The **LOCAL** Model

Model:
- O(1) communication rounds
- Unbounded message sizes
- Unbounded computational power

Focus:
Locality of computational problems

Independent Sets/Colorings

Hardness. The maximum independent set and the minimum vertex coloring problems are NP-hard, and they are even hard to approximate within a factor of n^{1-\epsilon}.

Exponential Time. Under the assumption that P \neq NP, every local algorithm with non-trivial approximation ratio for either problem has to use exponential time computations.

Related Work

Most works on distributed independent sets and colorings consider the maximal independent set problem and the (\Delta + 1)-coloring problem. These problems can easily be solved sequentially. The work of Barenboim [ICALP, 2012] is closest to our work and presents a O(n^{1/2+\epsilon})-approximation local algorithm for the minimum vertex coloring problem (using exponential time computations).

Results

Upper Bounds: We present local randomized O(n^{\epsilon})-approximation algorithms for the maximum independent set and the minimum vertex coloring problems, for any \epsilon > 0, which run in O(3^d) rounds.

Lower Bounds: We prove that both algorithms are optimal in that no local algorithm can achieve n^{\epsilon\Omega(1)}-approximations for either problem.

Distributed Maximum Independent Set Approximation

Suppose that every node computes a maximum independent set in its k-neighborhood. How can we combine these locally optimal solutions to a coherent global solution?

1. **New Vertex Decomposition**
 For a constant k = O(\frac{1}{\epsilon}), partition V into disjoint sets V_1, V_2, \ldots, V_k so that v \in V_j if j is the smallest i such that
 \[
 \max IS(N^{c_{i-1}}(v)) \geq n^{i-1}/k, \quad \text{and} \quad \max IS(N^{c_i}(v)) \leq n^i/k,
 \]
 where (c_i)_i is an exponentially increasing sequence, and N^d(v) denotes the d-neighborhood of v.

2. **Ruling Set Algorithm**
 For i = 1, \ldots, k, we treat the sets V_i separately. Using an algorithm by Gfeller and Vicari [PODC 2007], in O(1) rounds, we compute a (2c_{i-1} + 1)-independent subset V_i' \subseteq V_i which essentially c_i-dominates V_i.

 \[
 \text{dist}(u, v) \geq 2c_{i-1} + 1
 \]

 Then, a large independent set I_i = \bigcup_{v \in V_i'} \max IS(B^{c_{i-1}}(v)) is established. Let I* be a a maximum independent set in the input graph. We show that:
 \[
 n'|I*| \geq |I* \cap V_i|,
 \]

3. **Merging the Independent Sets**
 From the sets I_1, \ldots, I_k, we compute an independent set I so that |I| \geq |I_i| for every i. Since there exists an i such that |I* \cap V_i| \geq |I*|/k, and using Inequality 1, I is a \langle k \cdot n^\epsilon \rangle-approximation.

Distributed Minimum Vertex Coloring Approximation

We make use of the following connection between minimum vertex coloring and network decompositions.

Definition A \langle d, c \rangle-network decomposition is a partitioning of the vertices of the input graph into clusters of maximal diameter d so that the graph obtained when contracting the clusters into vertices can be colored with at most c colors.

Theorem (Barenboim [ICALP, 2012]) Suppose that nodes of a graph G = (V, E) know their color in a \langle d, c \rangle-network decomposition. Then, there is an O(d)-rounds distributed algorithm that computes a c-approximate minimum vertex coloring.

Barenboim [ICALP, 2012] showed that there is a sampling-based, local algorithm that computes a \langle O(1), n^{1/2+\epsilon} \rangle-network decomposition, implying a local O(n^{1/2+\epsilon})-approximation algorithm for minimum vertex coloring.

Our Result We show that via a recursive sampling-based approach similar to Barenboim’s method, a \langle O(1), n^\epsilon \rangle-network decomposition can be computed, leading to a local O(n^\epsilon)-approximation algorithm for minimum vertex coloring.