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Introduction

Outline

This survey:
1 Introduces the subject

introduces Supervised Learning (SL)
contrasts SL with optimisation
assumes readers are familiar with Evolutionary Algorithms (EAs)
discusses pros and cons of GBML

2 Describes a framework for GBML

classifies forms of GBML (learning, meta-learning etc.)
reviews interaction of learning and evolution
outlines high-level algorithms

3 Reviews the major forms of GBML

with emphasis on evolutionary aspects
organised by research community (and not e.g. by learning paradigm)

4 Concludes
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Introduction

What’s missing

Coverage is somewhat arbitrary and missing:

A general introduction to Machine Learning including:

Structure of learning problems and fitness landscapes
Non-evolutionary algorithms
Theoretical limitations (e.g. no free lunch theorem for learning)

Evolutionary methods for:

Clustering
Reinforcement Learning
Bayesian Networks
Artificial Immune Systems
Artificial Life
Application areas

There’s also little on:

EAs for data preprocessing e.g. feature selection

Comparisons between GBML and non-evolutionary alternatives

Co-evolution
5 / 243



Introduction

Machine Learning

ML is about machines which:

improve with experience

reason inductively or abductively

In order to:

optimise

approximate

summarise

generalise from specific examples to general rules

classify

make predictions

find associations

propose explanations

propose ways of grouping things

. . .
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Introduction

GBML

We consider any stochastic search based method as GBML

Most are population-based

Most popular are:

Genetic Algorithms (GAs)
Genetic Programming (GP)
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Introduction

Inductive generalisation

Inductive generalisation:

Inferring unknown values from known values

We assume they’re correlated!

Objective: to maximise a function of unknown cases

Called the fitness function

There’s no need for induction if:

all values are known, and . . .
there’s enough time to process them

We consider two forms of induction:

function optimisation
learning

We won’t deal with abduction
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Introduction

1-max: a typical optimisation problem

1-max problem

Maximise the number of 1s in a binary string of length n

Optimal solution is trivial for humans

Representation:

Input: none

Output: bit strings of length n

Data generation:

Data: generate as many output strings as you like

Time is the limiting factor
If time allows you can enumerate the search space O

Training:

Fitness: number of 1s in output string
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Introduction

Evaluation with 1-max

Evaluation:

How close did learner get to the known optimal solution?

1-max is a toy problem
In realistic problems optimum is often not known
And we may or may not know maximum possible fitness

Alternative measures for both toy and realistic problems

How much training was needed?
How did it compare to other solutions?
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Introduction

Classification: a typical learning problem

Classifying mushrooms:

Given features of each species (colour, size . . . ) including whether it
is edible

Learn a hypothesis which will classify new species

Representation:

Input: a set of nominal attributes for each species

Output: binary label: ’Poisonous’ or ’Edible’ for each species
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Introduction

Classification continued

Data generation:

A fixed data set of input/output examples obtained from an expert on
mushrooms

D =
[
(i1, o1), . . . (in, on)

]
where

n is the number of examples
n is much smaller than the input space

Partition D into train and test sets to evaluate generalisation

Training:

Maximise classification accuracy on train set

Evaluation:

Accuracy on test set – an indication of how well a new species might
be classified
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Introduction

Supervised Learning

We focus on the primary learning paradigm: standard SL

Many others exist

We have a set of input/output pairs
Defining feature of SL: outputs are part of data set

Mushroom example was SL

Inputs are factored into attributes
Divide available data into training and test sets

Problem is to predict correct output on future data

Find correlations between attributes and output on training set
We evaluate inductive generalisation on test set
Performance on test set assumed indicative of performance on future
data
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Introduction

Learning and optimisation compared

Learning:

Typically have limited training data

Crucial to get inductive bias right for later use on new data

Hence must evaluate generalisation to unseen cases of same problem

Optimisation:

Typically can generate as much data as time allows

Typically any data point can be evaluated

Hence test set not needed

Concerned with finding optimum data point in minimum time
Specifically: inducing which data point to evaluate next
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Introduction

Issues in Supervised Learning

Hypothesis complexity: overfitting, underfitting

Noise, missing attributes

Class imbalances (e.g. many poisonous, few edible)

Learning from one class only

Biased cost functions (e.g. false positives vs. false negatives)

Human readability

Non-stationary functions, online learning, stream mining

Learning from little data

Learning when there are too many attributes: feature selection

Incorporating bias and prior knowledge

Handling structured data

Using unlabelled data

...

15 / 243



Introduction

Reasons to use GBML 1

Accuracy is competitive with other methods ([99] §12.1.1)

Exploit the synergy of learning and evolution

Combine global and local search
Baldwin effect smooths fitness landscape

Combine feature selection and learning

E.g. feature selection is intrinsic in LCS

Adapt inductive bias

Representational bias by e.g. selecting condition shapes
Algorithmic bias by e.g. evolving learning rules

Exploit diversity in population

to combine and improve predictions (ensemble approach)
to generate Pareto sets for mulitiobjective problems

All the above can be done dynamically
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Introduction

Reasons to use GBML 2

Adapt population dynamically

to improve accuracy
to deal with non-stationarity
to minimise population size

to reduce overfitting
to improve run-time
to improve human-readability

GBML’s accuracy may not suffer from epistasis as much greedy
search ([99] §12.1.1)

Evolution can be used as a wrapper for any learner

The approach is universal

Population-based search is naturally suited to parallel implementation
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Introduction

Reasons to use GBML 3

[219] From an optimisation perspective, learning problems are
typically:

Large
Non-differentiable
Noisy
Epistatic
Deceptive
Multimodal

To which we can add:

High-dimensional
Highly constrained

EAs are a good choice for such problems

See [64] and §11 for more
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Introduction

Reasons against using GBML

Algorithms typically more complex

Harder to implement
Harder to analyse
Less theory to guide development of new algorithms

Increased run-time

Not always appropriate

Run-time may be prohibitive
Same for set-up time
Simpler/faster methods may suffice
Improvements may be marginal
Bias of a given GBML method may be inappropriate for a given
problem

In other words: it may not work well!

See also SWOT (Strengths, Weaknesses, Opportunities, Threats)
analysis of GBML [236]
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Introduction

Reading

General overviews of GBML

Goldberg’s classic 1989 text [113]

The Hitch-Hiker’s Guide to Evolutionary Computation is sadly no
longer being updated but is still a valuable resource [126]

Freitas’ excellent 2002 book [99]
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A Framework for GBML

Phenotypic complexity and plasticity

Terms:

Genotype: an individual’s genes

Phenotype: an individual’s body (built based on genes)

Evolution can output a huge range of phenotypes

From scalar values to complex learning agents

Agents can be more or less plastic (able to adapt)

A fixed hypothesis does not learn

A neural net with backprop can learn much, e.g.

Evolution specifies network structure and/or learning algorithm
But backprop adapts network weights
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A Framework for GBML Classifying GBML Systems by Role
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A Framework for GBML Classifying GBML Systems by Role

Classifying GBML systems by role

Categories:

Evolutionary optimisation for sub-problems of learning

GBML as learning

GBML as meta-learning

The output of learning is a fixed hypothesis

When evolution adapts hypotheses, it is the learner

When evolution adapts learners, it is a meta-learner
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A Framework for GBML Classifying GBML Systems by Role

Evolutionary optimisation for sub-problems of learning

Feature selection

Which features should the learner use as input?

Feature construction

Can we combine existing feature to make more informative ones?

Other uses of evolutionary optimisation within learning agents
Not many, but some e.g.

selecting training inputs
optimising weights in weighted k-nearest neighbour algorithm
replacement for beam search in the AQ algorithm
a search method in Inductive Logic Programming
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A Framework for GBML Classifying GBML Systems by Role

Structure of GBML systems

We can divide any evolutionary (meta)-learning system into parts:

Representation:

Genotype: learner’s genes
Phenotype: learner, built according to genes

In simple cases genotype and phenotype may be identical e.g. ternary
LCS rules

Feedback:

Learner’s objective function (e.g. error function in SL)
Evolution’s fitness function

Production system: applies the phenotype to the problem

Evolutionary system: adapts the genes
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A Framework for GBML Classifying GBML Systems by Role

GBML as learning

GBML can evolve simple predictors which learn little or nothing
themselves

Input Output and Fitness shown
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A Framework for GBML Classifying GBML Systems by Role

GBML as meta-learning

Universal: any learner can be augmented by GBML

The learner (or a set of learners) is the output of evolution

Subscripts denote generation and time step (1 . . .T)
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A Framework for GBML Classifying GBML Systems by Role

Meta-learning

Meta-learning: learning about learning

A broad term with different interpretations

A meta-learner may:

optimise parameters of a learner
learn which learner to apply to a given input or a given problem
learn which representation(s) to use
discover update rules used to train learners
learn an algorithm which solves the problem
evolve an ecosystem of learners
potentially be open-ended

See [300, 112] on non-evolutionary meta-learning

Hyperheuristcs are another approach [46, 170, 171, 45]

‘Heuristics to learn heuristics’
A subset are evolutionary
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A Framework for GBML Classifying GBML Systems Algorithmically

Classifying GBML systems algorithmically

Pittsburgh (Pitt) approach:

1 chromosome = 1 solution

Fitness assigned to complete solution

Credit assignment problem:
How did genes contribute to fitness of chromosome?
Left to EA to deal with

Michigan approach:

1 solution = many chromosomes

Fitness assigned to partial solutions

Credit assignment problem:
Chromosomes compete, complement and cooperate
How to encourage coverage of inputs, complementarity and
cooperation?
How to measure a chromosome’s contributions to solution (i.e. its
fitness)?

Some hybrids exist e.g. [309]
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A Framework for GBML Classifying GBML Systems Algorithmically

Examples

LCS are rule-based systems

Pitt LCS: chromosome is a variable-length set of rules
Michigan LCS: chromosome is a fixed-length rule

The F:x associated with each chromosome indicates its fitness.
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A Framework for GBML Classifying GBML Systems Algorithmically

Pitt and Michigan compared

Pittsburgh:

Slower

They evolve more complex structures
They assign credit at a less specific level
This is less informative
But see [9] and the slide on windowing

Less complex credit assignment / more robust

Since chromosomes are more complex so are genetic operators
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A Framework for GBML Classifying GBML Systems Algorithmically

Pitt and Michigan compared

Michigan:

Finer grain of credit assignment than Pittsburgh approach

Bad partial solutions can be deleted without restarting from scratch

More efficient
Also more suitable for incremental learning

However: credit assignment is more complex
Solution is a set of chromosomes:

population must not converge fully
best set of chromosomes 6= set of best chromosomes

Mainly used in LCS

See [115, 149, 309, 100, 162] for comparisons
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A Framework for GBML Classifying GBML Systems Algorithmically

Michigan vs. Pitt: training

Pitt:

Typically algorithm-driven

Typically offline

Michigan:

Typically data-driven

Typically online

More often used as learner for Reinforcement Learning (RL)

RL is almost always on-line
Not necessarily more often used a meta-learner for RL
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A Framework for GBML Classifying GBML Systems Algorithmically

Michigan production system

On each time step:

1 Identify action set: subset of population which match current input

2 Compute support in match set for each class

3 Select class o

4 Identify action set: subset of match set which advocates selected class

5 Update action set based on error

6 Optionally alter population
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A Framework for GBML Classifying GBML Systems Algorithmically

Iterative Rule Learning (IRL)

A variation on Michigan approach

1 solution = many chromosomes

But only 1 best chromosome selected after each run

Alters co-evolutionary dynamics

Output of multiple runs combined

Originated with SIA (Supervised Inductive Algorithm) [299, 200]

A supervised genetic rule learner
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A Framework for GBML Classifying GBML Systems Algorithmically

Genetic Cooperative-Competitive Learning (GCCL)

A Michigan approach

On each generation:

A new population is produced genetically and ranked by fitness
A ’coverage-based filter’ allocates inputs to the first rule which
correctly covers them

inputs are only allocated to one rule per generation
rules which have no inputs allocated die at end of generation

The remaining rules’ collective accuracy is compared to the previous
best generation (stored offline)

If new generation is more accurate (or the same but has fewer rules) it
replaces the previous best

Examples include COGIN [115, 116], REGAL [109] and LOGENPRO
[323]
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A Framework for GBML The Interaction of Learning and Evolution

Evolution and learning as global and local search

Global search

Good at finding a good basin of attraction

Bad at finding optimum

EAs are generally global

Local search:

Opposite of above

Learning methods are often local

We can get the best of both [327]:
Memetic algorithms combine global and local search
[123, 124, 227, 225, 264, 226, 252]

See [169] for a self-contained tutorial

Generally outperform either alone

E.g. evolve initial NN weights, then train with gradient descent

2 orders of magnitude faster than random initial weights [96]
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A Framework for GBML The Interaction of Learning and Evolution

Darwinian and Lamarckian evolution

Lamarckian Evolution/Inheritance

Learning directly alters genes passed to offspring

Offspring inherit the result of learning

Does not occur in nature but can in computers

Possibly more efficient than Darwinian evolution since result of
learning not thrown away

[2] showed Lamarckian evolution much faster on stationary learning
tasks
However, [256] showed Darwinian evolution generally better on
non-stationary tasks
See also [308, 326, 240, 305]

See [119] for a Lamarckian LCS
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A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: smoothing

Baldwin effect I: smoothing fitness landscape

Phenotypic Plasticity: the ability to adapt (e.g. learn) during lifetime

Suppose a mutation would have no benefit except for PP

Without PP mutation does not increase fitness

With PP mutation increases fitness

Thus PP helps evolution (smooths fitness landscape)

Possible example: adult lactose tolerance

Mutation allows adult humans to digest milk

Humans learn to keep animals for milk

. . . which makes mutation more likely to spread
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A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: smoothing

Smoothing effect depends on PP

The greater the PP the more potential for smoothing

ALL GBML methods exploit BE to the extent they have PP

See ([305] §7.2) for short review of BE in Reinforcement Learning
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A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: assimilation

Baldwin effect II: genetic assimilation

Suppose PP has a cost (e.g. learning involves making mistakes)

If PP can be replaced by new genes, it will

E.g. a learned behaviour becomes instinctive

Allows learned behaviours to become inherited without Lamarckian
inheritance
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A Framework for GBML The Interaction of Learning and Evolution

Baldwin effect: bias

Baldwin effect and bias [293]

All inductive algorithms have a bias

Baldwin effect can be seen as shift from weak to strong bias

Weak bias = learning

Strong bias = instinctive behaviour
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A Framework for GBML Other GBML Models

Online evolutionary computation

In many problems (esp. sequential ones) feedback is very noisy and
needs averaging

[305] allocate trials to chromosomes in proportion to their fitness

At new generation evaluate each chrom. once
Allocate subsequent evaluations using softmax distribution
Recalculate average fitness after each evaluation
In non-stationary problems use recency-weighted average
They call this online EC

Less time is wasted evaluating weaker chromosomes

In online learning (where mistakes matter), fewer mistakes made

However, only on average; worst-case not improved

Related to other work on optimising noisy fitness functions [274, 19],
but they do not reduce online mistakes
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A Framework for GBML Other GBML Models

Steady-state EAs

Generational EAs evaluate entire population before replacing any

Steady-state EAs [97] evaluate only a (typically small) proportion

E.g. in XCS only 2 individuals created and 2 deleted
Allows best individuals to reproduce immediately
Removes worst individuals more quickly
Less disruptive than generational
In online learning immediately improves population and hence decision
making

Applies selective pressure at two points:

Reproduction
Deletion
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A Framework for GBML Other GBML Models

Co-evolving learners and problems

Evolve learners and problems

Learners can gradually solve harder problems

We can discover what kinds of problems are hard or easy for a learner

We can explore dynamics between them
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GBML Areas

GBML areas

Notes

This section organised by phenotype and research community

Communities are more disjoint than methods

Areas

Sub-problems of learning

Genetic Programming

Evolving ensembles

Evolving neural networks

Evolving rule-based systems

Learning Classifier Systems
Genetic Fuzzy Systems
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GBML Areas Sub-problems
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GBML Areas Sub-problems

Evolutionary feature selection

Some input attributes (features) contribute little or nothing

We can simplify and speed learning by selecting only useful ones
EAs are widely used in the wrapper approach [151]

Learner treated as a black box optimised by search algorithm

Usually give good results compared to non-evolutionary methods
[147, 262, 174] but there are exceptions [147]
EDAs found to give similar accuracy but run more slowly than a GA
[65]

More generally we can weight features (instead of all-or-nothing
selection)

Some learners use weights directly e.g. weighted k-nearest neighbours
[247]

See [279, 11] for recent real-world applications

Evolutionary methods are slower than non-evolutionary ones

See [212, 99, 100] for overviews
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GBML Areas Sub-problems

Evolutionary feature construction

Some features not very useful by themselves, but can be when
combined with others

We can leave base learner to discover this itself
Or we can preprocess data to construct informative features
E.g. new feature fnew = f1 AND f3 AND f8

Also called constructive induction

Using GP to construct features out of the original attributes e.g.
[139, 172, 265]

Linear feature transformation by evolving a vector of coefficients
[153, 245]

Simultaneous feature transformation and selection had good results
[247]
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GBML Areas Sub-problems

Other sub-problems of learning

Training set optimisation:

Selecting training inputs [145]
Generating synthetic inputs [333, 72]
Partitioning data into training sets [250]

Optimisation within a learner e.g.

Weighted k-nearest neighbours optimised with a GA [153]
Optimisation of decision tree tests using a GA and Evolutionary
Strategy [64]
Optimisation of voting weights in an ensemble [285, 286]
[149] replaced beam search in AQ with a genetic algorithm
Inductive Logic Programming driven by a GA [282, 86, 84, 85, 283]

Rule extraction

Extracting rules from NN e.g. [255, 209]

Fitness function approximation

No known evolutionary examples but see [221] which used backprop
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GBML Areas Genetic Programming

Genetic Programming

A major evolutionary paradigm which evolves programs [298]

Difference between GP & GA is not precise but typically GP:

evolves variable-length structures, most commonly trees
genes/nodes can be functions

Usually Pittsburgh

We cover 2 representations:

GP trees
decision trees
see also [325]
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GBML Areas Genetic Programming

GP and GAs compared

Following differences arise because GP representations are more
complex

Pros of GP:

Easier to represent complex languages e.g. first-order logic

Easier to represent complex concepts compactly

GP is good at finding novel, complex patterns overlooked by other
methods. See ([99] §7.6)

Cons of GP:

Expressive representations have large search spaces

GP tends to overfit / does not generalise well

Variable-length representations have problems with bloat (see e.g.
[244])
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GBML Areas Genetic Programming

GP for learning

GAs typically applied to function optimisation

GP widely applied to learning

Koza defined a set of ‘typical GP problems’ [167]

More-or-less agreed benchmarks for GP community [298]

They include:

Multiplexer and Parity Boolean functions
Symbolic regression of mathematical functions
The Intertwined Spirals problem: classification of 2D points as
belonging to one of two spirals

All the above are more naturally posed as learning than optimisation
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GBML Areas Genetic Programming

GP trees for classification

To classify an input:

Instantiate leaf variables with input’s values

Propagate values upwards from leaves though functions in non-leaf
nodes

Output is the value of the root (top) node

Attribute
A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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GBML Areas Genetic Programming

GP trees for regression

In regression problems:

leaves may be constants

non-leaves are mathematical functions

x2 + 2y 2 − 13
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GBML Areas Genetic Programming

Decision trees

To classify an input:

start at root (top) of tree

follow branch corresponding to value of attribute in node

repeat until leaf reached

value of leaf is classification of input

Attribute
A B C Class
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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GBML Areas Genetic Programming

Evolving decision trees

Basic approach:

leaf nodes are classes

non-leaf nodes are tests of attributes

branches are attribute values

fitness is accuracy of classification on training set
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GBML Areas Genetic Programming

Evolving first-order and oblique decision trees

First-order trees: [251]

Uses both propositional and first-order internal nodes

First-order logic makes trees more expressive
Allows much smaller solutions than found by CN2 (a rule learner) or
C4.5 (tree learner)
Accuracy similar

Oblique (linear) trees: [31]

Conventional tree algorithms learn axis-parallel decision boundaries

Oblique trees make tests on a linear combination of attributes

More expressive but larger search space
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GBML Areas Genetic Programming

Evolving individual nodes in DTs

In most GP-based tree evolvers an individual is a complete tree

In [210] each individual is a tree node

Tree is built incrementally

1 GP run is made for each node
Like IRL, but results are added to a tree structure, not a list

Results:

Non-leaf nodes (and hence trees) are more complex than usual
Trees are somewhat easier to understand as nodes can be analysed
separately
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GBML Areas Genetic Programming

Ensemble methods and GP

Ensemble ideas have been used in different ways

To reduce fitness computation time and memory requirements
Training on subsamples of the data

Bagging approach: [98, 143]
Boosting approach: [272]

To improve accuracy using an ensemble of GP trees [156, 239]

Each run adds one tree to ensemble
Weights computed with standard Boosting
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GBML Areas Genetic Programming

Limited Error Fitness

[105] introduced LEF

A way of reducing run-time

Proportion of training set used to evaluate fitness depends on
individual’s performance

No test set used in [105] but one could be
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GBML Areas Genetic Programming

GP Hyperheuristics

Ways of expanding the power of evolutionary search

[259] proposes a meta-GP system which evolves evolutionary
operators

[99] (§12.2.3) sketches an approach to ‘algorithm induction’

Instead of evolving decision rules GP evolves classification algorithms
[238] is a book devoted to this subject

[44] discusses GP hyperheuristics
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GBML Areas Genetic Programming

Lack of test sets in GP

GP terminology:

Follows convention in GA field since at least [130]

Brittleness: overfitting; poor generalisation to unseen cases

Robustness: good generalisation

Evaluation:

GP usually evaluated only on training set [176, 298]

Sometimes test set used inappropriately [176]

Nonetheless has same need for test sets as other methods [176]

Inductive generalisation:

One of the open issues for GP identified in [298]

See [176, 298] for various methods for encouraging generalisation in
GP
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GBML Areas Genetic Programming

Research directions

Hyperheuristics

Generalisation to test sets
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GBML Areas Genetic Programming

Reading

Koza’s 1994 book [168] for the basics of evolving decision trees with
GP

Wong and Leung’s 2000 book on data mining with grammar-based
GP [323]

Freitas’ 2002 book [99] for a good introduction to GP, decision trees
and evolutionary and non-evolutionary learning

Poli, Langdon and McPhee’s free 2008 GP book [244]

Vanneschi and Poli’s 2010 survey of GP [298]

The GP Bibliography has over 5000 entries [179]
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Ensembles

Also called ’Multiple Classifier Systems’ and ’Committee Machines’

The field which studies how to combine predictions from multiple
sources

Widely applicable to evolutionary systems where a population provides
multiple predictors
But can be used with any learning method
Although most useful for unstable learners
Can be heterogeneous (composed of different types of predictors);
called hybrid ensembles

Few hybrid studies exist [36] but see e.g. [324, 74, 71]

Some good theoretical foundations [36, 292]

Identified by Dietterich as 1 of 4 current directions for Machine
Learning in 1998 [83]
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Ensembles 2

Issues

How to create or select ensemble members?
How many members are needed?
When to remove ensemble members?
How to combine their predictions?
How to encourage diversity in members?

Key advantage: better test set generalisation [66]

Other advantages [261]

Can perform more complex tasks than individual members
Overall system can be easier to understand and modify
More robust / graceful degradation

Many approaches

Best known are bagging and boosting
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Unstable learners

Ensembles are most effective with unstable learners:

Their hypotheses are sensitive to various parameters

Allows construction of an ensemble with diverse errors

Effectively, learners whose bias can be altered e.g.

by random initialisation of NN weights
by sampling data differently for each predictor
by weighting data according to errors made by other predictors
by altering features used
by altering representations used

Unstable learners: decision trees, Radial Basis Function networks,
evolutionary meta-learning . . .

Stable learners: majority class prediction, Support Vector Machines
. . .
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Ensembles are multiobjective

Ensembles exploit diversity in predictors

Multiple identical predictors provide no advantage

But an ensemble of predictors making different errors is useful

Combine predictions so that ensemble output is at least as good on
training set as average predictor [173]

We want accurate predictors with diverse errors
[83, 122, 173, 229, 228]

Hence a multi-objective problem [294]

In addition we may want to minimise ensemble size

Reduces run time

Can make ensemble easier to understand

Evolving variable-length chromosomes results in bloat
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Diversity from bagging and boosting

Families of well-known methods for training ensembles

Bagging: [32, 33]

Generate training subsets by sampling uniformly with replacement
Each classifier trains on a different subset

Boosting (and leveraging): [101, 102, 214]

Allocate training data to each classifier in sequence
First classifier samples data uniformly
Later classifiers more likely to sample data misclassified earlier

Effects:

Increases their diversity
Alters their bias
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Evolutionary ensembles

Most ensembles are non-evolutionary

But evolution has many applications
Classifier creation and adaptation

Provides ensemble with set of candidates

Voting

[177, 285, 286, 73] evolve weights for the votes of ensemble members

Classifier selection

Winners of evolutionary competition added to ensemble

Feature selection

Generate diverse classifiers by training them on different features
See §1 and ([175] §8.1.4)

Data selection

Generate diverse classifiers by training on different data
See §1

All have non-evolutionary alternatives
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Classifier creation and adaptation

Single vs. multi-objective
Single-objective evolution common e.g. [201]

Fitness combines accuracy and diversity into a single objective

Evolutionary multiobjective optimisation is an active area

Can upgrade GBML to multi-objective GBML
Multi-objective evolutionary ensembles are rare [71]
But starting to appear e.g. [1, 71, 70]

Other measures to evolve diversity

Fitness sharing e.g. [202]
EEL’s co-evolutionary fitness [104]
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Evolutionary Ensemble Learning (EEL) [104]

Compares boosting and co-evolution of learners and problems

Both gradually focus on cases which are harder to learn
Argues co-evolution less likely to overfit noise

Introduces co-evolution inspired fitness

Let Q be a set of reference classifiers
Hardness of a training example xi based on how many members of Q
misclassify it
Fitness of a classifier sum of hardnesses of xi it classifies correctly
Q is the population of classifiers
Results in accurate yet diverse classifiers

Introduces greedy margin-based selection of ensemble members

Simpler off-line version dominates on-line version

On-line version lacks a way to remove bad classifiers

Good results compared to Adaboost on 6 UCI [8] datasets
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Evolutionary selection of members

Two extremes:

Usually each run produces 1 member

Many runs needed

Sometimes entire population eligible for ensemble

Only 1 run needed

Latter does not resolve selection problem:

Which to use?

Many combinations possible!

Set of best individuals may not be best ensemble

Formally equivalent to feature selection problem ([104] §3.2)

See e.g. [263, 253] for evolutionary approaches

81 / 243



GBML Areas Evolving Ensembles

Research directions

Multi-objective ensembles [71]

Hybrid ensembles [71]

Minimising ensemble complexity [202]
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Reading

Opitz and Shavlik’s classic 1996 paper on evolving NN ensembles
[229]

Kuncheva’s 2004 book on ensembles [175]

Chandra and Yao’s 2006 [70] discussion of multi-objective evolution
of ensembles

Yao and Islam’s 2008 review of evolving NN ensembles [328]

Brown’s 2005 and 2010 surveys of ensembles [36, 34]
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Artificial Neural Networks

A NN consists of:

A set of nodes (input, output and hidden)
A set of directed connections between nodes

Connections specify inputs and outputs to nodes

A set of weights on the connections

Nodes compute by:

Integrating their inputs using an activation function
Passing on their activation as output

NNs compute by:

Accepting external inputs at input nodes
Delivering outputs to output nodes
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Evolving neural networks

Acronyms include

EANNs (Evolving Artificial Neural Networks) [327]

ECoSs (Evolving Connectionist Systems) [155]

Evolution has been applied at 3 levels:

Weights

Architecture

connectivity: which nodes are connected
activation functions: how nodes compute outputs
plasticity: which nodes can be updated

Learning rules
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Representations

Direct encoding [327, 96]

all details (connections and nodes) specified

Indirect encoding [327, 96]

only key details (e.g. number of hidden layers and nodes)
a learning process determines the rest

Developmental encoding [96]

a developmental process is genetically encoded
[157, 120, 222, 142, 237, 281]

Uses:

Indirect and developmental representations are more flexible

tend to be used for evolving architectures

Direct representations tend to be used for evolving weights alone
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Credit assignment

Virtually always Pittsburgh approach

A few Michigan systems: [5, 268, 271]

Michigan: each chromosome specifies only one hidden node

How to define architecture?

Simple method: fix architecture

How to make nodes specialise?

Encourage diversity during evolution: e.g. fitness sharing
Increase diversity after evolution: prune redundant nodes [5]
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Two ways of adapting weights

Learning:

Most NN learning algorithms are based on gradient descent

Including the best known: backpropagation (BP)

Many successful applications, but often get trapped in local minima
[280, 306]

Require a continuous and differentiable error function

Evolving:

EAs don’t rely on gradients and can work on discrete fitness functions

Much research has been done on evolution of weights
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Evolving NN weights

Fitness functions typically penalise: NN error and complexity (number
of hidden nodes)

The expressive power of a NN depends on the number of hidden nodes

Fewer nodes = less expressive = fits training data less

More nodes = more expressive = fits data better

Too few nodes: NN underfits data

Too many nodes: NN overfits data
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Evolving weights vs. gradient descent

Evolution has advantages [327]:

Does not require continuous differentiable functions

Same method can be used for different types of network (feedforward,
recurrent, higher order)

Which is faster?

No clear winner overall – depends on problem [327]

Evolving weights AND architecture is better than weights alone (we’ll
see why later)

Evolution better for Reinforcement Learning and recurrent networks
[327]

[96] suggests evolution is better for dynamic networks

Happily we don’t have to choose between them . . .
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Evolving AND learning weights

Evolution:

good at finding a good basin of attraction

bad at finding optimum

Gradient descent:

Opposite of above

To get the best of both: [327]

Evolve initial weights, then train with gradient descent

2 orders of magnitude faster than random initial weights [96]
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Evolving NN architectures

Arch. has important impact on results: can determine whether NN
under- or over-fits

Designing by hand is a tedious, expert trial-and-error process

Alternative 1:

Constructive NN grow from a minimal network

Destructive NN shrink from a maximal network

Both can get stuck in local optima and can only generate certain
architectures [6]

Alternative 2:

Evolve them!
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Reasons EAs are suitable for architecture search space

1 “The surface is infinitely large since the number of possible nodes and
connections is unbounded

2 the surface is nondifferentiable since changes in the number of nodes
or connections are discrete and can have a discontinuous effect on
EANN’s performance

3 the surface is complex and noisy since the mapping from an
architecture to its performance is indirect, strongly epistatic, and
dependent on the evaluation method used;

4 the surface is deceptive since similar architectures may have quite
different performance;

5 the surface is multimodal since different architectures may have
similar performance.” [219]
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Reasons to evolve architectures and weights simultaneously

Learning with gradient descent:

Many-to-1 mapping from NN genotypes to phenotypes [329]

Random initial weights and stochastic learning lead to different results
Result is noisy fitness evaluations
Averaging needed – slow

Evolving arch. and weights simultaneously:

1-to-1 genotype to phenotype mapping avoids above problem

Result: faster learning

Can co-optimise other parameters of the network: [96]

[20] found best networks had very high learning rate
May have been optimal due to many factors: initial weights, training
order, amount of training
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Evolving learning rules [327]

There’s no one best learning rule for all architectures or problems

Selecting rules by hand is difficult

If we evolve the architecture (and even problem) then we don’t know
what it will be a priori

Solution: evolve the learning rule

Note: training architectures and problems must represent the test set

To get general rules: train on general problems/architectures, not just
one kind
To get rule for a specific arch./problem type, just train on that
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Evolving learning rule parameters [327]

E.g. learning rate and momentum in backpropagation

Adapts standard learning rule to arch./problem at hand

Non-evolutionary methods of adapting them also exist

[68] found evolving architecture, initial weights and rule parameters
together as good or better than evolving only first two or third (for
multi-layer perceptrons)
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Evolving learning rules [327, 246]

Open-ended evolution of rules initially considered impractical

Instead generic update rule is given and its parameters evolved [69]

Generic update is a linear function of 10 terms
4 terms represent local information about node being updated
6 terms are the pairwise products of the first 4
The weight on each term is evolved as a vector of reals
Can outperform human-designed rules e.g. [81]

Later GP used to evolve novel rule types [246]

GP used a set of mathematical functions
Result consistently outperformed standard BP

Whereas architectures are fixed, rules could change over lifetime (e.g.
learning rate)

But evolving dynamic rules is more complex
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Ensembles of NNs

Most methods output a single NN [328]

E.g. EPNet [329]

However, evolving NNs are naturally treated as an ensemble

Population = ensemble
Recent work beginning to focus on evolving ensembles of NNs

Evolving NNs is inherently multiobjective

We want accurate yet simple and diverse networks
Some work combines objectives into 1 fitness function
Others are explicitly multi-objective
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Single-objective ensembles

[330] used EPNet’s population as an ensemble

Evolution (EPNet) was not modified
Result outperformed population’s best individual

[201] pursue accuracy and diversity in 2 ways:
Modify backprop to minimise error and maximise diversity

Called Negative Correlation Learning (NCL)
Errors of members become negatively correlated (diverse)

Fitness combines accuracy and diversity in a single objective
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Single-objective ensembles 2

EENCL (Evolutionary Ensembles for NCL) [202]

Automatically determines the size of an ensemble
Encourages diversity with fitness sharing and NC learning
Problem: how to combine many candidates into 1 ensemble?

many combinations possible!

Solution: cluster then select (see [150])

cluster candidates based on errors on training set
clusters make similar errors
most accurate in each cluster joins ensemble

Ensemble can be much smaller than the population

CNNE (Cooperative Neural Net Ensembles) [146]
Used a constructive approach to determine

number of individuals
how many hidden nodes each has

Both contribute to expressive power of ensemble
Able to balance the two to obtain suitable ensemble
More complex problems needed larger ensembles
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Multi-objective ensembles

MPANN (Memetic Pareto Artificial NN) [1]

First use of multi-objective evolution for NNs
Uses gradient-based local search to optimise network complexity and
error

DIVACE (diverse and accurate ensembles) [70]

Multiobjective evolution maximises accuracy and diversity
Selection based on non-dominated sorting [273]
Clustering used to select ensemble members
Uses a variant of differential evolution [278] and simulated annealing
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DIVACE-II

DIVACE-II (diverse and accurate ensembles) [71]

A heterogeneous multiobjective Michigan approach

Role of crossover/mutation played by boosting and bagging (BB)
BB produces accurate and diverse candidates
NNs, Support Vector Machines and Radial Basis Function networks
used
Only dominated members are replaced

Each generation BB makes candidate ensemble members

Performance

Very good compared to 25 other learners on Australian credit card and
diabetes datasets
Outperforms DIVACE
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Yao’s framework for evolving NNs [327]

Architectures, rules and weights can evolve as nested processes

Weight evolution is innermost (fastest time scale)

Either rules or architectures are outermost

If we have prior knowledge, or are interested in a specific class of
either, this constrains search space
Outermost should be the one which constrains search space most

Can be thought of as 3D space of evolutionary NNs where 0 on each
axis represents one-shot search and infinity represents exhaustive
search

If we remove references to EAs and NNs it becomes a general
framework for adaptive systems
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Evolving NNs – conclusions [96]

Most studies of neural robots in real environments use some form of
evolution

Evolving NNs can be used to study “brain development and dynamics
because it can encompass multiple temporal and spatial scales along
which an organism evolves, such as genetic, developmental, learning,
and behavioral phenomena.”

“The possibility to co-evolve both the neural system and the
morphological properties of agents . . . adds an additional valuable
perspective to the evolutionary approach that cannot be matched by
any other approach.” p. 59
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Reading

Reading on evolving NNs:

Yao’s classic 1999 survey [327]

Kasabov’s 2007 book [155]

Floreano et al.’s 2008 survey [96]

includes evolving dynamic and neuromodulatory NNs

Yao and Islam’s 2008 survey of evolving NN ensembles [328]
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Rule-based systems

We distinguish two areas:

Learning Classifier Systems
Genetic Fuzzy Systems

The two overlap:

GFS evolve fuzzy rules
Some LCS evolve fuzzy rules
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Learning Classifier Systems

Background:

Originated in GA community as a way of applying GAs to learning
problems

Terminology: CS, LCS, GBML

(L)CS sometimes taken to mean Michigan systems (see e.g. [115])
However it now generally includes Pitt systems (as implied by the
“IWLCS” workshop and its contents)
Difficulty in naming [126] due in part to difficulty in defining what they
are [266, 132]

Evolve populations of condition/action rules called classifiers

Representations:

Rules have limited expressive power

A solution requires many rules; solutions are piecewise
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Production systems

Pitt, Michigan, IRL and GCCL all used

Michigan is rare elsewhere, but most common form of LCS

IRL most common with Genetic Fuzzy Systems (but see [3] for a
non-fuzzy version)
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Michigan vs. Pitt: representations

Rule-based representations:

Michigan: chromosome is 1 fixed-length rule

e.g. XCS

Pitt: chromosome is a variable-length set of rules

e.g. GAssist
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Michigan vs. Pitt: learning and evolution

Typically:

Rule conditions and actions are evolved

Phenotypic parameters are learned

Michigan: for each rule
Pitt: for each ruleset

Examples:
UCS (Michigan SL) parameters:

Fitness
Mean action set size – for deletion which balances set sizes
Experience – to give confidence in fitness

GAssist (Pitt SL) parameters:

Fitness
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LCS variations

Sometimes rules:

predict next state

read and write to memory

are generated non-genetically
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LCS: Representations
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Ternary conditions

Strings: (see e.g. [313])

All fixed length
Inputs are binary
Rules have 1 binary action and 1 ternary condition from {0, 1, #}
# is a wildcard, matching 0 and 1 in inputs
E.g. 00# matches 000 and 001

Very widely used, especially before ˜2000

Inherited from GAs

Minimal alphabets
Parallel with binary GA schemata

Limited expressive power [260] (but see also [27])

A factor in pathological credit assignment (strong/fit overgenerals
[162])

Various extensions studied
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Real-valued interval conditions

Following [12] we distinguish 2 approaches

Representations based on discretisation:

HIDER* uses “natural coding” [111]

ECL clusters attribute values and evolves constraints on them [85]

“Adaptive discretisation intervals” in GAssist [12]

Representations handling real values directly:

HIDER (unlike HIDER*): genes specify a lower and upper bound
(lower always < upper) [3]

Variation on HIDER: when upper < lower, attribute is irrelevant [76]

Intervals [310, 277]

XCSR: genes specify a center and spread [315]
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Default rules

Should increase number of solutions without increasing basic search
space

Should allow gradual refinement of knowledge by adding exceptions
[133]

Can reduce number of rules needed for solution

Truth table
A B C Output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Ternary
Rules

0 0 #→0
0 1 #→1
1 #0→0
1 #1→1

Default
Rule

0 0 #→0
1 #0→0
###→1
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Default rules: Pitt

Pitt systems:

GABIL [152] and GAssist [12] use decision lists

Each rule is an exception to any following, overlapping ones
Conflict resolution trivial; based on order
No need to assign credit to each rule

Pitt LCS often evolve default rules (e.g. last rule in list is fully general)

GAssist enforces fully general last rule [12, 13]

Initialised with all possible last rules
Evolution selects best
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Default rules: Michigan

Called default hierarchies in Michigan LCS

Specific rules are exceptions to general rules
Attempts to bias conflict resolution according to specificity

Problems [270]

Hard to evolve – rules need to cooperate
Unstable – introduce interdependence between rules
Complicate credit assignment, since exception rules must override
defaults [311, 270]
Fewer #s doesn’t mean a rule matches fewer inputs
Why must exceptions be more specific?

Consequences

Not much interest since early 1990s (but see [297])
Not all Michigan LCS support them (e.g. neither ZCS nor XCS)
Should be revisited from ensembles perspective
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Other representations for conditions

VL1 logic [218] as used in GIL [148]

First-order logic [215, 216, 217]

Decision lists [249] used in GABIL [152] and GAssist [12]

Messy encoding [181]

Ellipses [53] and hyperellipses [59]

Hyperspheres [211]

Convex hulls [197]

Hyperplane coding [29, 28]

Tile coding [186]

GP trees [4, 182, 183]

GP to define Boolean networks [37]

Support vectors [208]

Edges of an Augmented Transition Network [178]
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Other representations for conditions and actions

Gene Expression Programming [321]

Fuzzy rules (see [24, 128])

Neural networks [269, 78, 271, 43, 224, 79, 138, 137]

Evolved prototypes

One of the representations used with GALE [204, 203, 207]
Evolve prototypes, use k-nearest-neighbour for classification
Prototypes need not be fully specified
Also used in GAssist [12]

Decision trees

Another of GALE’s representations
Uses GP to evolve trees defining axis-parallel and oblique
hyper-rectangles [207]

Computed actions [291, 196]

Continuous actions [320]
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Evolutionary selection of representations

There are a lot of representations to choose from!

Which one to use for a problem?

Or each part of a problem

Let evolution decide!

Helps adapt bias of learner
A form of meta-learning
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Selecting default actions in decision lists

GAssist (Pittsburgh)

Rulesets are decision lists

Initialise rulesets with fully general last rule

A default action

Evolution selects most suitable default action [12, 13]

For good results need to encourage diversity in default actions
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Selecting classification algorithms

GALE (Pittsburgh) [203]

Has elements of Cellular Automata and Artificial Life:

Individuals distributed on a 2D grid
Only neighbours (within r hops) interact:

2 neighbours can perform crossover
An individual can be cloned and copied to a neighbouring cell
An individual may die if its neighbours are fitter

Representations:

Rule sets, prototypes, and decision trees (orthogonal, oblique, and
multivariate based on nearest neighbor)
Population may be homogeneous or heterogeneous
In [207] GALE modified to interbreed orthogonal and oblique trees
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Selecting condition shapes

Representational ecology [211]

Two boolean classification tasks:

Plane function: easy to describe with hyperplanes, hard with
hyperspheres
Sphere function: opposite

3 versions of XCS:

with hyperplane conditions (XCS-planes)
with hyperspheres (XCS-spheres)
with both (XCS-both)

XCS otherwise unchanged

In XCS-both representations compete due to XCS’s pressure against
overlapping rules
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Selecting condition shapes

Planes and spheres do not interbreed

Genetically independent populations: species

Classification accuracy:

XCS-planes: good at plane function, bad at sphere function
XCS-spheres: opposite
XCS-both: good at both

Selected the better representation for each task
No significant difference in accuracy compared to better
single-representation version

Learning speed of XCS-both:

Similar speed to XCS-sphere on sphere function
But significantly slower than XCS-plane on plane function
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Selecting discretisation methods and cut points

Discretisation of real attributes in GAssist

Adaptive Discretization Intervals (ADI) approach has 2 parts

Adapting interval sizes

A discretisation alg. proposes cut points for each attribute

This defines the finest discretisation possible: micro-intervals

Evolution can merge and split macro-intervals, composed of
micro-intervals

Each individual can have different macro-intervals

Selecting discretisation algorithms

Evolution can select discretisation algorithms for each attribute or rule

Selects from a pool of algorithms including uniform-width,
uniform-frequency, ID3, Fayyad & Irani, Màntaras, USD, ChiMerge
and random

Difficult to evolve the best discretisers
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Models of the world

A basic rule consists of a condition, action, and strength

For modelling, add an expecton – a prediction of the next state

IF (0 1 #) THEN (take action 0 1 ) expect (state 0 1 #)
Called an Anticipatory classifier system

Allows planning and latent learning (learning in the absence of
reward) e.g. [248, 131, 275, 276, 49, 40, 107, 106, 331, 223, 38, 42].

Learned with non-evolutionary methods (so we won’t cover details)
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Latent learning

Let the learner explore the maze without reward

Place the learner in state X and reward it

Place the learner in state S and see whether it goes to X or Y
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Internal memory

Stimulus-response LCS have no internal memory

Memory is needed to solve tasks where inputs are perceptually
aliased, e.g. McCallum’s maze [213]

States labelled with same number appear identical to learner

131 / 243



GBML Areas Learning Classifier Systems

Evolving memory: message lists and bit registers

Ways of adding explicit memory:

A message list [134] p.110

if (input = 001 and list contains 010) then (take action 0, post 111)

Bit registers [312, 181, 180, 193]

if (input = 001 and bit 1 is set) then (take action 0, clear bit 1)

Actions can add messages to the list / set bits in the register

Conditions can match messages / register settings

See also [91, 267, 75]
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Evolving memory: corporations

In between Michigan and Pitt approaches:

Selection occurs partly on groups (corporations of classifiers)

Rules dynamically form corporations

A special genetic operator links rules in successive match sets
Rules in a corporation have collective fitness
Corporation is deleted or reproduced as a whole
However rules are updated and make predictions independently
Removes competition for reproduction

Rules in corporation fire in sequence

This linkage provides a form of memory

Proposed in [322], implemented in e.g. [267, 289, 288, 290]
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Evolving memory: Augmented Transition Networks

ATN:

Introduced as parsers for natural language

A graph in which nodes represent states and edges transitions

Transitions are non-deterministic

Registers provide memory

ATNoSFERES: [178]

Pitt LCS where rules are edges in an ATN

Environment is “parsed” as a sentence would be

Evolves automata which can solve problems needing memory

Found better policies than other LCS, but run-time much longer

Not clear whether non-determinism is helpful

In non-Markov problems deterministic policies can get stuck
However, non-deterministic policies are harder to evaluate
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Macroclassifiers

Optimisation for Michigan populations introduced in [313]

As population converges on solution set, many identical copies
accumulate

Use 1 rule to represent many identical virtual rules [313]

Number of virtual copies called the numerosity of the rule

Reduces runtime and provides interesting statistics

Empirically, macroclassifiers perform essentially as the equivalent
‘micro’classifiers [159]
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Example of macroclassifiers

Without Macroclassifiers

Rule Cond. Action Strength
m ##0 0 1 1 1 200.0
m′ ##0 0 1 1 1 220.0
n ##0 0 1 1 0 100.0
o 0 0 1 1 1 0 1 100.0

With Macroclassifiers

Rule Cond. Action Strength Numerosity
m ##0 0 1 1 1 200.0 2
n ##0 0 1 1 0 100.0 1
o 0 0 1 1 1 0 1 100.0 1
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LCS: Rule Discovery
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Evolution in Pitt and Michigan LCS

Pitt:

Multiple objectives. Accuracy and parsimony of rulesets

Michigan:

Multiple objectives. Coverage, accuracy, and parsimony of population
Co-evolution. Rules cooperate and compete
Fitness sharing to encourage diversity
Crowding. Deletion probability is proportional to degree of overlap with
other rules
Restricted mating. See Niche GA
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Windowing in Pitt LCS

Pitt LCS are slower than Michigan
Naive approach: each individual evaluated on entire data set

Windowing: learn on data subsets to improve runtime [103]
windowing has been used in Pitt LCS since at least ADAM [117] (see
also description in [115] p.235)

E.g. ILAS (Incremental Learning by Alternating Strata) [12]
Partition data into n strata with class distribution of entire set
Use a different stratum for each generation (iterate)
On larger data sets speed-up can be an order of magnitude
Other data sampling techniques applicable

Side effect
Can reduce overfitting, improve test accuracy
Specific rules starved; fewer and more general rules evolve

Tuning
Number of strata determines speed-up and over/underfitting

Windowing is used as standard on recent real-world applications e.g.
[14, 10, 9])
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Michigan rule discovery

Most rule discovery research has focused on Michigan LCS as:

Evolutionary dynamics are more complex
Michigan LCS are more common

Rest of this section deals with Michigan systems

although many ideas could be applied to Pitt
e.g. self-adaptive mutation

Unusual emphasis in Michigan LCS on minimising population size

Various techniques:

Generalisation term in fitness
Subsumption deletion
Condensation
Compaction methods

Michigan LCS use Steady State GAs which are useful for on-line
learning
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Niche GAs

Panmictic GA: all rules eligible for reproduction
Niche GA:

Mating restricted to rules in same action set (a ’niche’)
Such rules’ input spaces overlap and actions agree

They make related predictions

Mating related rules is more effective, on average

Other effects: [313]
Strong bias towards general rules, since they match more
Pressure against overlapping rules, since they compete [162]
Complete coverage, since competition occurs for each input

A form of speciation; creates non-interbreeding sub-populations
Notes

Introduced in [26]
Original restriction was to match set
Further restricted to action set in [314]
Used in XCS and UCS
Related to “universal suffrage” in [110]
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EDAs instead of GAs

EDA: Estimation of Distribution Algorithm

A form of stochastic search
Like a GA, but no crossover or mutation
Instead it iteratively:

samples individuals from a probabilistic model
updates model based on their fitness

[61, 60, 62] replaced XCS’s usual crossover with EDA-based method
to improve solving of difficult hierarchical problems

[205, 206] introduced CCS: a Pitt LCS based on compact GAs (a
simple form of EDA)
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Subsumption deletion

Introduced in XCS (see [52])

When rule x subsumes rule y , y is deleted and the numerosity of x
incremented

In XCS a rule is allowed to subsume another if:

It logically subsumes it
It is accurate (has low prediction error)
It is experienced (has been evaluated sufficiently)

so we can be sure it is accurate

A rule x logically subsumes a rule y when x matches a superset of the
inputs y matches, and they have the same action

E.g., 00#→0 subsumes 000→0 and 001→0
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Two checks for subsumption

GA Subsumption

When child created, check to see if its parents subsume it

Constrains accurate parents to only produce more general children

Action Set Subsumption

Most general of the accurate, experienced rules in action set
subsumes others

Removes redundant specific rules from the population

Too aggressive for some problems
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Michigan evolutionary dynamics

Next slide shows:

XCS learning 11 multiplexer (Boolean function)

Performance: moving average of accuracy

Macroclassifiers: number of unique condition/action rules

%[O]: proportion of minimal set of 16 ternary rules XCS needs to
represent solution

Notes:

Initial population empty; created by covering

Population size limit 800

All input/output pairs in train and test sets

Curves average of 10 runs

Other settings as in [313]
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Evolutionary dynamics in XCS

11 multiplexer
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Observations on evolutionary dynamics of XCS

XCS continues to refine solution after 100% performance reached

Finds minimal representation

but continued crossover and mutation generate extra transient rules
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Condensation

An evolved population normally contains many redundant and
low-fitness rules

Typically transient, but more generated while GA runs

We can remove them with condensation:

Run the system with crossover and mutation turned off [313, 159]
I.e. only clone and delete existing rules
Next slide shows XCS on 11 multiplexer with condensation

Other compaction methods [160, 319, 87]
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Condensation
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Tuning evolutionary search

Manual tuning

Class imbalances

XCS is robust to class imbalances [230]
But for high imbalances tuning the GA based on a facetwise model
improved performance [230, 232]

Self-tuning Evolutionary Search

Mutation rate can be adapted during evolution e.g.
[140, 141, 138, 63]

[82] dynamically control use of 2 generalisation operators

Each has a control bit specifying whether it can be used
Control bits evolve with the rest of the genotype
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Non-evolutionary rule discovery

Covering creates a rule to match an unmatched input

First suggested in [129]

Can create (“seed”) the initial population [299, 313, 127]

Can also supplement the GA throughout evolution [313]

Variations

[162] p. 42 found covering each action set better when applying XCS
to sequential tasks
Most covering/seeding is performed as needed

Instead [200] select inputs at the center of same-class clusters
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Non-evolutionary LCS

Although LCS were conceived as a way of applying GAs to learning
problem [135], not all LCS include a GA!

Various heuristics used to create and refine rules e.g.

YACS [107]
MACS [106]

Methods inspired by psychological models of learning
ACS [275, 49] and ACS2 [48]

ACS also supplemented by a GA [50, 51]

AgentP: specialised LCS for maze tasks [332, 331]
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LCS: Credit Assignment
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Review: credit assignment in LCS

Pittsburgh:

1 chromosome = 1 solution
Credit assignment is easy

If solution is good, chromosome is good
Chromosomes only compete

Michigan:

1 solution = many chromosomes
Credit assignment is more complex

Chromosomes compete, complement and cooperate
How did they contribute to solution?

Majority of LCS are Michigan
Credit assignment difficulties have been the major issue with them
Learning a value function for Reinforcement Learning further
complicates fitness evaluation
Two major approaches:

Strength-based and accuracy-based fitness
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Strength-based Michigan systems

Older (pre-1995)

Fitness is proportional to the magnitude of reward

Suffer from difficulties with credit assignment [162]

Analysis of credit assignment is very complex

Some incorporate accuracy as a component of fitness

but it’s still proportional to reward
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Accuracy-based Michigan systems

Newer (starting with XCS in 1995 [313, 52])

Majority of current research uses them

Avoid many problems with credit assignment

Fitness is proportional to the accuracy of reward prediction

Accuracy estimated from variance in reward

Overgeneral rules have high variance hence low fitness

Major limitation: accuracy estimate conflates several things:

Overgenerality
Noise in the training data
Stochasticity in transition function in sequential problems

Strength-based systems may be less affected by noise and
stochasticity

See [162] for analysis of strength and accuracy
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Strength and accuracy in Reinforcement Learning

Strength:

A form of direct policy search (see e.g. [242])

Searches in space of policies

Each rule contributes to policy

Generalisation is over policy

Accuracy:

Learns Value Function (VF)

Searches for good state-action aggregations to represent VF
VF then used to generate policy

Each rule contributes to VF

Generalisation is aggregation of state-action pairs in VF
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Credit assignment algorithms in XCS

Classifiers update predictions while training

Updates in basic XCS: [313, 52]

Widrow-Hoff update (for non-sequential problems)
Q-learning update (for sequential problems)

Alternative XCS updates:

Average rewards [284, 195]
Gradient descent [57, 194]
Eligibility traces [92]
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Other credit assignment algorithms

Update in basic XCSF: NLMS (linear piecewise) [317, 318]

Alternative updates compared in XCSF [187]

Classical parameter estimation algs: RLS, and Kalman filter
Gain adaptation algs: K1, K2, IDBD, and IDD

Findings:

Kalman filter and RLS have significantly better accuracy
Kalman filter produces more compact solutions than RLS

Other LCS:

UCS: essentially a supervised version of XCS [22]

Simplified LCS [41]

159 / 243



GBML Areas Learning Classifier Systems

Evolutionary selection of prediction functions

Similar to representational ecology work that selects condition types
[211]

XCSFHP (XCSF with Heterogeneous Predictors) [188] selects
prediction functions

Polynomial functions: linear, quadratic and cubic predictions
Also constant, linear and NN predictors

Selects most suitable predictor for regression and sequential tasks

Performs almost as well as XCSF using best single predictor
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Theoretical results

XCS without generalisation implements tabular Q-learning [184]

Computational complexity of XCS (PAC learning) [56]

Analysis of credit assignment and relation to Reinforcement Learning
methods [303, 302, 301, 304]

Existence of strong and fit overgenerals [162]

Rules which are overgeneral yet stronger/fitter than not-overgeneral
competitors
Only possible under specific circumstances

Characterising problems which are hard for LCS
[114, 164, 161, 162, 23, 15]

Models of evolutionary dynamics [47, 55, 54, 58, 233, 234]

Reconstruction of LCS from first principles using probabilistic models
[94, 93, 95]
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Hierarchies and ensembles of LCS

Hierarchical LCS have been studied for some time e.g.

[17] reviews early work

[91] and [89, 90, 88] apply hierarchical LCS to robot control

[18] uses hierarchical XCSs to learn longer sequences of actions

All could be reformulated as ensembles

Ensembles of LCS

The ensembles field studies how to combine predictions [175]

Recent work on ensembles of LCS [80, 39]
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An LCS as an ensemble

Instead of an ensemble of LCS, we can treat 1 LCS as an ensemble

In Michigan LCS rules often conflict

In Pitt LCS rulesets conflict

Various conflict resolution methods have been used

Typically a majority vote weighted by fitness (e.g. UCS)

We can treat conflicting rules (or rulesets) as an ensemble

Connections beginning to appear [165, 35, 93, 95]
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LCS: Conclusions
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Conclusions

Inherent difficulties:

Michigan: credit assignment

Pitt: run-time

Recent research:

Integration with mainstream Machine Learning and Reinforcement
Learning

Representations

Credit assignment algorithms

Future directions:

Exposing more of the system to evolution

Further integration with ML, RL, ensembles, memetic algorithms,
multi-objective optimisation...
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Reading

No general up-to-date introduction to LCS exists

For the basic idea see [113] and the introductory parts of [162] or [54]
For a review of early LCS see [18]

Reviews of LCS research [322, 189, 185]

The LCS bibliography [163]

Review of state-of-the-art GBML and empirical comparison to
non-evolutionary pattern recognition [236]

Other comparisons with non-evolutionary methods
[25, 118, 257, 316, 21, 22]

Good introduction to representations and operators ([99] ch. 6)
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Genetic Fuzzy Systems

Fuzzy Logic is a major paradigm in soft computing

Provides a means of approximate reasoning

Genetic Fuzzy Systems (GFS) apply evolution to fuzzy systems in
various ways

GAs, GP and Evolutionary Strategies have all been used
We cover genetic Fuzzy Rule-based Systems (FRBS)

Also called Learning Fuzzy Classifier Systems (LFCS) [24]
Also referred to as e.g. “genetic learning of fuzzy rules” and (for
Reinforcement Learning) “fuzzy Q-learning”
Like other LCS they evolve if-then rules, but rules are fuzzy
An active area, somewhat disjoint from LCS literature
Pitt systems common but see e.g. [295, 296, 108, 24, 231, 67, 235]

We briefly cover genetic fuzzy NNs
We won’t cover genetic fuzzy clustering [77]
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Fuzzy sets

Ordinary scalar values are called crisp values.

A membership function defines the degree of match between crisp
values and a set of fuzzy linguistic terms

The set of terms is a fuzzy set

Each crisp value matches each term to some degree [0,1]
Fuzzification: computing the membership of each term

Can be considered a form of discretisation

Defuzzification: computing a crisp value from fuzzy sets
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Fuzzy rules

Condition/action (IF-THEN) rules composed of:

A set of linguistic variables (e.g. temperature, humidity)

Which can each take on linguistic terms (e.g. cold, warm, hot)

Examples:

IF temperature IS cold AND humidity IS high THEN heater IS high

IF temperature IS warm AND humidity IS low THEN heater IS medium

Types of rules:

Linguistic or Mamdani: condition and actions contain fuzzy terms (as
above)

Takagi-Sugeno: condition contains fuzzy terms, action is a function of
condition variables

Approximate or Scatter Partition: instead of linguistic terms condition
and action use fuzzy sets directly
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Fuzzy Rule-Based System

An FRBS consists of:

A Rule Base (RB) of fuzzy rules

A Data Base (DB) of linguistic terms and their membership functions

Together the RB and DB are the knowledge base (KB)

A fuzzy inference system which maps from fuzzy inputs to a fuzzy
output
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Fuzzy Rule-Based System

Adapted from [128]
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Evolution of FRBS

We distinguish:

1 Genetic tuning

2 Genetic learning of DB, RB or inference engine parameters

See [99] or [128] for further details
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Genetic tuning

Concept:

First train a hand-crafted FRBS

Then evolve the DB (linguistic terms and membership functions) to
improve performance

Do not alter the rule base

Approaches:

Adjust the shape of the membership functions

Adjust parameterised expressions in the (adaptive) inference system

Adapt defuzzification methods
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Genetic learning

Concept:

Evolve DB, RB or inference engine parameters

Approaches:

Genetic rule learning

Usually predefine the DB by hand and evolve the RB

Genetic rule selection

Use the GA to remove irrelevant, redundant, incorrect or conflicting
rules
Similar role to condensation in LCS

Genetic KB learning
Learn both the DB and RB. Either:

learn the DB first, then learn the RB or
iteratively learn DBs and evaluate each one by learning an RB using it
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Simultaneous genetic learning

Simultaneous KB learning

Learn the DB and RB simultaneously [221]

Simultaneous genetic learning of KB components and inference
engine parameters [136]

Simultaneous learning may get better results but the larger search
space makes it slow and difficult
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Fuzzy fitness

[254] claims:

Existing GFS are applied to crisp data

The benefits of GFS here are only linguistic interpretability

But GFS can outperform other methods on fuzzy data

GFS should use fuzzy fitness functions in such cases
They propose this as a new class of GFS to add to the taxonomy of
[128]

They identify 3 cases:
1 “crisp data with hand-added fuzziness
2 transformations of data based on semantic interpretations of fuzzy sets
3 inherently fuzzy data” p. 558
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Genetic Neuro-Fuzzy Systems

Neuro-Fuzzy System (NFS): any combination of fuzzy logic and
neural networks

Also called Fuzzy Neural Networks (FNNs)

Example Genetic NFS:

See [77] for an introduction

[198] uses a GA to minimise the error in a FNN

[121] uses both a GA and backprop to minimise error

[241] optimises a fuzzy expert system using a GA and NN

[221] uses NN to approximate fitness function for GA which adapts
membership functions and control rules

[199] reviews the three areas from the perspective of intelligent
control

[125] discusses the combination of the three

[158] introduces Fuzzy All-permutations Rule-Bases (FARBs);
mathematically equivalent to NNs
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Active areas within GFS

Herrera [128] p. 38 lists:

1 “Multiobjective genetic learning of FRBSs: interpretability-precision
trade-off

2 GA-based techniques for mining fuzzy association rules and novel
data mining approaches

3 Learning genetic models based on low quality data (e.g. noisy data)

4 Genetic learning of fuzzy partitions and context adaptation

5 Genetic adaptation of inference engine components

6 Revisiting the Michigan-style GFSs”
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Current issues for GFS

Herrera [128] p. 42 lists:

1 Human readability

2 New data mining tasks: frequent and interesting pattern mining,
mining data streams . . .

3 Dealing with high dimensional data
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Reading 1

Seminal papers from 1991: [128]

Genetic tuning of the DB [154]
Michigan [295]
Pittsburgh [287]
Relational matrix-based FRBS [243]

Geyer-Schulz’s 1997 book on Michigan fuzzy LCS learning RBs with
GP [108]

Bonarini’s 2000 introduction from an LCS perspective [24]

Mitra and Hayashi’s 2000 survey of neuro-fuzzy rule generation
methods [220]
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Reading 2

Cordon et al.’s 2001 book on Genetic Fuzzy Systems in general [77]

Angelov’s 2002 book on evolving FRBS [7]

Ch. 10 of Freitas’ 2002 book on evolutionary data mining [99]

Herrera’s 2008 survey article on GFS [128]

Lists more key reading

Kolman and Margaliot’s 2009 book on the neuro-fuzzy FARB
approach [158]
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Conclusions

Conclusions

GBML is very diverse and active

Constituent areas of GBML should interact more

Much integration with Machine Learning & Artificial Intelligence has
taken place in the last 10 years

More is needed

Integration with ensembles is natural but only just beginning

Use of multi-objective EAs spreading but more needed
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Difficulties for GBML

Speed of learning

EAs are much slower than most methods
Sometimes this matters little (off-line learning)
Sometimes it’s critical (stream mining)
Various methods to speed them up exist (see e.g. [99] §12.1.3)

Theory

EA theory is notoriously difficult
When coupled with other processes things are even more complex
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Research directions 1

Speed

Theory

Meta-learning / hyper-heuristics e.g.

Evolution of bias (e.g. selection of representation)
Evolving problem class specific heuristics and learning rules
Other forms of self-adaptation

Data preparation
Freitas ([99] §12.2.1) argues:

attribute construction is a promising area for GBML
filter methods for feature selection are faster than wrappers and
deserve more GBML research
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Research directions 2

Integration with ensembles, multi-objective optimisation, memetics,
meta-learning/hyperheuristics, EDAs, Machine Learning & Artificial
Intelligence

Many specialised learning problems little- or un-explored with GBML
e.g.

Ranking
Semi-supervised learning
Transductive learning
Inductive transfer
Learning to learn
Stream mining
. . .
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Glossary

Chromosome An individual’s genes
EA Evolutionary Algorithm

EDA Evolution of Distribution Algorithm
FRBS Fuzzy Rule-Based System

GA Genetic Algorithm
GCCL Genetic Cooperative-Competitive Learning

GBML Genetics-based Machine Learning
Genotype An individual’s genes

GFS Genetic Fuzzy System
GP Genetic Programming
IRL Iterative Rule Learning

LCS Learning Classifier System
Michigan approach Solution is a set of chromosomes

Phenotype An individual’s body
Pittsburgh approach Solution is a single chromosome

NN Neural Network
SL Supervised Learning
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PhD thesis, Université Pierre et Marie Curie. Paris, France, 1998.
162

[89] Jean-Yves Donnart and Jean-Arcady Meyer.
Hierarchical-map Building and Self-positioning with MonaLysa.
Adaptive Behavior, 5(1):29–74, 1996.
162

[90] Jean-Yves Donnart and Jean-Arcady Meyer.
Learning Reactive and Planning Rules in a Motivationally Autonomous Animat.
IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 26(3):381–395, 1996.
162

[91] Marco Dorigo and Marco Colombetti.
Robot Shaping: An Experiment in Behavior Engineering.
MIT Press/Bradford Books, 1998.
132, 162

[92] J. Drugowitsch and A. Barry.
XCS with eligibility traces.
In H.G. Beyer and U.M. O’Reilly, editors, Genetic and evolutionary computation conference, GECCO 2005, pages
1851–1858. ACM, 2005.
158

[93] Jan Drugowitsch.
Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.
Springer, 2008.
161, 163

205 / 243



Bibliography

[94] Jan Drugowitsch and Alwyn Barry.
A Formal Framework and Extensions for Function Approximation in Learning Classifier Systems.
Machine Learning, 70(1):45–88, 2007.
161

[95] Narayanan E. Edakunni, Tim Kovacs, Gavin Brown, and James A.R. Marshall.
Modeling UCS as a mixture of experts.
In Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO’09), pages 1187–1194. ACM,
2009.
161, 163

[96] Dario Floreano, Peter Dürr, and Claudio Mattiussi.
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[104] Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini.
Ensemble learning for free with evolutionary algorithms?
In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages 1782–1789.
ACM, 2007.
79, 80, 81

[105] C. Gathercole and P. Ross.
Tackling the boolean even n parity problem with genetic programming and limited-error fitness.
In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo, editors, Genetic Programming 1997:
Proc. Second Annual Conference, pages 119–127. Morgan Kaufmann, 1997.
67

[106] Pierre Gérard and Olivier Sigaud.
Designing efficient exploration with MACS: Modules and function approximation.
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Learning Classifier Systems. 10th and 11th International Workshops (2006-2007), volume 4998/2008 of Lecture Notes in
Computer Science, pages 218–234. Springer, 2008.
160

[189] Pier Luca Lanzi and Rick L. Riolo.
A Roadmap to the Last Decade of Learning Classifier System Research (from 1989 to 1999).
In Lanzi et al. [190], pages 33–62.
166

[190] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Learning Classifier Systems. From Foundations to Applications, volume 1813 of LNAI.
Springer-Verlag, Berlin, 2000.
194, 211, 216, 220, 231, 234

[191] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 1996 of LNAI.
Springer-Verlag, Berlin, 2001.
199, 216

[192] Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 2321 of LNAI.
Springer-Verlag, Berlin, 2002.
194, 198, 240

220 / 243



Bibliography

[193] Pier Luca Lanzi and Stewart W. Wilson.
Toward Optimal Classifier System Performance in Non-Markov Environments.
Evolutionary Computation, 8(4):393–418, 2000.
132

[194] P.L. Lanzi, M.V. Butz, and D.E. Goldberg.
Empirical analysis of generalization and learning in XCS with gradient descent.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, volume 2, pages
1814–1821. ACM, 2007.
158

[195] P.L. Lanzi and D. Loiacono.
Standard and averaging reinforcement learning in XCS.
In M. Cattolico, editor, GECCO 2006: Proceedings of the 8th annual conference on genetic and evolutionary
computation, pages 1480–1496. ACM, 2006.
158

[196] P.L. Lanzi and D. Loiacono.
Classifier systems that compute action mappings.
In H. Lipson, editor, Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, pages 1822–1829.
ACM, 2007.
122

[197] P.L. Lanzi and S.W. Wilson.
Using convex hulls to represent classifier conditions.
In M. Cattolico, editor, Proc. genetic and evolutionary computation conference (GECCO 2006), pages 1481–1488. ACM,
2006.
121

[198] Z. Liangjie and L. Yanda.
A new global optimizing algorithm for fuzzy neural networks.
Int. J. Electronics, 80(3):393–403, 1996.
178

221 / 243



Bibliography

[199] D.A. Linkens and H.O. Nyongesa.
Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications.
IEE Proceedings - Control Theory and Applications, 143(4):367–386, 1996.
178

[200] Juliet Juan Liu and James Tin-Yau Kwok.
An extended genetic rule induction algorithm.
In Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) [144], pages 458–463.
37, 151

[201] Y. Liu and X. Yao.
Ensemble learning via negative correlation.
Neural Networks, 12:1399–1404, 1999.
79, 100

[202] Y. Liu, X. Yao, and T. Higuchi.
Evolutionary ensembles with negative correlation learning.
IEEE Trans. on Evolutionary Computation, 4(4):380–387, 2000.
79, 82, 101

[203] Xavier Llorà.
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An introduction to boosting and leveraging.
In Advanced lectures on machine learning, pages 118–183. Springer-Verlag, 2003.
77

[215] Drew Mellor.
A first order logic classifier system.
In F. Rothlauf, editor, GECCO ’05: Proceedings of the 2005 conference on genetic and evolutionary computation, pages
1819–1826. ACM Press, 2005.
121

[216] Drew Mellor.
Policy transfer with a relational learning classifier system.
In GECCO Workshops 2005, pages 82–84. ACM Press, 2005.
121

224 / 243



Bibliography

[217] Drew Mellor.
A learning classifier system approach to relational reinforcement learning.
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