
Each classifier trains on a different subset

Boosting (and leveraging): [101, 102, 214]

Allocate training data to each classifier in sequence
First classifier samples data uniformly
Later classifiers more likely to sample data misclassified earlier

Effects:

Increases their diversity
Alters their bias

77 / 243

GBML Areas Evolving Ensembles

Evolutionary ensembles

Most ensembles are non-evolutionary

But evolution has many applications
Classifier creation and adaptation

Provides ensemble with set of candidates

Voting

[177, 285, 286, 73] evolve weights for the votes of ensemble members

Classifier selection

Winners of evolutionary competition added to ensemble

Feature selection

Generate diverse classifiers by training them on different features
See §1 and ([175] §8.1.4)

Data selection

Generate diverse classifiers by training on different data
See §1

All have non-evolutionary alternatives

78 / 243

GBML Areas Evolving Ensembles

Classifier creation and adaptation

Single vs. multi-objective
Single-objective evolution common e.g. [201]

Fitness combines accuracy and diversity into a single objective

Evolutionary multiobjective optimisation is an active area

Can upgrade GBML to multi-objective GBML
Multi-objective evolutionary ensembles are rare [71]
But starting to appear e.g. [1, 71, 70]

Other measures to evolve diversity

Fitness sharing e.g. [202]
EEL’s co-evolutionary fitness [104]

79 / 243

GBML Areas Evolving Ensembles

Evolutionary Ensemble Learning (EEL) [104]

Compares boosting and co-evolution of learners and problems

Both gradually focus on cases which are harder to learn
Argues co-evolution less likely to overfit noise

Introduces co-evolution inspired fitness

Let Q be a set of reference classifiers
Hardness of a training example xi based on how many members of Q
misclassify it
Fitness of a classifier sum of hardnesses of xi it classifies correctly
Q is the population of classifiers
Results in accurate yet diverse classifiers

Introduces greedy margin-based selection of ensemble members

Simpler off-line version dominates on-line version

On-line version lacks a way to remove bad classifiers

Good results compared to Adaboost on 6 UCI [8] datasets

80 / 243

GBML Areas Evolving Ensembles

Evolutionary selection of members

Two extremes:

Usually each run produces 1 member

Many runs needed

Sometimes entire population eligible for ensemble

Only 1 run needed

Latter does not resolve selection problem:

Which to use?

Many combinations possible!

Set of best individuals may not be best ensemble

Formally equivalent to feature selection problem ([104] §3.2)

See e.g. [263, 253] for evolutionary approaches

81 / 243

GBML Areas Evolving Ensembles

Research directions

Multi-objective ensembles [71]

Hybrid ensembles [71]

Minimising ensemble complexity [202]

82 / 243

GBML Areas Evolving Ensembles

Reading

Opitz and Shavlik’s classic 1996 paper on evolving NN ensembles
[229]

Kuncheva’s 2004 book on ensembles [175]

Chandra and Yao’s 2006 [70] discussion of multi-objective evolution
of ensembles

Yao and Islam’s 2008 review of evolving NN ensembles [328]

Brown’s 2005 and 2010 surveys of ensembles [36, 34]

83 / 243

GBML Areas Evolving Neural Networks

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

84 / 243

GBML Areas Evolving Neural Networks

Artificial Neural Networks

A NN consists of:

A set of nodes (input, output and hidden)
A set of directed connections between nodes

Connections specify inputs and outputs to nodes

A set of weights on the connections

Nodes compute by:

Integrating their inputs using an activation function
Passing on their activation as output

NNs compute by:

Accepting external inputs at input nodes
Delivering outputs to output nodes

85 / 243

GBML Areas Evolving Neural Networks

Evolving neural networks

Acronyms include

EANNs (Evolving Artificial Neural Networks) [327]

ECoSs (Evolving Connectionist Systems) [155]

Evolution has been applied at 3 levels:

Weights

Architecture

connectivity: which nodes are connected
activation functions: how nodes compute outputs
plasticity: which nodes can be updated

Learning rules

86 / 243

GBML Areas Evolving Neural Networks

Representations

Direct encoding [327, 96]

all details (connections and nodes) specified

Indirect encoding [327, 96]

only key details (e.g. number of hidden layers and nodes)
a learning process determines the rest

Developmental encoding [96]

a developmental process is genetically encoded
[157, 120, 222, 142, 237, 281]

Uses:

Indirect and developmental representations are more flexible

tend to be used for evolving architectures

Direct representations tend to be used for evolving weights alone

87 / 243

GBML Areas Evolving Neural Networks

Credit assignment

Virtually always Pittsburgh approach

A few Michigan systems: [5, 268, 271]

Michigan: each chromosome specifies only one hidden node

How to define architecture?

Simple method: fix architecture

How to make nodes specialise?

Encourage diversity during evolution: e.g. fitness sharing
Increase diversity after evolution: prune redundant nodes [5]

88 / 243

GBML Areas Evolving Neural Networks

Two ways of adapting weights

Learning:

Most NN learning algorithms are based on gradient descent

Including the best known: backpropagation (BP)

Many successful applications, but often get trapped in local minima
[280, 306]

Require a continuous and differentiable error function

Evolving:

EAs don’t rely on gradients and can work on discrete fitness functions

Much research has been done on evolution of weights

89 / 243

GBML Areas Evolving Neural Networks

Evolving NN weights

Fitness functions typically penalise: NN error and complexity (number
of hidden nodes)

The expressive power of a NN depends on the number of hidden nodes

Fewer nodes = less expressive = fits training data less

More nodes = more expressive = fits data better

Too few nodes: NN underfits data

Too many nodes: NN overfits data

90 / 243

GBML Areas Evolving Neural Networks

Evolving weights vs. gradient descent

Evolution has advantages [327]:

Does not require continuous differentiable functions

Same method can be used for different types of network (feedforward,
recurrent, higher order)

Which is faster?

No clear winner overall – depends on problem [327]

Evolving weights AND architecture is better than weights alone (we’ll
see why later)

Evolution better for Reinforcement Learning and recurrent networks
[327]

[96] suggests evolution is better for dynamic networks

Happily we don’t have to choose between them . . .

91 / 243

GBML Areas Evolving Neural Networks

Evolving AND learning weights

Evolution:

good at finding a good basin of attraction

bad at finding optimum

Gradient descent:

Opposite of above

To get the best of both: [327]

Evolve initial weights, then train with gradient descent

2 orders of magnitude faster than random initial weights [96]

92 / 243

GBML Areas Evolving Neural Networks

Evolving NN architectures

Arch. has important impact on results: can determine whether NN
under- or over-fits

Designing by hand is a tedious, expert trial-and-error process

Alternative 1:

Constructive NN grow from a minimal network

Destructive NN shrink from a maximal network

Both can get stuck in local optima and can only generate certain
architectures [6]

Alternative 2:

Evolve them!

93 / 243

GBML Areas Evolving Neural Networks

Reasons EAs are suitable for architecture search space

1 “The surface is infinitely large since the number of possible nodes and
connections is unbounded

2 the surface is nondifferentiable since changes in the number of nodes
or connections are discrete and can have a discontinuous effect on
EANN’s performance

3 the surface is complex and noisy since the mapping from an
architecture to its performance is indirect, strongly epistatic, and
dependent on the evaluation method used;

4 the surface is deceptive since similar architectures may have quite
different performance;

5 the surface is multimodal since different architectures may have
similar performance.” [219]

94 / 243

GBML Areas Evolving Neural Networks

Reasons to evolve architectures and weights simultaneously

Learning with gradient descent:

Many-to-1 mapping from NN genotypes to phenotypes [329]

Random initial weights and stochastic learning lead to different results
Result is noisy fitness evaluations
Averaging needed – slow

Evolving arch. and weights simultaneously:

1-to-1 genotype to phenotype mapping avoids above problem

Result: faster learning

Can co-optimise other parameters of the network: [96]

[20] found best networks had very high learning rate
May have been optimal due to many factors: initial weights, training
order, amount of training

95 / 243

GBML Areas Evolving Neural Networks

Evolving learning rules [327]

There’s no one best learning rule for all architectures or problems

Selecting rules by hand is difficult

If we evolve the architecture (and even problem) then we don’t know
what it will be a priori

Solution: evolve the learning rule

Note: training architectures and problems must represent the test set

To get general rules: train on general problems/architectures, not just
one kind
To get rule for a specific arch./problem type, just train on that

96 / 243

GBML Areas Evolving Neural Networks

Evolving learning rule parameters [327]

E.g. learning rate and momentum in backpropagation

Adapts standard learning rule to arch./problem at hand

Non-evolutionary methods of adapting them also exist

[68] found evolving architecture, initial weights and rule parameters
together as good or better than evolving only first two or third (for
multi-layer perceptrons)

97 / 243

GBML Areas Evolving Neural Networks

Evolving learning rules [327, 246]

Open-ended evolution of rules initially considered impractical

Instead generic update rule is given and its parameters evolved [69]

Generic update is a linear function of 10 terms
4 terms represent local information about node being updated
6 terms are the pairwise products of the first 4
The weight on each term is evolved as a vector of reals
Can outperform human-designed rules e.g. [81]

Later GP used to evolve novel rule types [246]

GP used a set of mathematical functions
Result consistently outperformed standard BP

Whereas architectures are fixed, rules could change over lifetime (e.g.
learning rate)

But evolving dynamic rules is more complex

98 / 243

GBML Areas Evolving Neural Networks

Ensembles of NNs

Most methods output a single NN [328]

E.g. EPNet [329]

However, evolving NNs are naturally treated as an ensemble

Population = ensemble
Recent work beginning to focus on evolving ensembles of NNs

Evolving NNs is inherently multiobjective

We want accurate yet simple and diverse networks
Some work combines objectives into 1 fitness function
Others are explicitly multi-objective

99 / 243

GBML Areas Evolving Neural Networks

Single-objective ensembles

[330] used EPNet’s population as an ensemble

Evolution (EPNet) was not modified
Result outperformed population’s best individual

[201] pursue accuracy and diversity in 2 ways:
Modify backprop to minimise error and maximise diversity

Called Negative Correlation Learning (NCL)
Errors of members become negatively correlated (diverse)

Fitness combines accuracy and diversity in a single objective

100 / 243

GBML Areas Evolving Neural Networks

Single-objective ensembles 2

EENCL (Evolutionary Ensembles for NCL) [202]

Automatically determines the size of an ensemble
Encourages diversity with fitness sharing and NC learning
Problem: how to combine many candidates into 1 ensemble?

many combinations possible!

Solution: cluster then select (see [150])

cluster candidates based on errors on training set
clusters make similar errors
most accurate in each cluster joins ensemble

Ensemble can be much smaller than the population

CNNE (Cooperative Neural Net Ensembles) [146]
Used a constructive approach to determine

number of individuals
how many hidden nodes each has

Both contribute to expressive power of ensemble
Able to balance the two to obtain suitable ensemble
More complex problems needed larger ensembles

101 / 243

GBML Areas Evolving Neural Networks

Multi-objective ensembles

MPANN (Memetic Pareto Artificial NN) [1]

First use of multi-objective evolution for NNs
Uses gradient-based local search to optimise network complexity and
error

DIVACE (diverse and accurate ensembles) [70]

Multiobjective evolution maximises accuracy and diversity
Selection based on non-dominated sorting [273]
Clustering used to select ensemble members
Uses a variant of differential evolution [278] and simulated annealing

102 / 243

GBML Areas Evolving Neural Networks

DIVACE-II

DIVACE-II (diverse and accurate ensembles) [71]

A heterogeneous multiobjective Michigan approach

Role of crossover/mutation played by boosting and bagging (BB)
BB produces accurate and diverse candidates
NNs, Support Vector Machines and Radial Basis Function networks
used
Only dominated members are replaced

Each generation BB makes candidate ensemble members

Performance

Very good compared to 25 other learners on Australian credit card and
diabetes datasets
Outperforms DIVACE

103 / 243

GBML Areas Evolving Neural Networks

Yao’s framework for evolving NNs [327]

Architectures, rules and weights can evolve as nested processes

Weight evolution is innermost (fastest time scale)

Either rules or architectures are outermost

If we have prior knowledge, or are interested in a specific class of
either, this constrains search space
Outermost should be the one which constrains search space most

Can be thought of as 3D space of evolutionary NNs where 0 on each
axis represents one-shot search and infinity represents exhaustive
search

If we remove references to EAs and NNs it becomes a general
framework for adaptive systems

104 / 243

GBML Areas Evolving Neural Networks

Evolving NNs – conclusions [96]

Most studies of neural robots in real environments use some form of
evolution

Evolving NNs can be used to study “brain development and dynamics
because it can encompass multiple temporal and spatial scales along
which an organism evolves, such as genetic, developmental, learning,
and behavioral phenomena.”

“The possibility to co-evolve both the neural system and the
morphological properties of agents . . . adds an additional valuable
perspective to the evolutionary approach that cannot be matched by
any other approach.” p. 59

106 / 243

GBML Areas Evolving Neural Networks

Reading

Reading on evolving NNs:

Yao’s classic 1999 survey [327]

Kasabov’s 2007 book [155]

Floreano et al.’s 2008 survey [96]

includes evolving dynamic and neuromodulatory NNs

Yao and Islam’s 2008 survey of evolving NN ensembles [328]

107 / 243

GBML Areas Learning Classifier Systems

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

108 / 243

GBML Areas Learning Classifier Systems

Rule-based systems

We distinguish two areas:

Learning Classifier Systems
Genetic Fuzzy Systems

The two overlap:

GFS evolve fuzzy rules
Some LCS evolve fuzzy rules

109 / 243

GBML Areas Learning Classifier Systems

Learning Classifier Systems

Background:

Originated in GA community as a way of applying GAs to learning
problems

Terminology: CS, LCS, GBML

(L)CS sometimes taken to mean Michigan systems (see e.g. [115])
However it now generally includes Pitt systems (as implied by the
“IWLCS” workshop and its contents)
Difficulty in naming [126] due in part to difficulty in defining what they
are [266, 132]

Evolve populations of condition/action rules called classifiers

Representations:

Rules have limited expressive power

A solution requires many rules; solutions are piecewise

110 / 243

GBML Areas Learning Classifier Systems

Production systems

Pitt, Michigan, IRL and GCCL all used

Michigan is rare elsewhere, but most common form of LCS

IRL most common with Genetic Fuzzy Systems (but see [3] for a
non-fuzzy version)

111 / 243

GBML Areas Learning Classifier Systems

Michigan vs. Pitt: representations

Rule-based representations:

Michigan: chromosome is 1 fixed-length rule

e.g. XCS

Pitt: chromosome is a variable-length set of rules

e.g. GAssist

112 / 243

GBML Areas Learning Classifier Systems

Michigan vs. Pitt: learning and evolution

Typically:

Rule conditions and actions are evolved

Phenotypic parameters are learned

Michigan: for each rule
Pitt: for each ruleset

Examples:
UCS (Michigan SL) parameters:

Fitness
Mean action set size – for deletion which balances set sizes
Experience – to give confidence in fitness

GAssist (Pitt SL) parameters:

Fitness

113 / 243

GBML Areas Learning Classifier Systems

LCS variations

Sometimes rules:

predict next state

read and write to memory

are generated non-genetically

114 / 243

GBML Areas Learning Classifier Systems

LCS: Representations

115 / 243

GBML Areas Learning Classifier Systems

Ternary conditions

Strings: (see e.g. [313])

All fixed length
Inputs are binary
Rules have 1 binary action and 1 ternary condition from {0, 1, #}
is a wildcard, matching 0 and 1 in inputs
E.g. 00# matches 000 and 001

Very widely used, especially before ˜2000

Inherited from GAs

Minimal alphabets
Parallel with binary GA schemata

Limited expressive power [260] (but see also [27])

A factor in pathological credit assignment (strong/fit overgenerals
[162])

Various extensions studied

116 / 243

GBML Areas Learning Classifier Systems

Real-valued interval conditions

Following [12] we distinguish 2 approaches

Representations based on discretisation:

HIDER* uses “natural coding” [111]

ECL clusters attribute values and evolves constraints on them [85]

“Adaptive discretisation intervals” in GAssist [12]

Representations handling real values directly:

HIDER (unlike HIDER*): genes specify a lower and upper bound
(lower always < upper) [3]

Variation on HIDER: when upper < lower, attribute is irrelevant [76]

Intervals [310, 277]

XCSR: genes specify a center and spread [315]

117 / 243

GBML Areas Learning Classifier Systems

Default rules

Should increase number of solutions without increasing basic search
space

Should allow gradual refinement of knowledge by adding exceptions
[133]

Can reduce number of rules needed for solution

Truth table
A B C Output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Ternary
Rules

0 0 #→0
0 1 #→1
1 #0→0
1 #1→1

Default
Rule

0 0 #→0
1 #0→0
###→1

118 / 243

GBML Areas Learning Classifier Systems

Default rules: Pitt

Pitt systems:

GABIL [152] and GAssist [12] use decision lists

Each rule is an exception to any following, overlapping ones
Conflict resolution trivial; based on order
No need to assign credit to each rule

Pitt LCS often evolve default rules (e.g. last rule in list is fully general)

GAssist enforces fully general last rule [12, 13]

Initialised with all possible last rules
Evolution selects best

119 / 243

GBML Areas Learning Classifier Systems

Default rules: Michigan

Called default hierarchies in Michigan LCS

Specific rules are exceptions to general rules
Attempts to bias conflict resolution according to specificity

Problems [270]

Hard to evolve – rules need to cooperate
Unstable – introduce interdependence between rules
Complicate credit assignment, since exception rules must override
defaults [311, 270]
Fewer #s doesn’t mean a rule matches fewer inputs
Why must exceptions be more specific?

Consequences

Not much interest since early 1990s (but see [297])
Not all Michigan LCS support them (e.g. neither ZCS nor XCS)
Should be revisited from ensembles perspective

120 / 243

GBML Areas Learning Classifier Systems

Other representations for conditions

VL1 logic [218] as used in GIL [148]

First-order logic [215, 216, 217]

Decision lists [249] used in GABIL [152] and GAssist [12]

Messy encoding [181]

Ellipses [53] and hyperellipses [59]

Hyperspheres [211]

Convex hulls [197]

Hyperplane coding [29, 28]

Tile coding [186]

GP trees [4, 182, 183]

GP to define Boolean networks [37]

Support vectors [208]

Edges of an Augmented Transition Network [178]

121 / 243

GBML Areas Learning Classifier Systems

Other representations for conditions and actions

Gene Expression Programming [321]

Fuzzy rules (see [24, 128])

Neural networks [269, 78, 271, 43, 224, 79, 138, 137]

Evolved prototypes

One of the representations used with GALE [204, 203, 207]
Evolve prototypes, use k-nearest-neighbour for classification
Prototypes need not be fully specified
Also used in GAssist [12]

Decision trees

Another of GALE’s representations
Uses GP to evolve trees defining axis-parallel and oblique
hyper-rectangles [207]

Computed actions [291, 196]

Continuous actions [320]

122 / 243

GBML Areas Learning Classifier Systems

Evolutionary selection of representations

There are a lot of representations to choose from!

Which one to use for a problem?

Or each part of a problem

Let evolution decide!

Helps adapt bias of learner
A form of meta-learning

123 / 243

GBML Areas Learning Classifier Systems

Selecting default actions in decision lists

GAssist (Pittsburgh)

Rulesets are decision lists

Initialise rulesets with fully general last rule

A default action

Evolution selects most suitable default action [12, 13]

For good results need to encourage diversity in default actions

124 / 243

GBML Areas Learning Classifier Systems

Selecting classification algorithms

GALE (Pittsburgh) [203]

Has elements of Cellular Automata and Artificial Life:

Individuals distributed on a 2D grid
Only neighbours (within r hops) interact:

2 neighbours can perform crossover
An individual can be cloned and copied to a neighbouring cell
An individual may die if its neighbours are fitter

Representations:

Rule sets, prototypes, and decision trees (orthogonal, oblique, and
multivariate based on nearest neighbor)
Population may be homogeneous or heterogeneous
In [207] GALE modified to interbreed orthogonal and oblique trees

125 / 243

GBML Areas Learning Classifier Systems

Selecting condition shapes

Representational ecology [211]

Two boolean classification tasks:

Plane function: easy to describe with hyperplanes, hard with
hyperspheres
Sphere function: opposite

3 versions of XCS:

with hyperplane conditions (XCS-planes)
with hyperspheres (XCS-spheres)
with both (XCS-both)

XCS otherwise unchanged

In XCS-both representations compete due to XCS’s pressure against
overlapping rules

126 / 243

GBML Areas Learning Classifier Systems

Selecting condition shapes

Planes and spheres do not interbreed

Genetically independent populations: species

Classification accuracy:

XCS-planes: good at plane function, bad at sphere function
XCS-spheres: opposite
XCS-both: good at both

Selected the better representation for each task
No significant difference in accuracy compared to better
single-representation version

Learning speed of XCS-both:

Similar speed to XCS-sphere on sphere function
But significantly slower than XCS-plane on plane function

127 / 243

GBML Areas Learning Classifier Systems

Selecting discretisation methods and cut points

Discretisation of real attributes in GAssist

Adaptive Discretization Intervals (ADI) approach has 2 parts

Adapting interval sizes

A discretisation alg. proposes cut points for each attribute

This defines the finest discretisation possible: micro-intervals

Evolution can merge and split macro-intervals, composed of
micro-intervals

Each individual can have different macro-intervals

Selecting discretisation algorithms

Evolution can select discretisation algorithms for each attribute or rule

Selects from a pool of algorithms including uniform-width,
uniform-frequency, ID3, Fayyad & Irani, Màntaras, USD, ChiMerge
and random

Difficult to evolve the best discretisers
128 / 243

GBML Areas Learning Classifier Systems

Models of the world

A basic rule consists of a condition, action, and strength

For modelling, add an expecton – a prediction of the next state

IF (0 1 #) THEN (take action 0 1) expect (state 0 1 #)
Called an Anticipatory classifier system

Allows planning and latent learning (learning in the absence of
reward) e.g. [248, 131, 275, 276, 49, 40, 107, 106, 331, 223, 38, 42].

Learned with non-evolutionary methods (so we won’t cover details)

129 / 243

GBML Areas Learning Classifier Systems

Latent learning

Let the learner explore the maze without reward

Place the learner in state X and reward it

Place the learner in state S and see whether it goes to X or Y

130 / 243

GBML Areas Learning Classifier Systems

Internal memory

Stimulus-response LCS have no internal memory

Memory is needed to solve tasks where inputs are perceptually
aliased, e.g. McCallum’s maze [213]

States labelled with same number appear identical to learner

131 / 243

GBML Areas Learning Classifier Systems

Evolving memory: message lists and bit registers

Ways of adding explicit memory:

A message list [134] p.110

if (input = 001 and list contains 010) then (take action 0, post 111)

Bit registers [312, 181, 180, 193]

if (input = 001 and bit 1 is set) then (take action 0, clear bit 1)

Actions can add messages to the list / set bits in the register

Conditions can match messages / register settings

See also [91, 267, 75]

132 / 243

GBML Areas Learning Classifier Systems

Evolving memory: corporations

In between Michigan and Pitt approaches:

Selection occurs partly on groups (corporations of classifiers)

Rules dynamically form corporations

A special genetic operator links rules in successive match sets
Rules in a corporation have collective fitness
Corporation is deleted or reproduced as a whole
However rules are updated and make predictions independently
Removes competition for reproduction

Rules in corporation fire in sequence

This linkage provides a form of memory

Proposed in [322], implemented in e.g. [267, 289, 288, 290]

133 / 243

GBML Areas Learning Classifier Systems

Evolving memory: Augmented Transition Networks

ATN:

Introduced as parsers for natural language

A graph in which nodes represent states and edges transitions

Transitions are non-deterministic

Registers provide memory

ATNoSFERES: [178]

Pitt LCS where rules are edges in an ATN

Environment is “parsed” as a sentence would be

Evolves automata which can solve problems needing memory

Found better policies than other LCS, but run-time much longer

Not clear whether non-determinism is helpful

In non-Markov problems deterministic policies can get stuck
However, non-deterministic policies are harder to evaluate

134 / 243

GBML Areas Learning Classifier Systems

Macroclassifiers

Optimisation for Michigan populations introduced in [313]

As population converges on solution set, many identical copies
accumulate

Use 1 rule to represent many identical virtual rules [313]

Number of virtual copies called the numerosity of the rule

Reduces runtime and provides interesting statistics

Empirically, macroclassifiers perform essentially as the equivalent
‘micro’classifiers [159]

135 / 243

GBML Areas Learning Classifier Systems

Example of macroclassifiers

Without Macroclassifiers

Rule Cond. Action Strength
m ##0 0 1 1 1 200.0
m′ ##0 0 1 1 1 220.0
n ##0 0 1 1 0 100.0
o 0 0 1 1 1 0 1 100.0

With Macroclassifiers

Rule Cond. Action Strength Numerosity
m ##0 0 1 1 1 200.0 2
n ##0 0 1 1 0 100.0 1
o 0 0 1 1 1 0 1 100.0 1

136 / 243

GBML Areas Learning Classifier Systems

LCS: Rule Discovery

137 / 243

GBML Areas Learning Classifier Systems

Evolution in Pitt and Michigan LCS

Pitt:

Multiple objectives. Accuracy and parsimony of rulesets

Michigan:

Multiple objectives. Coverage, accuracy, and parsimony of population
Co-evolution. Rules cooperate and compete
Fitness sharing to encourage diversity
Crowding. Deletion probability is proportional to degree of overlap with
other rules
Restricted mating. See Niche GA

138 / 243

GBML Areas Learning Classifier Systems

Windowing in Pitt LCS

Pitt LCS are slower than Michigan
Naive approach: each individual evaluated on entire data set

Windowing: learn on data subsets to improve runtime [103]
windowing has been used in Pitt LCS since at least ADAM [117] (see
also description in [115] p.235)

E.g. ILAS (Incremental Learning by Alternating Strata) [12]
Partition data into n strata with class distribution of entire set
Use a different stratum for each generation (iterate)
On larger data sets speed-up can be an order of magnitude
Other data sampling techniques applicable

Side effect
Can reduce overfitting, improve test accuracy
Specific rules starved; fewer and more general rules evolve

Tuning
Number of strata determines speed-up and over/underfitting

Windowing is used as standard on recent real-world applications e.g.
[14, 10, 9])

139 / 243

GBML Areas Learning Classifier Systems

Michigan rule discovery

Most rule discovery research has focused on Michigan LCS as:

Evolutionary dynamics are more complex
Michigan LCS are more common

Rest of this section deals with Michigan systems

although many ideas could be applied to Pitt
e.g. self-adaptive mutation

Unusual emphasis in Michigan LCS on minimising population size

Various techniques:

Generalisation term in fitness
Subsumption deletion
Condensation
Compaction methods

Michigan LCS use Steady State GAs which are useful for on-line
learning

140 / 243

GBML Areas Learning Classifier Systems

Niche GAs

Panmictic GA: all rules eligible for reproduction
Niche GA:

Mating restricted to rules in same action set (a ’niche’)
Such rules’ input spaces overlap and actions agree

They make related predictions

Mating related rules is more effective, on average

Other effects: [313]
Strong bias towards general rules, since they match more
Pressure against overlapping rules, since they compete [162]
Complete coverage, since competition occurs for each input

A form of speciation; creates non-interbreeding sub-populations
Notes

Introduced in [26]
Original restriction was to match set
Further restricted to action set in [314]
Used in XCS and UCS
Related to “universal suffrage” in [110]

141 / 243

GBML Areas Learning Classifier Systems

EDAs instead of GAs

EDA: Estimation of Distribution Algorithm

A form of stochastic search
Like a GA, but no crossover or mutation
Instead it iteratively:

samples individuals from a probabilistic model
updates model based on their fitness

[61, 60, 62] replaced XCS’s usual crossover with EDA-based method
to improve solving of difficult hierarchical problems

[205, 206] introduced CCS: a Pitt LCS based on compact GAs (a
simple form of EDA)

142 / 243

GBML Areas Learning Classifier Systems

Subsumption deletion

Introduced in XCS (see [52])

When rule x subsumes rule y , y is deleted and the numerosity of x
incremented

In XCS a rule is allowed to subsume another if:

It logically subsumes it
It is accurate (has low prediction error)
It is experienced (has been evaluated sufficiently)

so we can be sure it is accurate

A rule x logically subsumes a rule y when x matches a superset of the
inputs y matches, and they have the same action

E.g., 00#→0 subsumes 000→0 and 001→0

143 / 243

GBML Areas Learning Classifier Systems

Two checks for subsumption

GA Subsumption

When child created, check to see if its parents subsume it

Constrains accurate parents to only produce more general children

Action Set Subsumption

Most general of the accurate, experienced rules in action set
subsumes others

Removes redundant specific rules from the population

Too aggressive for some problems

144 / 243

GBML Areas Learning Classifier Systems

Michigan evolutionary dynamics

Next slide shows:

XCS learning 11 multiplexer (Boolean function)

Performance: moving average of accuracy

Macroclassifiers: number of unique condition/action rules

%[O]: proportion of minimal set of 16 ternary rules XCS needs to
represent solution

Notes:

Initial population empty; created by covering

Population size limit 800

All input/output pairs in train and test sets

Curves average of 10 runs

Other settings as in [313]

145 / 243

GBML Areas Learning Classifier Systems

Evolutionary dynamics in XCS

11 multiplexer
146 / 243

GBML Areas Learning Classifier Systems

Observations on evolutionary dynamics of XCS

XCS continues to refine solution after 100% performance reached

Finds minimal representation

but continued crossover and mutation generate extra transient rules

147 / 243

GBML Areas Learning Classifier Systems

Condensation

An evolved population normally contains many redundant and
low-fitness rules

Typically transient, but more generated while GA runs

We can remove them with condensation:

Run the system with crossover and mutation turned off [313, 159]
I.e. only clone and delete existing rules
Next slide shows XCS on 11 multiplexer with condensation

Other compaction methods [160, 319, 87]

148 / 243

GBML Areas Learning Classifier Systems

Condensation

149 / 243

GBML Areas Learning Classifier Systems

Tuning evolutionary search

Manual tuning

Class imbalances

XCS is robust to class imbalances [230]
But for high imbalances tuning the GA based on a facetwise model
improved performance [230, 232]

Self-tuning Evolutionary Search

Mutation rate can be adapted during evolution e.g.
[140, 141, 138, 63]

[82] dynamically control use of 2 generalisation operators

Each has a control bit specifying whether it can be used
Control bits evolve with the rest of the genotype

150 / 243

GBML Areas Learning Classifier Systems

Non-evolutionary rule discovery

Covering creates a rule to match an unmatched input

First suggested in [129]

Can create (“seed”) the initial population [299, 313, 127]

Can also supplement the GA throughout evolution [313]

Variations

[162] p. 42 found covering each action set better when applying XCS
to sequential tasks
Most covering/seeding is performed as needed

Instead [200] select inputs at the center of same-class clusters

151 / 243

GBML Areas Learning Classifier Systems

Non-evolutionary LCS

Although LCS were conceived as a way of applying GAs to learning
problem [135], not all LCS include a GA!

Various heuristics used to create and refine rules e.g.

YACS [107]
MACS [106]

Methods inspired by psychological models of learning
ACS [275, 49] and ACS2 [48]

ACS also supplemented by a GA [50, 51]

AgentP: specialised LCS for maze tasks [332, 331]

152 / 243

GBML Areas Learning Classifier Systems

LCS: Credit Assignment

153 / 243

GBML Areas Learning Classifier Systems

Review: credit assignment in LCS

Pittsburgh:

1 chromosome = 1 solution
Credit assignment is easy

If solution is good, chromosome is good
Chromosomes only compete

Michigan:

1 solution = many chromosomes
Credit assignment is more complex

Chromosomes compete, complement and cooperate
How did they contribute to solution?

Majority of LCS are Michigan
Credit assignment difficulties have been the major issue with them
Learning a value function for Reinforcement Learning further
complicates fitness evaluation
Two major approaches:

Strength-based and accuracy-based fitness

154 / 243

GBML Areas Learning Classifier Systems

Strength-based Michigan systems

Older (pre-1995)

Fitness is proportional to the magnitude of reward

Suffer from difficulties with credit assignment [162]

Analysis of credit assignment is very complex

Some incorporate accuracy as a component of fitness

but it’s still proportional to reward

155 / 243

GBML Areas Learning Classifier Systems

Accuracy-based Michigan systems

Newer (starting with XCS in 1995 [313, 52])

Majority of current research uses them

Avoid many problems with credit assignment

Fitness is proportional to the accuracy of reward prediction

Accuracy estimated from variance in reward

Overgeneral rules have high variance hence low fitness

Major limitation: accuracy estimate conflates several things:

Overgenerality
Noise in the training data
Stochasticity in transition function in sequential problems

Strength-based systems may be less affected by noise and
stochasticity

See [162] for analysis of strength and accuracy

156 / 243

GBML Areas Learning Classifier Systems

Strength and accuracy in Reinforcement Learning

Strength:

A form of direct policy search (see e.g. [242])

Searches in space of policies

Each rule contributes to policy

Generalisation is over policy

Accuracy:

Learns Value Function (VF)

Searches for good state-action aggregations to represent VF
VF then used to generate policy

Each rule contributes to VF

Generalisation is aggregation of state-action pairs in VF

157 / 243

GBML Areas Learning Classifier Systems

Credit assignment algorithms in XCS

Classifiers update predictions while training

Updates in basic XCS: [313, 52]

Widrow-Hoff update (for non-sequential problems)
Q-learning update (for sequential problems)

Alternative XCS updates:

Average rewards [284, 195]
Gradient descent [57, 194]
Eligibility traces [92]

158 / 243

GBML Areas Learning Classifier Systems

Other credit assignment algorithms

Update in basic XCSF: NLMS (linear piecewise) [317, 318]

Alternative updates compared in XCSF [187]

Classical parameter estimation algs: RLS, and Kalman filter
Gain adaptation algs: K1, K2, IDBD, and IDD

Findings:

Kalman filter and RLS have significantly better accuracy
Kalman filter produces more compact solutions than RLS

Other LCS:

UCS: essentially a supervised version of XCS [22]

Simplified LCS [41]

159 / 243

GBML Areas Learning Classifier Systems

Evolutionary selection of prediction functions

Similar to representational ecology work that selects condition types
[211]

XCSFHP (XCSF with Heterogeneous Predictors) [188] selects
prediction functions

Polynomial functions: linear, quadratic and cubic predictions
Also constant, linear and NN predictors

Selects most suitable predictor for regression and sequential tasks

Performs almost as well as XCSF using best single predictor

160 / 243

GBML Areas Learning Classifier Systems

Theoretical results

XCS without generalisation implements tabular Q-learning [184]

Computational complexity of XCS (PAC learning) [56]

Analysis of credit assignment and relation to Reinforcement Learning
methods [303, 302, 301, 304]

Existence of strong and fit overgenerals [162]

Rules which are overgeneral yet stronger/fitter than not-overgeneral
competitors
Only possible under specific circumstances

Characterising problems which are hard for LCS
[114, 164, 161, 162, 23, 15]

Models of evolutionary dynamics [47, 55, 54, 58, 233, 234]

Reconstruction of LCS from first principles using probabilistic models
[94, 93, 95]

161 / 243

GBML Areas Learning Classifier Systems

Hierarchies and ensembles of LCS

Hierarchical LCS have been studied for some time e.g.

[17] reviews early work

[91] and [89, 90, 88] apply hierarchical LCS to robot control

[18] uses hierarchical XCSs to learn longer sequences of actions

All could be reformulated as ensembles

Ensembles of LCS

The ensembles field studies how to combine predictions [175]

Recent work on ensembles of LCS [80, 39]

162 / 243

GBML Areas Learning Classifier Systems

An LCS as an ensemble

Instead of an ensemble of LCS, we can treat 1 LCS as an ensemble

In Michigan LCS rules often conflict

In Pitt LCS rulesets conflict

Various conflict resolution methods have been used

Typically a majority vote weighted by fitness (e.g. UCS)

We can treat conflicting rules (or rulesets) as an ensemble

Connections beginning to appear [165, 35, 93, 95]

163 / 243

GBML Areas Learning Classifier Systems

LCS: Conclusions

164 / 243

GBML Areas Learning Classifier Systems

Conclusions

Inherent difficulties:

Michigan: credit assignment

Pitt: run-time

Recent research:

Integration with mainstream Machine Learning and Reinforcement
Learning

Representations

Credit assignment algorithms

Future directions:

Exposing more of the system to evolution

Further integration with ML, RL, ensembles, memetic algorithms,
multi-objective optimisation...

165 / 243

GBML Areas Learning Classifier Systems

Reading

No general up-to-date introduction to LCS exists

For the basic idea see [113] and the introductory parts of [162] or [54]
For a review of early LCS see [18]

Reviews of LCS research [322, 189, 185]

The LCS bibliography [163]

Review of state-of-the-art GBML and empirical comparison to
non-evolutionary pattern recognition [236]

Other comparisons with non-evolutionary methods
[25, 118, 257, 316, 21, 22]

Good introduction to representations and operators ([99] ch. 6)

166 / 243

GBML Areas Genetic Fuzzy Systems

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

167 / 243

GBML Areas Genetic Fuzzy Systems

Genetic Fuzzy Systems

Fuzzy Logic is a major paradigm in soft computing

Provides a means of approximate reasoning

Genetic Fuzzy Systems (GFS) apply evolution to fuzzy systems in
various ways

GAs, GP and Evolutionary Strategies have all been used
We cover genetic Fuzzy Rule-based Systems (FRBS)

Also called Learning Fuzzy Classifier Systems (LFCS) [24]
Also referred to as e.g. “genetic learning of fuzzy rules” and (for
Reinforcement Learning) “fuzzy Q-learning”
Like other LCS they evolve if-then rules, but rules are fuzzy
An active area, somewhat disjoint from LCS literature
Pitt systems common but see e.g. [295, 296, 108, 24, 231, 67, 235]

We briefly cover genetic fuzzy NNs
We won’t cover genetic fuzzy clustering [77]

168 / 243

GBML Areas Genetic Fuzzy Systems

Fuzzy sets

Ordinary scalar values are called crisp values.

A membership function defines the degree of match between crisp
values and a set of fuzzy linguistic terms

The set of terms is a fuzzy set

Each crisp value matches each term to some degree [0,1]
Fuzzification: computing the membership of each term

Can be considered a form of discretisation

Defuzzification: computing a crisp value from fuzzy sets

169 / 243

GBML Areas Genetic Fuzzy Systems

Fuzzy rules

Condition/action (IF-THEN) rules composed of:

A set of linguistic variables (e.g. temperature, humidity)

Which can each take on linguistic terms (e.g. cold, warm, hot)

Examples:

IF temperature IS cold AND humidity IS high THEN heater IS high

IF temperature IS warm AND humidity IS low THEN heater IS medium

Types of rules:

Linguistic or Mamdani: condition and actions contain fuzzy terms (as
above)

Takagi-Sugeno: condition contains fuzzy terms, action is a function of
condition variables

Approximate or Scatter Partition: instead of linguistic terms condition
and action use fuzzy sets directly

170 / 243

GBML Areas Genetic Fuzzy Systems

Fuzzy Rule-Based System

An FRBS consists of:

A Rule Base (RB) of fuzzy rules

A Data Base (DB) of linguistic terms and their membership functions

Together the RB and DB are the knowledge base (KB)

A fuzzy inference system which maps from fuzzy inputs to a fuzzy
output

171 / 243

GBML Areas Genetic Fuzzy Systems

Fuzzy Rule-Based System

Adapted from [128]
172 / 243

GBML Areas Genetic Fuzzy Systems

Evolution of FRBS

We distinguish:

1 Genetic tuning

2 Genetic learning of DB, RB or inference engine parameters

See [99] or [128] for further details

173 / 243

GBML Areas Genetic Fuzzy Systems

Genetic tuning

Concept:

First train a hand-crafted FRBS

Then evolve the DB (linguistic terms and membership functions) to
improve performance

Do not alter the rule base

Approaches:

Adjust the shape of the membership functions

Adjust parameterised expressions in the (adaptive) inference system

Adapt defuzzification methods

174 / 243

GBML Areas Genetic Fuzzy Systems

Genetic learning

Concept:

Evolve DB, RB or inference engine parameters

Approaches:

Genetic rule learning

Usually predefine the DB by hand and evolve the RB

Genetic rule selection

Use the GA to remove irrelevant, redundant, incorrect or conflicting
rules
Similar role to condensation in LCS

Genetic KB learning
Learn both the DB and RB. Either:

learn the DB first, then learn the RB or
iteratively learn DBs and evaluate each one by learning an RB using it

175 / 243

GBML Areas Genetic Fuzzy Systems

Simultaneous genetic learning

Simultaneous KB learning

Learn the DB and RB simultaneously [221]

Simultaneous genetic learning of KB components and inference
engine parameters [136]

Simultaneous learning may get better results but the larger search
space makes it slow and difficult

176 / 243

GBML Areas Genetic Fuzzy Systems

Fuzzy fitness

[254] claims:

Existing GFS are applied to crisp data

The benefits of GFS here are only linguistic interpretability

But GFS can outperform other methods on fuzzy data

GFS should use fuzzy fitness functions in such cases
They propose this as a new class of GFS to add to the taxonomy of
[128]

They identify 3 cases:
1 “crisp data with hand-added fuzziness
2 transformations of data based on semantic interpretations of fuzzy sets
3 inherently fuzzy data” p. 558

177 / 243

GBML Areas Genetic Fuzzy Systems

Genetic Neuro-Fuzzy Systems

Neuro-Fuzzy System (NFS): any combination of fuzzy logic and
neural networks

Also called Fuzzy Neural Networks (FNNs)

Example Genetic NFS:

See [77] for an introduction

[198] uses a GA to minimise the error in a FNN

[121] uses both a GA and backprop to minimise error

[241] optimises a fuzzy expert system using a GA and NN

[221] uses NN to approximate fitness function for GA which adapts
membership functions and control rules

[199] reviews the three areas from the perspective of intelligent
control

[125] discusses the combination of the three

[158] introduces Fuzzy All-permutations Rule-Bases (FARBs);
mathematically equivalent to NNs

178 / 243

GBML Areas Genetic Fuzzy Systems

Active areas within GFS

Herrera [128] p. 38 lists:

1 “Multiobjective genetic learning of FRBSs: interpretability-precision
trade-off

2 GA-based techniques for mining fuzzy association rules and novel
data mining approaches

3 Learning genetic models based on low quality data (e.g. noisy data)

4 Genetic learning of fuzzy partitions and context adaptation

5 Genetic adaptation of inference engine components

6 Revisiting the Michigan-style GFSs”

179 / 243

GBML Areas Genetic Fuzzy Systems

Current issues for GFS

Herrera [128] p. 42 lists:

1 Human readability

2 New data mining tasks: frequent and interesting pattern mining,
mining data streams . . .

3 Dealing with high dimensional data

180 / 243

GBML Areas Genetic Fuzzy Systems

Reading 1

Seminal papers from 1991: [128]

Genetic tuning of the DB [154]
Michigan [295]
Pittsburgh [287]
Relational matrix-based FRBS [243]

Geyer-Schulz’s 1997 book on Michigan fuzzy LCS learning RBs with
GP [108]

Bonarini’s 2000 introduction from an LCS perspective [24]

Mitra and Hayashi’s 2000 survey of neuro-fuzzy rule generation
methods [220]

181 / 243

GBML Areas Genetic Fuzzy Systems

Reading 2

Cordon et al.’s 2001 book on Genetic Fuzzy Systems in general [77]

Angelov’s 2002 book on evolving FRBS [7]

Ch. 10 of Freitas’ 2002 book on evolutionary data mining [99]

Herrera’s 2008 survey article on GFS [128]

Lists more key reading

Kolman and Margaliot’s 2009 book on the neuro-fuzzy FARB
approach [158]

182 / 243

Conclusions

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

183 / 243

Conclusions

Conclusions

GBML is very diverse and active

Constituent areas of GBML should interact more

Much integration with Machine Learning & Artificial Intelligence has
taken place in the last 10 years

More is needed

Integration with ensembles is natural but only just beginning

Use of multi-objective EAs spreading but more needed

184 / 243

Conclusions

Difficulties for GBML

Speed of learning

EAs are much slower than most methods
Sometimes this matters little (off-line learning)
Sometimes it’s critical (stream mining)
Various methods to speed them up exist (see e.g. [99] §12.1.3)

Theory

EA theory is notoriously difficult
When coupled with other processes things are even more complex

185 / 243

Conclusions

Research directions 1

Speed

Theory

Meta-learning / hyper-heuristics e.g.

Evolution of bias (e.g. selection of representation)
Evolving problem class specific heuristics and learning rules
Other forms of self-adaptation

Data preparation
Freitas ([99] §12.2.1) argues:

attribute construction is a promising area for GBML
filter methods for feature selection are faster than wrappers and
deserve more GBML research

186 / 243

Conclusions

Research directions 2

Integration with ensembles, multi-objective optimisation, memetics,
meta-learning/hyperheuristics, EDAs, Machine Learning & Artificial
Intelligence

Many specialised learning problems little- or un-explored with GBML
e.g.

Ranking
Semi-supervised learning
Transductive learning
Inductive transfer
Learning to learn
Stream mining
. . .

187 / 243

Glossary

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

188 / 243

Glossary

Glossary

Chromosome An individual’s genes
EA Evolutionary Algorithm

EDA Evolution of Distribution Algorithm
FRBS Fuzzy Rule-Based System

GA Genetic Algorithm
GCCL Genetic Cooperative-Competitive Learning

GBML Genetics-based Machine Learning
Genotype An individual’s genes

GFS Genetic Fuzzy System
GP Genetic Programming
IRL Iterative Rule Learning

LCS Learning Classifier System
Michigan approach Solution is a set of chromosomes

Phenotype An individual’s body
Pittsburgh approach Solution is a single chromosome

NN Neural Network
SL Supervised Learning

189 / 243

Bibliography

Contents

1 Introduction

2 A Framework for GBML
Classifying GBML Systems by Role
Classifying GBML Systems Algorithmically
The Interaction of Learning and Evolution
Other GBML Models

3 GBML Areas
GBML for Sub-problems of Learning
Genetic Programming
Evolving Ensembles
Evolving Neural Networks
Learning Classifier Systems
Genetic Fuzzy Systems

4 Conclusions

5 Glossary

6 Bibliography

190 / 243

Bibliography

[1] H.A. Abbass.
Speeding up backpropagation using multiobjective evolutionary algorithms.
Neural Computation, 15(11):2705–2726, 2003.
79, 102

[2] D.H. Ackley and M.L. Littman.
Interactions between learning and evolution.
In C. Langton, C. Taylor, S. Rasmussen, and J. Farmer, editors, Artificial Life II: Santa Fe Institute Studies in the
Sciences of Complexity, volume 10, pages 487–509. Addison Wesley, 1992.
41

[3] J. Aguilar-Ruiz, J. Riquelme, and M. Toro.
Evolutionary learning of hierarchical decision rules.
IEEE Transactions on Systems, Man and Cybernetics, Part B, 33(2):324–331, 2003.
111, 117

[4] Manu Ahluwalia and Larry Bull.
A Genetic Programming-based Classifier System.
In Banzhaf et al. [16], pages 11–18.
121

[5] H.C. Andersen and A.C. Tsoi.
A constructive algorithm for the training of a multi-layer perceptron based on the genetic algorithm.
Complex Systems, 7(4):249–268, 1993.
88

[6] P.J. Angeline, G.M. Sauders, and J.B. Pollack.
An evolutionary algorithm that constructs recurrent neural networks.
IEEE Trans. Neural Networks, 5:54–65, 1994.
93

[7] Plamen Angelov.
Evolving Rule-based Models. A tool for design of flexible adaptive systems, volume 92 of Studies in fuzziness and soft
computing.
Springer-Verlag, 2002.
182

191 / 243

Bibliography

[8] A. Asuncion and D.J. Newman.
UCI machine learning repository http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2009.
80

[9] J. Bacardit, E.K. Burke, and N. Krasnogor.
Improving the scalability of rule-based evolutionary learning.
Memetic Computing, 1(1):55–67, 2009.
33, 139

[10] J. Bacardit, M. Stout, J.D. Hirst, and N. Krasnogor.
Data mining in proteomics with learning classifier systems.
In L. Bull, E. Bernadó Mansilla, and J. Holmes, editors, Learning Classifier Systems in Data Mining, pages 17–46.
Springer, 2008.
139

[11] J. Bacardit, M. Stout, J.D. Hirst, A. Valencia, R.E. Smith, and N. Krasnogor.
Automated alphabet reduction for protein datasets.
BMC Bioinformatics, 10(6), 2009.
53

[12] Jaume Bacardit.
Pittsburgh Genetic-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time.
PhD thesis, Universitat Ramon Llull, 2004.
117, 119, 121, 122, 124, 139

[13] Jaume Bacardit, David E. Goldberg, and Martin V. Butz.
Improving the performance of a pittsburgh learning classifier system using a default rule.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Learning Classifier Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers, volume 4399 of
LNCS, pages 291–307. Springer, 2007.
119, 124

192 / 243

Bibliography

[14] Jaume Bacardit and Natalio Krasnogor.
Empirical evaluation of ensemble techniques for a pittsburgh learning classifier system.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 255–268. Springer, 2008.
139

[15] A.J. Bagnall and Z.V. Zatuchna.
On the classification of maze problems.
In L. Bull and T. Kovacs, editors, Applications of Learning Classifier Systems, pages 307–316. Springer, 2005.
161

[16] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors.
GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 1999.
191, 219

[17] Alwyn Barry.
Hierarchy Formulation Within Classifiers System – A Review.
In E. G. Goodman, V. L. Uskov, and W. F. Punch, editors, Proceedings of the First International Conference on
Evolutionary Algorithms and their Application EVCA’96, pages 195–211, Moscow, 1996. The Presidium of the Russian
Academy of Sciences.
162

[18] Alwyn Barry.
XCS Performance and Population Structure within Multiple-Step Environments.
PhD thesis, Queens University Belfast, 2000.
162, 166

[19] Thomas Beielstein and Shandor Markon.
Threshold selection, hypothesis tests and DOE methods.
In 2002 Congress on Evolutionary Computation, pages 777–782, 2002.
47

193 / 243

Bibliography

[20] R.K. Belew, J. McInerney, and N.N. Schraudolph.
Evolving networks: using the genetic algorithm with connectionistic learning.
In C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, editors, Proceedings of the 2nd Conference on Artificial Life,
pages 51–548. Addison-Wesley, 1992.
95

[21] Ester Bernadó, Xavier Llorà, and Josep M. Garrell.
XCS and GALE: A Comparative Study of Two Learning Classifier Systems on Data Mining.
In Lanzi et al. [192], pages 115–132.
166

[22] Ester Bernadó-Mansilla and Josep M. Garrell-Guiu.
Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks.
Evolutionary Computation, 11(3):209–238, 2003.
159, 166

[23] Ester Bernadó-Mansilla and T.K. Ho.
Domain of competence of XCS classifier system in complexity measurement space.
IEEE Trans. Evolutionary Computation, 9(1):82–104, 2005.
161

[24] Andrea Bonarini.
An Introduction to Learning Fuzzy Classifier Systems.
In Lanzi et al. [190], pages 83–104.
122, 168, 181

[25] Pierre Bonelli and Alexandre Parodi.
An Efficient Classifier System and its Experimental Comparison with two Representative learning methods on three
medical domains.
In Booker and Belew [30], pages 288–295.
166

[26] Lashon B. Booker.
Triggered rule discovery in classifier systems.
In Schaffer [258], pages 265–274.
141

194 / 243

Bibliography

[27] Lashon B. Booker.
Representing Attribute-Based Concepts in a Classifier System.
In Gregory J. E. Rawlins, editor, Proceedings of the First Workshop on Foundations of Genetic Algorithms (FOGA91),
pages 115–127. Morgan Kaufmann: San Mateo, 1991.
116

[28] Lashon B. Booker.
Adaptive value function approximations in classifier systems.
In GECCO ’05: Proceedings of the 2005 workshops on Genetic and evolutionary computation, pages 90–91. ACM, 2005.
121

[29] Lashon B. Booker.
Approximating value functions in classifier systems.
In L. Bull and T. Kovacs, editors, Foundations of Learning Classifier Systems, volume 183/2005 of Studies in Fuzziness
and Soft Computing, pages 45–61. Springer, 2005.
121

[30] Lashon B. Booker and Richard K. Belew, editors.
Proceedings of the 4th International Conference on Genetic Algorithms (ICGA91). Morgan Kaufmann, July 1991.
194, 209, 237

[31] M.C.J. Bot and W.B. Langdon.
Application of genetic programming to induction of linear classification trees.
In Genetic Programming: Proceedings of the 3rd European Conference (EuroGP 2000), volume 1802 of LNCS, pages
247–258. Springer, 2000.
64

[32] L. Breiman.
Bagging predictors.
Machine Learning, 24(2):123–140, 1996.
77

[33] L. Breiman.
Arcing classifiers.
Annals of Statistics, 26(3):801–845, 1998.
77

195 / 243

Bibliography

[34] Gavin Brown.
Ensemble learning.
In Claude Sammut and Geoffrey Webb, editors, Encyclopedia of Machine Learning. Springer-Verlag, 2010.
83

[35] Gavin Brown, Tim Kovacs, and James Marshall.
UCSpv: Principled Voting in UCS Rule Populations.
In Hod Lipson et al., editor, GECCO’07: the Genetic and Evolutionary Computation Conference, pages 1774–1781. ACM,
2007.
163

[36] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao.
Diversity creation methods: A survey and categorisation.
Journal of Information Fusion (Special issue on Diversity in Multiple Classifier Systems), 6(1):5–20, 2005.
73, 83

[37] L. Bull.
On dynamical genetic programming: Simple boolean networks in learning classifier systems.
International Journal of Parallel, Emergent and Distributed Systems, 24(5):421–442, 2009.
121

[38] L. Bull, P.L. Lanzi, and T. O’Hara.
Anticipation mappings for learning classifier systems.
In Proceedings of the 2007 congress on evolutionary computation (CEC2007), pages 2133–214. IEEE, 2007.
129

[39] L. Bull, M. Studley, T. Bagnall, and I. Whittley.
On the use of rule-sharing in learning classifier system ensembles.
IEEE Trans. Evolutionary Computation, 11:496–502, 2007.
162

196 / 243

Bibliography

[40] Larry Bull.
Lookahead And Latent Learning In ZCS.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, pages 897–904, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.
129

[41] Larry Bull.
Two Simple Learning Classifier Systems.
In Larry Bull and Tim Kovacs, editors, Foundations of Learning Classifier Systems, number 183 in Studies in Fuzziness
and Soft Computing, pages 63–90. Springer-Verlag, 2005.
159

[42] Larry Bull.
On lookahead and latent learning in simple lcs.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 154–168. Springer, 2008.
129

[43] Larry Bull and Toby O’Hara.
Accuracy-based neuro and neuro-fuzzy classifier systems.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, pages 905–911. Morgan Kaufmann Publishers,
9-13 July 2002.
122

[44] Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John R. Woodward.
Exploring hyper-heuristic methodologies with genetic programming.
In C. Mumford and L. Jain, editors, Collaborative Computational Intelligence. Springer, 2009.
68

197 / 243

Bibliography

[45] E.K. Burke and G. Kendall.
Introduction.
In E.K. Burke and G. Kendall, editors, Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, pages 5–18. Springer, 2005.
29

[46] E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Russ, and S. Schulenburg.
Hyper-heuristics: An emerging direction in modern search technology.
In F. Glover and G. Kochenberger, editors, Handbook of Meta-heuristics, pages 457–474. Kluwer, 2003.
29

[47] Martin Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson.
Toward a theory of generalization and learning in XCS.
IEEE Transactions on Evolutionary Computation, 8(1):8–46, 2004.
161

[48] Martin V. Butz.
An Algorithmic Description of ACS2.
In Lanzi et al. [192], pages 211–229.
152

[49] Martin V. Butz.
Anticipatory learning classifier systems.
Kluwer Academic Publishers, 2002.
129, 152

[50] Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann.
Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System – Part 1: Theoretical Approach.
In Whitley et al. [307], pages 34–41.
Also Technical Report 2000005 of the Illinois Genetic Algorithms Laboratory.
152

198 / 243

Bibliography

[51] Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann.
Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System – Part 2: Performance Analysis.
In Whitley et al. [307], pages 42–49.
Also Technical Report 2000006 of the Illinois Genetic Algorithms Laboratory.
152

[52] Martin V. Butz and Stewart W. Wilson.
An Algorithmic Description of XCS.
In Lanzi et al. [191], pages 253–272.
143, 156, 158

[53] M.V. Butz.
Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system.
In H.G. Beyer et al., editor, Proc. genetic and evolutionary computation conference (GECCO 2005), pages 1835–1842.
ACM, 2005.
121

[54] M.V. Butz.
Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design.
Studies in Fuzziness and Soft Computing. Springer–Verlag, 2006.
161, 166

[55] M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Bounding learning time in XCS.
In Genetic and evolutionary computation (GECCO 2004), volume 3103/2004 of LNCS, pages 739–750. Springer, 2004.
161

[56] M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Computational complexity of the XCS classifier system.
In Larry Bull and Tim Kovacs, editors, Foundations of Learning Classifier Systems, number 183 in Studies in Fuzziness
and Soft Computing, pages 91–126. Springer-Verlag, 2005.
161

199 / 243

Bibliography

[57] M.V. Butz, D.E. Goldberg, and P.L. Lanzi.
Gradient descent methods in learning classifier systems: improving XCS performance in multistep problems.
IEEE Trans. Evolutionary Computation, 9(5):452–473, 2005.
158

[58] M.V. Butz, D.E. Goldberg, P.L. Lanzi, and K. Sastry.
Problem solution sustenance in XCS: Markov chain analysis of niche support distributions and the impact on
computational complexity.
Genetic Programming and Evolvable Machines, 8(1):5–37, 2007.
161

[59] M.V. Butz, P.L. Lanzi, and S.W. Wilson.
Hyper-ellipsoidal conditions in XCS: rotation, linear approximation, and solution structure.
In M. Cattolico, editor, Proc. genetic and evolutionary computation conference (GECCO 2006), pages 1457–1464. ACM,
2006.
121

[60] M.V. Butz and M. Pelikan.
Studying XCS/BOA learning in boolean functions: structure encoding and random boolean functions.
In M. Cattolico et al., editor, Genetic and evolutionary computation conference, GECCO 2006, pages 1449–1456. ACM,
2006.
142

[61] M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg.
Extracted global structure makes local building block processing effective in XCS.
In H.G. Beyer and U.M. O’Reilly, editors, Genetic and evolutionary computation conference, GECCO 2005, pages
655–662. ACM, 2005.
142

[62] M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg.
Automated global structure extraction for effective local building block processing in XCS.
Evolutionary Computation, 14(3):345–380, 2006.
142

200 / 243

Bibliography

[63] M.V. Butz, P. Stalph, and P.L. Lanzi.
Self-adaptive mutation in XCSF.
In GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pages 1365–1372.
ACM, 2008.
150

[64] E. Cantu-Paz and C. Kamath.
Inducing oblique decision trees with evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 7(1):54–68, 2003.
18, 55

[65] Erick Cantú-Paz.
Feature subset selection by estimation of distribution algorithms.
In GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pages 303–310. Morgan
Kaufmann, 2002.
53

[66] Rich Caruana and Alexandru Niculescu-Mizil.
An empirical comparison of supervised learning algorithms.
In ICML ’06: Proceedings of the 23rd international conference on Machine learning, pages 161–168. ACM, 2006.
74

[67] J. Casillas, B. Carse, and L. Bull.
Fuzzy-XCS: a michigan genetic fuzzy system.
IEEE Trans. Fuzzy Systems, 15:536–550, 2007.
168

[68] P.A. Castilloa, J.J. Merelo, M.G. Arenas, and G. Romero.
Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training
parameters.
Information Sciences, 177(14):2884–2905, 2007.
97

201 / 243

Bibliography

[69] D. Chalmers.
The evolution of learning: An experiment in genetic connectionism.
In E. Touretsky, editor, Proc. 1990 Connectionist Models Summer School, pages 81–90. Morgan Kaufmann, 1990.
98

[70] Arjun Chandra and Xin Yao.
Ensemble learning using multi-objective evolutionary algorithms.
Journal of Mathematical Modelling and Algorithms, 5(4):417–445, 2006.
Introduces DIVACE.
79, 83, 102

[71] Arjun Chandra and Xin Yao.
Evolving hybrid ensembles of learning machines for better generalisation.
Neurocomputing, 69(7–9):686–700, 2006.
Introduces DIVACE-II.
73, 79, 82, 103

[72] S. Cho and K. Cha.
Evolution of neural net training set through addition of virtual samples.
In Proc. 1996 IEEE Int. Conf. Evol. Comp., ICEC’96, pages 685–688. IEEE, 1996.
55

[73] S.-B. Cho.
Pattern recognition with neural networks combined by genetic algorithm.
Fuzzy Sets and Systems, 103:339–347, 1999.
See Kuncheva2004a p.167.
78

[74] Sung-Bae Cho and Chanho Park.
Speciated GA for optimal ensemble classifiers in DNA microarray classification.
In Congress on Evolutionary Computation (CEC 2004), volume 1, pages 590–597, 2004.
73

202 / 243

Bibliography

[75] Dave Cliff and Susi Ross.
Adding Temporary Memory to ZCS.
Adaptive Behavior, 3(2):101–150, 1994.
Also technical report: ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp347.ps.Z.
132

[76] A.L. Corcoran and S. Sen.
Using real-valued genetic algorithms to evolve rule sets for classification.
In Proceedings of the IEEE Conference on Evolutionary Computation, pages 120–124. IEEE Press, 1994.
117

[77] Oscar Cordón, Francisco Herrera, Frank Hoffmann, and Luis Magdalena.
Genetic Fuzzy Systems.
World Scientific, 2001.
168, 178, 182

[78] Henry Brown Cribbs III and Robert E. Smith.
Classifier system renaissance: New analogies, new directions.
In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings
of the First Annual Conference, pages 547–552, Stanford University, CA, USA, 28–31 July 1996. MIT Press.
122

[79] Hai Huong Dam, Hussein A. Abbass, Chris Lokan, and Xin Yao.
Neural-based learning classifier systems.
IEEE Trans. Knowl. Data Eng., 20(1):26–39, 2008.
122

[80] H.H. Dam, H.A. Abbass, and C. Lokan.
DXCS: an XCS system for distributed data mining.
In H.G. Beyer and U.M. O’Reilly, editors, Genetic and evolutionary computation conference, GECCO 2005, pages
1883–1890, 2005.
162

203 / 243

Bibliography

[81] A. Dasdan and K. Oflazer.
Genetic synthesis of unsupervised learning algorithms.
Technical Report BU-CEIS-9306, Department of Computer Engineering and Information Science, Bilkent University,
Ankara, 1993.
98

[82] Kenneth A. De Jong, William M. Spears, and Dianna F. Gordon.
Using Genetic Algorithms for Concept Learning.
Machine Learning, 3:161–188, 13.
150

[83] T.G. Dietterich.
Machine-learning research: four current directions.
AI Magazine, 18(4):97–136, 1998.
73, 76

[84] F. Divina, M. Keijzer, and E. Marchiori.
Non-universal suffrage selection operators favor population diversity in genetic algorithms.
In Benelearn 2002: Proceedings of the 12th Belgian-Dutch Conference on Machine Learning (Technical report
UU-CS-2002-046), pages 23–30, 2002.
55

[85] F. Divina, M. Keijzer, and E. Marchiori.
A method for handling numerical attributes in GA-based inductive concept learners.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003), pages 898–908.
Springer-Verlag, 2003.
55, 117

[86] Federico Divina and Elena Marchiori.
Evolutionary concept learning.
In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, pages 343–350, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.
55

204 / 243

Bibliography

[87] P.W. Dixon, D. Corne, and M.J. Oates.
A ruleset reduction algorithm for the XCS learning classifier system.
In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors, Learning classifier systems, 5th international workshop (IWLCS
2002), volume 2661 of LNCS, pages 20–29. Springer, 2002.
148

[88] Jean-Yves Donnart.
Cognitive Architecture and Adaptive Properties of an Motivationally Autonomous Animat.
PhD thesis, Université Pierre et Marie Curie. Paris, France, 1998.
162

[89] Jean-Yves Donnart and Jean-Arcady Meyer.
Hierarchical-map Building and Self-positioning with MonaLysa.
Adaptive Behavior, 5(1):29–74, 1996.
162

[90] Jean-Yves Donnart and Jean-Arcady Meyer.
Learning Reactive and Planning Rules in a Motivationally Autonomous Animat.
IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 26(3):381–395, 1996.
162

[91] Marco Dorigo and Marco Colombetti.
Robot Shaping: An Experiment in Behavior Engineering.
MIT Press/Bradford Books, 1998.
132, 162

[92] J. Drugowitsch and A. Barry.
XCS with eligibility traces.
In H.G. Beyer and U.M. O’Reilly, editors, Genetic and evolutionary computation conference, GECCO 2005, pages
1851–1858. ACM, 2005.
158

[93] Jan Drugowitsch.
Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.
Springer, 2008.
161, 163

205 / 243

Bibliography

[94] Jan Drugowitsch and Alwyn Barry.
A Formal Framework and Extensions for Function Approximation in Learning Classifier Systems.
Machine Learning, 70(1):45–88, 2007.
161

[95] Narayanan E. Edakunni, Tim Kovacs, Gavin Brown, and James A.R. Marshall.
Modeling UCS as a mixture of experts.
In Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO’09), pages 1187–1194. ACM,
2009.
161, 163

[96] Dario Floreano, Peter Dürr, and Claudio Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62, 2008.
40, 87, 91, 92, 95, 106, 107

[97] T.C. Fogarty.
An incremental genetic algorithm for real-time learning.
In Proc. Sixth Int. Workshop on Machine Learning, pages 416–419, 1989.
48

[98] G. Folino, C. Pizzuti, and G. Spezzano.
Ensemble techniques for parallel genetic programming based classifiers.
In Proc. European Conf. on Genetic Programming (EuroGP’03), pages 59–69, 2003.
66

[99] A.A. Freitas.
Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Spinger-Verlag, Berlin, 2002.
16, 17, 20, 53, 58, 68, 71, 166, 173, 182, 185, 186

[100] A.A. Freitas.
A survey of evolutionary algorithms for data mining and knowledge discovery.
In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary Computation, pages 819–845. Springer-Verlag, 2002.
34, 53

206 / 243

Bibliography

[101] Y. Freund and R. Schapire.
Experiments with a new boosting algorithm.
In Proc. of the INt. Conf. on Machine Learning (ICML’96), pages 148–156, 1996.
77

[102] Y. Freund and R. Schapire.
A short introduction to boosting.
Journal of the Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.
77

[103] J. Fürnkranz.
Integrative windowing.
Journal of Artificial Intelligence Research, 8:129–164, 1998.
139

[104] Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini.
Ensemble learning for free with evolutionary algorithms?
In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages 1782–1789.
ACM, 2007.
79, 80, 81

[105] C. Gathercole and P. Ross.
Tackling the boolean even n parity problem with genetic programming and limited-error fitness.
In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo, editors, Genetic Programming 1997:
Proc. Second Annual Conference, pages 119–127. Morgan Kaufmann, 1997.
67

[106] Pierre Gérard and Olivier Sigaud.
Designing efficient exploration with MACS: Modules and function approximation.
In E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson,
M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, editors,
Genetic and Evolutionary Computation – GECCO-2003, volume 2724 of LNCS, pages 1882–1893. Springer-Verlag, 2003.
129, 152

207 / 243

Bibliography

[107] Pierre Gerard, Wolfgang Stolzmann, and Olivier Sigaud.
YACS, a new learning classifier system using anticipation.
Journal of Soft Computing, 6(3–4):216–228, 2002.
129, 152

[108] Andreas Geyer-Schulz.
Fuzzy Rule-Based Expert Systems and Genetic Machine Learning.
Physica Verlag, 1997.
168, 181

[109] Attilio Giordana and Filippo Neri.
Search-Intensive Concept Induction.
Evolutionary Computation, 3:375–416, 1995.
38

[110] Attilio Giordana and L. Saitta.
Learning disjunctive concepts by means of genetic algorithms.
In Proc. Int. Conf. on Machine Learning, pages 96–104, 1994.
141

[111] R. Giraldez, J. Aguilar-Ruiz, and J. Riquelme.
Natural coding: A more efficient representation for evolutionary learning.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003), pages 979–990.
Springer-Verlag, 2003.
117

[112] C. Giraud-Carrier and J. Keller.
Meta-learning.
In J. Meij, editor, Dealing with the data flood. STT/Beweton, 2002.
29

[113] David E. Goldberg.
Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Mass., 1989.
20, 166

208 / 243

Bibliography

[114] David E. Goldberg, Jeffrey Horn, and Kalyanmoy Deb.
What Makes a Problem Hard for a Classifier System?
In Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS-92), 1992.
(Also technical report 92007 Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign).
Available from ENCORE (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on Classifier Systems.
161

[115] David Perry Greene and Stephen F. Smith.
Competition-based induction of decision models from examples.
Machine Learning, 13:229–257, 1993.
34, 38, 110, 139

[116] David Perry Greene and Stephen F. Smith.
Using Coverage as a Model Building Constraint in Learning Classifier Systems.
Evolutionary Computation, 2(1):67–91, 1994.
38

[117] D.P. Greene and S.F. Smith.
A genetic system for learning models of consumer choice.
In Proceedings of the Second International Conference on Genetic Algorithms and their Applications, pages 217–223.
Morgan Kaufmann, 1987.
139

[118] A. Greenyer.
The use of a learning classifier system JXCS.
In P. van der Putten and M. van Someren, editors, CoIL Challenge 2000: The Insurance Company Case. Leiden Institute
of Advanced Computer Science, June 2000.
Technical report 2000-09.
166

[119] John J. Grefenstette.
Lamarckian Learning in Multi-Agent Environments.
In Booker and Belew [30], pages 303–310.
http://www.ib3.gmu.edu/gref/publications.html.
41

209 / 243

Bibliography

[120] F. Gruau.
Automatic definition of modular neural networks.
Adaptive Behavior, 3(2):151–183, 1995.
87

[121] D. Hanebeck and K. Schmidt.
Genetic optimization of fuzzy networks.
Fuzzy sets and systems, 79:59–68, 1996.
178

[122] L.K. Hansen and P. Salamon.
Neural network ensembles.
IEEE Trans. Pattern Analysis and Machine Intelligence, pages 993–1001, 1990.
76

[123] W.E. Hart, N. Krasnogor, and J.E. Smith (editors).
Special issue on memetic algorithms.
Evolutionary Computation, 12(3), 2004.
40

[124] William E. Hart, N. Krasnogor, and J.E. Smith, editors.
Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft Computing.
Springer, 2005.
40

[125] Lin He, Ke jun Wang, Hong zhang Jin, Guo bin Li, and X.Z. Gao.
The combination and prospects of neural networks, fuzzy logic and genetic algorithms.
In IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages 52–57. IEEE, 1999.
178

[126] Jörg Heitkötter and David Beasley.
The Hitch-Hiker’s Guide to Evolutionary Computation (FAQ for comp.ai.genetic). Accessed 28/2/09.
http://www.aip.de/˜ast/EvolCompFAQ/, 2001.
20, 110

210 / 243

Bibliography

[127] J. Hekanaho.
Symbiosis in multimodal concept learning.
In Proc. 1995 Int. Conf. on Machine Learning (ML’95), pages 278–285, 1995.
151

[128] Francisco Herrera.
Genetic fuzzy systems: taxonomy, current research trends and prospects.
Evolutionary Intelligence, 1(1):27–46, 2008.
122, 172, 173, 177, 179, 180, 181, 182

[129] John H. Holland.
Adaptation.
In R. Rosen and F. M. Snell, editors, Progress in Theoretical Biology. New York: Plenum, 1976.
151

[130] John H. Holland.
Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems.
In T. Mitchell, R. Michalski, and J. Carbonell, editors, Machine learning, an artificial intelligence approach. Volume II,
chapter 20, pages 593–623. Morgan Kaufmann, 1986.
69

[131] John H. Holland.
Concerning the emergence of tag-mediated lookahead in classifier systems.
Physica D, 42:188–201, 1990.
129

[132] John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo, David E. Goldberg, Stephanie Forrest, Rick L.
Riolo, Robert E. Smith, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson.
What is a Learning Classifier System?
In Lanzi et al. [190], pages 3–32.
110

[133] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and P. R. Thagard.
Induction: Processes of Inference, Learning, and Discovery.
MIT Press, Cambridge, 1986.
118

211 / 243

Bibliography

[134] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and Paul R. Thagard.
Induction. Processes of Inference, Learning and Discovery.
The MIT Press, 1986.
132

[135] John H. Holland and J. S. Reitman.
Cognitive systems based on adaptive algorithms.
In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed Inference Systems. New York: Academic Press, 1978.
Reprinted in: Evolutionary Computation. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998. ISBN:
0-7803-3481-7.
152

[136] A. Homaifar and E. Mccormick.
Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms.
IEEE Trans. Fuzzy. Syst., 3(2):129–139, 1995.
176

[137] D. Howard and L. Bull.
On the effects of node duplication and connection-orientated constructivism in neural XCSF.
In M. Keijzer et al., editor, GECCO-2008: Proceedings of the Genetic and Evolutionary Computation Conference, pages
1977–1984. ACM, 2008.
122

[138] D. Howard, L. Bull, and P.L. Lanzi.
Self-Adaptive Constructivism in Neural XCS and XCSF.
In M. Keijzer et al., editor, GECCO-2008: Proceedings of the Genetic and Evolutionary Computation Conference, pages
1389–1396. ACM, 2008.
122, 150

[139] Y.-J. Hu.
A genetic programming approach to constructive induction.
In Genetic Programming 1998: Proceedings of the 3rd Annual Conference, pages 146–151. Morgan Kaufmann, 1998.
54

212 / 243

Bibliography

[140] J. Hurst and L. Bull.
Self-adaptation in classifier system controllers.
Artificial Life and Robotics, 5(2):109–119, 2003.
150

[141] J. Hurst and L. Bull.
A self-adaptive neural learning classifier system with constructivism for mobile robot control.
In X. Yao et al., editor, Parallel problem solving from nature (PPSN VIII), volume 3242 of LNCS, pages 942–951.
Springer, 2004.
150

[142] P. Husbands, I. Harvey, D. Cliff, and G. Miller.
The use of genetic algorithms for the development of sensorimotor control systems.
In P. Gaussier and J.-D. Nicoud, editors, From perception to action, pages 110–121. IEEE Press, 1994.
87

[143] H. Iba.
Bagging, boosting and bloating in genetic programming.
In Proc. of the Genetic and Evolutionary Computation Conference (GECCO’99), pages 1053–1060, 1999.
66

[144] IEEE.
Proceedings of the 2000 Congress on Evolutionary Computation (CEC00). IEEE Press, 2000.
222, 230

[145] H. Ishibuchi and T. Nakashima.
Multi-objective pattern and feature selection by a genetic algorithm.
In Proceedings of the 2000 Genetic and Evolutionary Computation Conference (GECCO’2000), pages 1069–1076. Morgan
Kaufmann, 2000.
55

[146] M.M. Islam, X. Yao, and K. Murase.
A constructive algorithm for training cooperative neural network ensembles.
IEEE Transactions on Neural Networks, 14:820–834, 2003.
101

213 / 243

Bibliography

[147] A. Jain and D. Zongker.
Feature selection: evaluation, application and small sample performance.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(2):153–158, 1997.
53

[148] C.Z. Janikow.
Indictive learning of decision rules in attribute-based examples: a knowledge-intensive genetic algorithm approach.
PhD thesis, University of North Carolina, 1991.
121

[149] C.Z. Janikow.
A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 13:189–228, 1993.
34, 55

[150] Y. Jin and B. Sendhoff.
Reducing fitness evaluations using clustering techniques and neural network ensembles.
In Genetic and Evolutionary Computation Conference (GECCO–2004), volume 3102 of Lecture Notes in Computer
Science, pages 688–699. Springer, 2004.
101

[151] G. John, R. Kohavi, and K. Phleger.
Irrelevant features and the feature subset problem.
In Proceedings of the 11th International Conference on Machine Learning, pages 121–129. Morgan Kaufmann, 1994.
53

[152] Kenneth A. De Jong and William M. Spears.
Learning Concept Classification Rules using Genetic Algorithms.
In Proceedings of the Twelfth International Conference on Artificial Intelligence IJCAI-91, volume 2, pages 651–656.
Morgan Kaufmann, 1991.
119, 121

214 / 243

Bibliography

[153] J.D. Kelly Jr. and L. Davis.
Hybridizing the genetic algorithm and the k nearest neighbors classification algorithm.
In Lashon B. Booker and Richard K. Belew, editors, Proceedings of the 4th International Conference on Genetic
Algorithms (ICGA91), pages 377–383. Morgan Kaufmann, July 1991.
54, 55

[154] C. Karr.
Genetic algorithms for fuzzy controllers.
AI Expert, 6(2):26–33, 1991.
181

[155] N. Kasabov.
Evolving Connectionist Systems: The Knowledge Engineering Approach.
Springer, 2007.
86, 107

[156] M. Keijzer and V. Babovic.
Genetic programming, ensemble methods, and the bias/variance/tradeoff – introductory investigation.
In Proc. of the European Conf. on Genetic Programming (EuroGP’00), pages 76–90, 2000.
66

[157] H. Kitano.
Designing neural networks by genetic algorithms using graph generation system.
Journal of Complex System, 4:461–476, 1990.
87

[158] Eyal Kolman and Michael Margaliot.
Knowledge-Based Neurocomputing: A Fuzzy Logic Approach, volume 234 of Studies in Fuzziness and Soft Computing.
Springer, 2009.
178, 182

[159] Tim Kovacs.
Evolving Optimal Populations with XCS Classifier Systems.
Master’s thesis, University of Birmingham, Birmingham, UK, 1996.
135, 148

215 / 243

Bibliography

[160] Tim Kovacs.
XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions.
In Roy, Chawdhry, and Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 59–68.
Springer-Verlag, London, 1997.
ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html.
148

[161] Tim Kovacs.
Strength or Accuracy? Fitness calculation in learning classifier systems.
In Lanzi et al. [190], pages 143–160.
161

[162] Tim Kovacs.
Strength or Accuracy: Credit Assignment in Learning Classifier Systems.
Springer, 2004.
34, 116, 141, 151, 155, 156, 161, 166

[163] Tim Kovacs.
A Learning Classifier Systems Bibliography. Department of Computer Science, University of Bristol, 2009.
http://www.cs.bris.ac.uk/˜kovacs/lcs/search.html.
166

[164] Tim Kovacs and Manfred Kerber.
What makes a problem hard for XCS?
In Lanzi et al. [191], pages 80–99.
161

[165] Tim Kovacs and Manfred Kerber.
High classification accuracy does not imply effective genetic search.
In K. Deb et al., editor, Proceedings of the 2004 Genetic and Evolutionary Computation Conference (GECCO), volume
3102 of LNCS, pages 785–796. Springer, 2004.
163

216 / 243

Bibliography

[166] John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors.
Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann, 1998.
219, 239

[167] J.R. Koza.
Genetic Programming: on the programming of computers by means of natural selection.
MIT Press, 1992.
59

[168] J.R. Koza.
Genetic Programming II.
MIT Press, 1994.
71

[169] N. Krasnogor and J.E. Smith.
A tutorial for competent memetic algorithms: model, taxonomy and design issues.
IEEE Transactions on Evolutionary Computation, 9(5):474–488, 2005.
40

[170] Natalio Krasnogor.
Self-generating metaheuristics in bioinformatics: the protein structure comparison case.
Genetic Programming and Evolvable Machines, 5(2):181–201, 2004.
29

[171] Natalio Krasnogor and S. Gustafson.
A study on the use of self-generation in memetic algorithms.
Natural Computing, 3(1):53–76, 2004.
29

[172] K. Krawiec.
Genetic programming-based construction of features for machine learning and knowledge discovery tasks.
Genetic Programming and Evolvable Machines, 3(4):329–343, 2002.
54

217 / 243

Bibliography

[173] A. Krogh and J. Vedelsby.
Neural network ensembles, cross validation and active learning.
Neural Information Processing Systems, 7:231–238, 1995.
76

[174] M. Kudo and J. Skalansky.
Comparison of algorithms that select features for pattern classifiers.
Pattern Recognition, 33:25–41, 2000.
53

[175] Ludmila I. Kuncheva.
Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.
78, 83, 162

[176] I. Kushchu.
An evaluation of evolutionary generalization in genetic programming.
Artificial Intelligence Review, 18(1):3–14, 2002.
69

[177] L. Lam and C.Y. Suen.
Optimal combination of pattern classifiers.
Pattern Recognition Letters, 16:945–954, 1995.
See Kuncheva2004a p.167.
78

[178] Samuel Landau, Olivier Sigaud, and Marc Schoenauer.
ATNoSFERES revisited.
In Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2005, pages 1867–1874. ACM, 2005.
121, 134

[179] William Langdon, Steven Gustafson, and John Koza.
The genetic programming bibliography http://www.cs.bham.ac.uk/ wbl/biblio/, 2009.
71

218 / 243

Bibliography

[180] Pier Luca Lanzi.
An analysis of the memory mechanism of XCSM.
In Koza et al. [166], pages 643–651.
http://ftp.elet.polimi.it/people/lanzi/gp98.ps.gz.
132

[181] Pier Luca Lanzi.
Extending the Representation of Classifier Conditions Part I: From Binary to Messy Coding.
In Banzhaf et al. [16], pages 337–344.
121, 132

[182] Pier Luca Lanzi.
Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions.
In Banzhaf et al. [16], pages 345–352.
121

[183] Pier Luca Lanzi.
Mining interesting knowledge from data with the XCS classifier system.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 958–965, San Francisco, California, USA, 7-11 July 2001. Morgan
Kaufmann.
121

[184] Pier Luca Lanzi.
Learning classifier systems from a reinforcement learning perspective.
Journal of Soft Computing, 6(3–4):162–170, 2002.
161

[185] Pier Luca Lanzi.
Learning classifier systems: then and now.
Evolutionary Intelligence, 1(1):63–82, 2008.
166

219 / 243

Bibliography

[186] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Classifier prediction based on tile coding.
In Genetic and Evolutionary Computation – GECCO-2006, pages 1497–1504. ACM, 2006.
121

[187] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Prediction Update Algorithms for XCSF: RLS, Kalman Filter and Gain Adaptation.
In Genetic and Evolutionary Computation – GECCO-2006, pages 1505–1512. ACM, 2006.
159

[188] Pier Luca Lanzi, Daniele Loiacono, and Matteo Zanini.
Evolving classifiers ensembles with heterogeneous predictors.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 218–234. Springer, 2008.
160

[189] Pier Luca Lanzi and Rick L. Riolo.
A Roadmap to the Last Decade of Learning Classifier System Research (from 1989 to 1999).
In Lanzi et al. [190], pages 33–62.
166

[190] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Learning Classifier Systems. From Foundations to Applications, volume 1813 of LNAI.
Springer-Verlag, Berlin, 2000.
194, 211, 216, 220, 231, 234

[191] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 1996 of LNAI.
Springer-Verlag, Berlin, 2001.
199, 216

[192] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 2321 of LNAI.
Springer-Verlag, Berlin, 2002.
194, 198, 240

220 / 243

Bibliography

[193] Pier Luca Lanzi and Stewart W. Wilson.
Toward Optimal Classifier System Performance in Non-Markov Environments.
Evolutionary Computation, 8(4):393–418, 2000.
132

[194] P.L. Lanzi, M.V. Butz, and D.E. Goldberg.
Empirical analysis of generalization and learning in XCS with gradient descent.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, volume 2, pages
1814–1821. ACM, 2007.
158

[195] P.L. Lanzi and D. Loiacono.
Standard and averaging reinforcement learning in XCS.
In M. Cattolico, editor, GECCO 2006: Proceedings of the 8th annual conference on genetic and evolutionary
computation, pages 1480–1496. ACM, 2006.
158

[196] P.L. Lanzi and D. Loiacono.
Classifier systems that compute action mappings.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, pages 1822–1829.
ACM, 2007.
122

[197] P.L. Lanzi and S.W. Wilson.
Using convex hulls to represent classifier conditions.
In M. Cattolico, editor, Proc. genetic and evolutionary computation conference (GECCO 2006), pages 1481–1488. ACM,
2006.
121

[198] Z. Liangjie and L. Yanda.
A new global optimizing algorithm for fuzzy neural networks.
Int. J. Electronics, 80(3):393–403, 1996.
178

221 / 243

Bibliography

[199] D.A. Linkens and H.O. Nyongesa.
Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications.
IEE Proceedings - Control Theory and Applications, 143(4):367–386, 1996.
178

[200] Juliet Juan Liu and James Tin-Yau Kwok.
An extended genetic rule induction algorithm.
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) [144], pages 458–463.
37, 151

[201] Y. Liu and X. Yao.
Ensemble learning via negative correlation.
Neural Networks, 12:1399–1404, 1999.
79, 100

[202] Y. Liu, X. Yao, and T. Higuchi.
Evolutionary ensembles with negative correlation learning.
IEEE Trans. on Evolutionary Computation, 4(4):380–387, 2000.
79, 82, 101

[203] Xavier Llorà.
Genetic Based Machine Learning using Fine-grained Parallelism for Data Mining.
PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University, 2002.
122, 125

[204] Xavier Llorà and Josep M. Garrell.
Knowledge-Independent Data Mining with Fine-Grained Parallel Evolutionary Algorithms.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2001), pages 461–468. Morgan Kaufmann Publishers, 2001.
122

222 / 243

Bibliography

[205] Xavier Llorà, K. Sastry, and D.E. Goldberg.
Binary rule encoding schemes: a study using the compact classifier system.
In F. Rothlauf, editor, GECCO ’05: Proceedings of the 2005 conference on genetic and evolutionary computation,
workshop proceedings, pages 88–89. ACM Press, 2005.
142

[206] Xavier Llorà, K. Sastry, and D.E. Goldberg.
The compact classifier system: scalability analysis and first results.
In F. Rothlauf, editor, Proceedings of the IEEE congress on evolutionary computation, CEC 2005, pages 596–603. IEEE,
2005.
142

[207] Xavier Llorà and Stewart W. Wilson.
Mixed Decision Trees: Minimizing Knowledge Representation Bias in LCS.
In Kalyanmoy Deb et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004),
volume 3103 of Lecture Notes in Computer Science, pages 797–809. Springer, 2004.
122, 125

[208] D. Loiacono, A. Marelli, and P.L. Lanzi.
Support vector regression for classifier prediction.
In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages 1806–1813.
ACM, 2007.
121

[209] Urszula Markowska-Kaczmar and Pawelstrok Wnuk-Lipiński.
Artificial intelligence and soft computing - icaisc 2004.
In L. Rutkowski et. al, editor, Rule Extraction from Neural Network by Genetic Algorithm with Pareto Optimization,
volume 3070/2004 of LNCS, pages 450–455. Springer, 2004.
55

[210] R.E. Marmelstein and G.B. Lamont.
Pattern classification using a hybrid genetic algorithm – decision tree approach.
In Genetic Programming 1998: Proceedings of the 3rd Annual Conference (GP’98), pages 223–231. Morgan Kaufmann,
1998.
65

223 / 243

Bibliography

[211] James A. R. Marshall and Tim Kovacs.
A representational ecology for learning classifier systems.
In Maarten Keijzer et al., editor, Proceedings of the 2006 Genetic and Evolutionary Computation Conference (GECCO
2006), pages 1529–1536. ACM, 2006.
121, 126, 160

[212] M.J. Martin-Bautista and M.-A. Vila.
A survey of genetic feature selection in mining issues.
In Proceedings of the Congress on Evolutionary Computation (CEC’99, pages 1314–1321. IEEE, 1999.
53

[213] Andrew McCallum.
Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, 1996.
131

[214] Ron Meir and Gunnar Rätsch.
An introduction to boosting and leveraging.
In Advanced lectures on machine learning, pages 118–183. Springer-Verlag, 2003.
77

[215] Drew Mellor.
A first order logic classifier system.
In F. Rothlauf, editor, GECCO ’05: Proceedings of the 2005 conference on genetic and evolutionary computation, pages
1819–1826. ACM Press, 2005.
121

[216] Drew Mellor.
Policy transfer with a relational learning classifier system.
In GECCO Workshops 2005, pages 82–84. ACM Press, 2005.
121

224 / 243

Bibliography

[217] Drew Mellor.
A learning classifier system approach to relational reinforcement learning.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 169–188. Springer, 2008.
121

[218] R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac.
The AQ15 inductive learning system: an overview and experiments.
Technical Report UIUCDCS-R-86-1260, University of Illinois, 1986.
121

[219] G.F. Miller, P.M. Todd, and S.U. Hegde.
Designing neural networks using genetic algorithms.
In J.D. Schaffer, editor, Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications, pages 379–384. Morgan
Kaufmann, 1989.
18, 94

[220] Sushmita Mitra and Yoichi Hayashi.
Neurofuzzy rule generation: Survey in soft computing framework.
IEEE Transactions on Neural Networks, 11(3):748–768, 2000.
181

[221] T. Morimoto, J. Suzuki, and Y. Hashimoto.
Optimization of a fuzzy controller for fruit storage using neural networks and genetic algorithms.
Engineering Applications of Art. Int., 10(5):453–461, 1997.
55, 176, 178

[222] S. Nolfi, O. Miglino, and D. Parisi.
Phenotypic plasticity in evolving neural networks.
In P. Gaussier and J.-D. Nicoud, editors, From perception to action, pages 146–157. IEEE Press, 1994.
87

225 / 243

Bibliography

[223] T. O’Hara and L. Bull.
Building anticipations in an accuracy-based learning classifier system by use of an artificial neural network.
In IEEE Congress on Evolutionary Computation (CEC 2005), pages 2046–2052. IEEE, 2005.
129

[224] T. O’Hara and L. Bull.
A memetic accuracy-based neural learning classifier system.
In Proceedings of the IEEE congress on evolutionary computation (CEC 2005), pages 2040–2045. IEEE, 2005.
122

[225] Y.-S. Ong, N. Krasnogor, and H. Ishibuchi (editors).
Special issue on memetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics - Part B, 37(1), 2007.
40

[226] Yew-Soon Ong, Meng-Hiot Lim, Ferrante Neri, and Hisao Ishibuchi.
Special issue on memetic algorithms.
Soft Computing, 13(8-9), 2009.
40

[227] Y.S. Ong, M.H. Lim, N. Zhu, and K.W. Wong.
Classification of adaptive memetic algorithms: A comparative study.
IEEE Transactions on Systems Man and Cybernetics – Part B, 36(1):141–152, 2006.
40

[228] D. Opitz and R. Maclin.
Popular ensemble methods: an empirical study.
J. Artificial Intelligence Research, 11:169–198, 1999.
76

[229] D.W. Opitz and J.W. Shavlik.
Generating Accurate and Diverse Members of a Neural-network Ensemble.
Advances in Neural Information Processing Systems, pages 535–541, 1996.
76, 83

226 / 243

Bibliography

[230] A. Orriols-Puig and E. Bernadó-Mansilla.
Bounding XCS’s parameters for unbalanced datasets.
In Maarten Keijzer et al., editor, Proceedings of the 2006 Genetic and Evolutionary Computation Conference (GECCO
2006), pages 1561–1568. ACM, 2006.
150

[231] A. Orriols-Puig, J. Casillas, and E. Bernadò-Mansilla.
Fuzzy-UCS: preliminary results.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, pages 2871–2874.
ACM, 2007.
168

[232] A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla.
Modeling XCS in class imbalances: population size and parameter settings.
In H. Lipson et al., editor, Genetic and evolutionary computation conference, GECCO 2007, pages 1838–1845. ACM,
2007.
150

[233] A. Orriols-Puig, D.E. Goldberg, K. Sastry, and E. Bernadó-Mansilla.
Modeling XCS in class imbalances: population size and parameter settings.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, pages 1838–1845.
ACM, 2007.
161

[234] A. Orriols-Puig, K. Sastry, P.L. Lanzi, D.E. Goldberg, and E. Bernadò-Mansilla.
Modeling selection pressure in XCS for proportionate and tournament selection.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, page 18461853.
ACM, 2007.
161

[235] Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla.
Evolving fuzzy rules with ucs: Preliminary results.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2008.
168

227 / 243

Bibliography

[236] Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla.
Genetic-based machine learning systems are competitive for pattern recognition.
Evolutionary Intelligence, 1(3):209–232, 2008.
19, 166

[237] S. Pal and D. Bhandari.
Genetic algorithms with fuzzy fitness function for object extraction using cellular networks.
Fuzzy Sets and Systems, 65(2–3):129–139, 1994.
87

[238] Gisele L. Pappa and Alex A. Freitas.
Automating the Design of Data Mining Algorithms. An Evolutionary Computation Approach.
Natural Computing Series. Springer, 2010.
68

[239] G. Paris, D. Robilliard, and C. Fonlupt.
Applying boosting techniques to genetic programming.
In Artificial Evolution 2001, volume 2310 of LNCS, pages 267–278. Springer, 2001.
66

[240] F.B. Pereira and E. Costa.
Understanding the role of learning in the evolution of busy beaver: A comparison between the Baldwin Effect and
Lamarckian strategy.
In Proc. of the Genetic and Evol. Computation Conf. (GECCO–2001), pages 884–891, 2001.
41

[241] Christiaan Perneel and Jean-Marc Themlin.
Optimization of fuzzy expert systems using genetic algorithms and neural networks.
IEEE Trans. on fuzzy systems, 3(3):301–312, 1995.
178

[242] J. Peters and S. Schaal.
Natural actor-critic.
Neurocomputing, 71(7–9):1180–1190, 2008.
157

228 / 243

Bibliography

[243] D.T. Pham and D. Karaboga.
Optimum design of fuzzy logic controllers using genetic algorithms.
J. Systems Eng, 1:114–118, 1991.
181

[244] R. Poli, W.B. Langdon, and N.F. McPhee.
A field guide to genetic programming, freely available at http://www.gp-field-guide.org.uk.
lulu.com, 2008.
58, 71

[245] W.F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody.
Further research on feature selection and classification using genetic algorithms.
In Stephanie Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms (ICGA93), pages
557–564. Morgan Kaufmann, 1993.
54

[246] Amr Radi and Riccardo Poli.
Discovering efficient learning rules for feedforward neural networks using genetic programming.
In Ajith Abraham, Lakhmi Jain, and Janusz Kacprzyk, editors, Recent Advances in Intelligent Paradigms and
Applications, pages 133–159. Springer Verlag, 2003.
98

[247] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain.
Dimensionality reduction using genetic algorithms.
IEEE Transactions on Evolutionary Computation, 4(2):164–171, 2000.
53, 54

[248] Rick L. Riolo.
Lookahead planning and latent learning in a classifier system.
In From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior
(SAB-90), pages 316–326. The MIT Press, 1991.
129

229 / 243

Bibliography

[249] R.L. Rivest.
Learning decision lists.
Machine Learning, 2(3):229–246, 1987.
121

[250] S. Romaniuk.
Towards minimal network architectures with evolutionary growth networks.
In Proc. IEEE Int. Conf. on NNs, IEEE World Congress on Computational Intelligence, volume 3, pages 1710–1713.
IEEE, 1994.
55

[251] S. E. Rouwhorst and A. P. Engelbrecht.
Searching the forest: Using decision trees as building blocks for evolutionary search in classification databases.
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) [144], pages 633–638.
64

[252] Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors.
Handbook of Natural Computing: Theory, Experiments, and Applications.
Springer Verlag, 2010.
40

[253] D. Ruta and B. Gabrys.
Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting.
In J. Kittler and F. Roli, editors, Proc. 2nd International Workshop on Multiple Classifier Systems, volume 2096 of LNCS,
pages 399–408. Springer–Verlag, 2001.
See Kuncheva2004a p.321.
81

[254] L. Sánchez and I. Couso.
Advocating the use of imprecisely observed data in genetic fuzzy systems.
IEEE Transactions on Fuzzy Systems, 15(4):551–562, 2007.
177

230 / 243

Bibliography

[255] R. Santos, J.C. Nievola, and A.A. Freitas.
Extracting comprehensible rules from neural networks via genetic algorithms.
In Proc. 2000 IEEE Symp. on Combinations of Evolutionary Computation and Neural Networks (ECNN-2000), pages
130–139. IEEE, 2000.
55

[256] T. Sasaki and M. Tokoro.
Adaptation toward changing environments: Why darwinian in nature?
In P. Husbands and I. Harvey, editors, Proceedings of the 4th European conference on artificial life, pages 145–153. MIT
Pess, 1997.
41

[257] Shaun Saxon and Alwyn Barry.
XCS and the Monk’s Problems.
In Lanzi et al. [190], pages 223–242.
166

[258] J. David Schaffer, editor.
Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA-89), George Mason University, June 1989.
Morgan Kaufmann.
194, 231, 241

[259] Jürgen Schmidhuber.
Evolutionary principles in self-referential learning. (On learning how to learn: The meta-meta-... hook.).
PhD thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
68

[260] Dale Schuurmans and Jonathan Schaeffer.
Representational Difficulties with Classifier Systems.
In Schaffer [258], pages 328–333.
116

[261] A.J.C. Sharkey.
On combining artificial neural nets.
Connection Science, 8(3–4):299–313, 1996.
74

231 / 243

Bibliography

[262] P.K. Sharpe and R.P. Glover.
Efficient ga based techniques for classification.
Applied Intelligence, 11:277–284, 1999.
53

[263] K. Sirlantzis, M.C. Fairhurst, and M.S. Hoque.
Genetic algorithms for multi-classifier system configuration: a case study in character recognition.
In J. Kittler and F. Roli, editors, Proc. 2nd International Workshop on Multiple Classifier Systems, volume 2096 of LNCS,
pages 99–108. Springer–Verlag, 2001.
See Kuncheva2004a p.321.
81

[264] J.E. Smith.
Coevolving memetic algorithms: A review and progress report.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):6–17, 2007.
40

[265] M.G. Smith and L. Bull.
Genetic programming with a genetic algorithm for feature construction and selection.
Genetic Programming and Evolvable Machines, 6(3):265–281, 2005.
54

[266] Robert E. Smith.
A Report on The First International Workshop on Learning Classifier Systems (IWLCS-92).
NASA Johnson Space Center, Houston, Texas, Oct. 6-9.
ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from ENCORE, The Electronic Appendix to the
Hitch-Hiker’s Guide to Evolutionary Computation (ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html) in the section on
Classifier Systems, 1992.
110

[267] Robert E. Smith.
Memory Exploitation in Learning Classifier Systems.
Evolutionary Computation, 2(3):199–220, 1994.
132, 133

232 / 243

Bibliography

[268] Robert E. Smith and H. Brown Cribbs.
Is a Learning Classifier System a Type of Neural Network?
Evolutionary Computation, 2(1):19–36, 1994.
88

[269] Robert E. Smith and H. Brown Cribbs.
Is a Learning Classifier System a Type of Neural Network?
Evolutionary Computation, 2(1):19–36, 1994.
122

[270] Robert E. Smith and David E. Goldberg.
Variable default hierarchy separation in a classifier system.
In Gregory J. E. Rawlins, editor, Proceedings of the First Workshop on Foundations of Genetic Algorithms, pages
148–170, San Mateo, July 15–18 1991. Morgan Kaufmann.
120

[271] Robert E. Smith and H. B. Cribbs III.
Combined biological paradigms.
Robotics and Autonomous Systems, 22(1):65–74, 1997.
88, 122

[272] D. Song, M.I. Heywood, and A.N. Zincir-Heywood.
Training genetic programming on half a million patterns: an example from anomaly detection.
IEEE Transactions on Evolutionary Computation, 9(3):225–239, 2005.
66

[273] N. Srinivas and K. Deb.
Multi-objective function optimization using non-dominated sorting genetic algorithm.
Evolutionary Computation, 2(3):221–248, 1994.
102

[274] Peter Stagge.
Averaging efficiently in the presence of noise.
In Parallel problem solving from nature, volume 5, pages 188–197, 1998.
47

233 / 243

Bibliography

[275] Wolfgang Stolzmann.
Learning classifier systems using the cognitive mechanism of anticipatory behavioral control, detailed version.
In Proceedings of the First European Workshop on Cognitive Modelling, pages 82–89. Berlin: TU, 1996.
129, 152

[276] Wolfgang Stolzmann.
An Introduction to Anticipatory Classifier Systems.
In Lanzi et al. [190], pages 175–194.
129

[277] Chris Stone and Larry Bull.
For real! XCS with continuous-valued inputs.
Evolutionary Computation, 11(3):298–336, 2003.
117

[278] R. Storn and K. Price.
Minimizing the real functions of the icec’96 contest by differential evolution.
In Proc. of the IEEE Int. Conf. on Evolutionary Computation, pages 842–844. IEEE, 1996.
102

[279] M. Stout, J. Bacardit, J.D. Hirst, and N. Krasnogor.
Prediction of recursive convex hull class assignment for protein residues.
Bioinformatics, 24(7):916–923, 2008.
53

[280] R.S. Sutton.
Two problems with backpropagation and other steepest-descent learning procedures for networks.
In Proc. 8th Annual Conf. Cognitive Science Society, pages 823–831. Erlbaum, 1986.
89

[281] T. Sziranyi.
Robustness of cellular neural networks in image deblurring and texture segmentation.
Int. J. Circuit Theory App., 24(3):381–396, 1996.
87

234 / 243

Bibliography

[282] A. Tamaddoni-Nezhad and S.H. Muggleton.
Searching the subsumption lattice by a genetic algorithm.
In J. Cussens and A. Frisch, editors, Proceedings of the 10th International Conference on Inductive Logic Programming,
pages 243–252. Springer-Verlag, 2000.
55

[283] Alireza Tamaddoni-Nezhad and Stephen Muggleton.
A Genetic Algorithms Approach to ILP.
In Inductive Logic Programming, volume 2583/2003 of LNCS, pages 285–300. Springer, 2003.
55

[284] K. Tharakannel and D. Goldberg.
XCS with average reward criterion in multi-step environment.
Technical report, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 2002.
158

[285] S. Thompson.
Pruning boosted classifiers with a real valued genetic algorithm.
In Research and Development in Expert Systems XV – Proceedings of ES’98, pages 133–146. Springer, 1998.
55, 78

[286] S. Thompson.
Genetic algorithms as postprocessors for data mining.
In Data Mining with Evolutionary Algorithms: Research Directions – Papers from the AAAI Workshop. Tech report
WS–99–06, pages 18–22. AAAI Press, 1999.
55, 78

[287] P. Thrift.
Fuzzy logic synthesis with genetic algorithms.
In Lashon B. Booker and Richard K. Belew, editors, Proceedings of 4th international conference on genetic algorithms
(ICGA’91), pages 509–513. Morgan Kaufmann, 1991.
181

235 / 243

Bibliography

[288] Andy Tomlinson.
Corporate Classifier Systems.
PhD thesis, University of the West of England, 1999.
133

[289] Andy Tomlinson and Larry Bull.
A Corporate Classifier System.
In A. E. Eiben, T. Bäck, M. Shoenauer, and H.-P. Schwefel, editors, Proceedings of the Fifth International Conference on
Parallel Problem Solving From Nature – PPSN V, number 1498 in LNCS, pages 550–559. Springer Verlag, 1998.
133

[290] Andy Tomlinson and Larry Bull.
An accuracy-based corporate classifier system.
Journal of Soft Computing, 6(3–4):200–215, 2002.
133

[291] T.H. Tran, C. Sanza, Y. Duthen, and T.D. Nguyen.
XCSF with computed continuous action.
In Genetic and evolutionary computation conference (GECCO 2007), pages 1861–1869. ACM, 2007.
122

[292] K. Tumer and J. Ghosh.
Analysis of decision boundaries in linearly combined neural classifiers.
Pattern Recognition, 29(2):341–348, 1996.
73

[293] Peter Turney.
How to shift bias: Lessons from the baldwin effect.
Evolutionary Computation, 4(3):271–295, 1996.
45

[294] Giorgio Valentini and Francesco Masulli.
Ensembles of learning machines.
In WIRN VIETRI 2002: Proceedings of the 13th Italian Workshop on Neural Nets-Revised Papers, pages 3–22.
Springer-Verlag, 2002.
76

236 / 243

Bibliography

[295] Manuel Valenzuela-Rendón.
The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables.
In Booker and Belew [30], pages 346–353.
168, 181

[296] Manuel Valenzuela-Rendón.
Reinforcement learning in the fuzzy classifier system.
Expert Systems Applications, 14:237–247, 1998.
168

[297] R. Vallim, D. Goldberg, X. Llorà, T. Duque, and A. Carvalho.
A new approach for multi-label classification based on default hierarchies and organizational learning.
In Proceedings of the Genetic and Evolutionary Computation Conference, Worrkshop Sessions: Learning Classifier
Systems, pages 2017–2022, 2003.
120

[298] Leonardo Vanneschi and Riccardo Poli.
Genetic programming: Introduction, applications, theory and open issues.
In Grzegorz Rozenberg, Thomas Bäck, and Joost Kok, editors, Handbook of Natural Computing: Theory, Experiments,
and Applications. Springer Verlag, 2010.
57, 59, 69, 71

[299] G. Venturini.
SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts.
In P.B. Brazdil, editor, ECML-93 - Proc. of the European Conference on Machine Learning, pages 280–296.
Springer-Verlag, 1993.
37, 151

[300] R. Vilalta and Y. Drissi.
A perspective view and survey of meta-learning.
Artificial Intelligence Review, 18(2):77–95, 2002.
29

237 / 243

Bibliography

[301] A. Wada, K. Takadama, K. Shimohara, and O. Katai.
Learning classifier systems with convergence and generalization.
In L. Bull and T. Kovacs, editors, Foundations of learning classifier systems, pages 285–304. Springer, 2005.
161

[302] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Counter example for Q-bucket-brigade under prediction problem.
In GECCO Workshops 2005, pages 94–99. ACM Press, 2005.
161

[303] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Learning classifier system equivalent with reinforcement learning with function approximation.
In GECCO Workshops 2005, pages 92–93. ACM Press, 2005.
161

[304] Atsushi Wada, Keiki Takadama, and Katsunori Shimohara.
Counter Example for Q-Bucket-Brigade Under Prediction Problem.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Learning Classifier Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers, volume 4399 of
LNCS, pages 128–143. Springer, 2007.
161

[305] Shimon Whiteson and Peter Stone.
Evolutionary function approximation for reinforcement learning.
J. Mach. Learn. Res., 7:877–917, 2006.
41, 43, 47

[306] D. Whitley, T. Starkweather, and C. Bogart.
Genetic algorithms and neural networks: Optimizing connections and connectivity.
Parallel Comput., 14(3):347–361, 1990.
89

[307] Darrell Whitley, David Goldberg, Erick Cantú-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, editors.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000). Morgan Kaufmann, 2000.
198, 199

238 / 243

Bibliography

[308] Darrell Whitley, V. Scott Gordon, and Keith Mathias.
Lamarckian evolution, the Baldwin effect and function optimization.
In Parallel Problem Solving from Nature (PPSN-III), pages 6–15. Springer-Verlag, 1994.
41

[309] Jason R. Wilcox.
Organizational Learning within a Learning Classifier System.
Master’s thesis, University of Illinois, 1995.
Also Technical Report No. 95003 IlliGAL.
31, 34

[310] S. W. Wilson.
Mining oblique data with XCS.
In P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors, Advances in learning classifier systems, third international
workshop, IWLCS 2000, volume 1996 of LNCS, pages 158–176. Springer, 2001.
117

[311] Stewart W. Wilson.
Bid competition and specificity reconsidered.
Complex Systems, 2:705–723, 1989.
120

[312] Stewart W. Wilson.
ZCS: A Zeroth Level Classifier System.
Evolutionary Computation, 2(1):1–18, 1994.
132

[313] Stewart W. Wilson.
Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.
116, 135, 141, 145, 148, 151, 156, 158

[314] Stewart W. Wilson.
Generalization in the XCS classifier system.
In Koza et al. [166], pages 665–674.
141

239 / 243

Bibliography

[315] Stewart W. Wilson.
Get real! XCS with continuous-valued inputs.
In L. Booker, Stephanie Forrest, M. Mitchell, and Rick L. Riolo, editors, Festschrift in Honor of John H. Holland, pages
111–121. Center for the Study of Complex Systems, 1999.
117

[316] Stewart W. Wilson.
Mining Oblique Data with XCS.
In Proceedings of the International Workshop on Learning Classifier Systems (IWLCS-2000), in the Joint Workshops of
SAB 2000 and PPSN 2000, 2000.
Extended abstract.
166

[317] Stewart W. Wilson.
Function approximation with a classifier system.
In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 974–981, San Francisco, California, USA, 7-11 July 2001. Morgan
Kaufmann.
159

[318] Stewart W. Wilson.
Classifiers that approximate functions.
Natural Computing, 1(2–3):211–234, 2002.
159

[319] Stewart W. Wilson.
Compact Rulesets from XCSI.
In Lanzi et al. [192], pages 196–208.
148

240 / 243

Bibliography

[320] Stewart W. Wilson.
Three architectures for continuous action.
In Tim Kovacs, Xavier LLòra, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Learning Classifier Systems. International Workshops, IWLCS 2003-2005, Revised Selected Papers, volume 4399 of
LNCS, pages 239–257. Springer, 2007.
122

[321] Stewart W. Wilson.
Classifier conditions using gene expression programming.
In Jaume Bacardit, Ester Bernadó-Mansilla, Martin Butz, Tim Kovacs, Xavier Llorà, and Keiki Takadama, editors,
Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 206–217. Springer, 2008.
122

[322] Stewart W. Wilson and David E. Goldberg.
A Critical Review of Classifier Systems.
In Schaffer [258], pages 244–255.
133, 166

[323] M.L. Wong and K.S. Leung.
Data mining using grammar based genetic programming and applications.
Kluwer, 2000.
38, 71

[324] K. Woods, W. Kegelmeyer, and K. Bowyer.
Combination of multiple classifiers using local accuracy estimates.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:405–410, 1997.
73

[325] John R. Woodward.
GA or GP? That is not the question.
In Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pages 1056–1063. IEEE, 2003.
57

241 / 243

Bibliography

[326] K. Yamasaki and M. Sekiguchi.
Clear explanation of different adaptive behaviors between Darwinian population and Larmarckian population in changing
environment.
In Proc. Fifth Int. Symp. on Artificial Life and Robotics, pages 120–123, 2000.
41

[327] X. Yao.
Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.
40, 86, 87, 91, 92, 96, 97, 98, 104, 107

[328] X. Yao and M.M. Islam.
Evolving artificial neural network ensembles.
IEEE Computational Intelligence Magazine, 3(1):31–42, 2008.
83, 99, 107

[329] X. Yao and Y. Liu.
A new evolutionary system for evolving artificial neural networks.
IEEE Trans. Neural Networks, 8:694–713, 1997.
95, 99

[330] X. Yao and Y. Liu.
Making use of population information in evolutionary artificial neural networks.
IEEE Transactions on Systems, Man and Cybernetics B, 28(3):417–425, 1998.
100

[331] Zhanna V. Zatuchna.
AgentP: a learning classifier system with associative perception in maze environments.
PhD thesis, University of East Anglia, 2005.
129, 152

[332] Z.V. Zatuchna.
AgentP model: Learning Classifer System with Associative Perception.
In 8th Parallel Problem Solving from Nature International Conference (PPSN VIII), pages 1172–1182, 2004.
152

242 / 243

Bibliography

[333] B.-T. Zhang and G. Veenker.
Neural networks that teach themselves through genetic discovery of novel examples.
In Proc. 1991 IEEE Int. Joint Conf. on Neural Networks (IJCNN’91), volume 1, pages 690–695. IEEE, 1991.
55

243 / 243

	Introduction
	A Framework for GBML
	Classifying GBML Systems by Role
	Classifying GBML Systems Algorithmically
	The Interaction of Learning and Evolution
	Other GBML Models

	GBML Areas
	GBML for Sub-problems of Learning
	Genetic Programming
	Evolving Ensembles
	Evolving Neural Networks
	Learning Classifier Systems
	Genetic Fuzzy Systems

	Conclusions
	Glossary
	Bibliography

