Detecting cliques in CONGEST networks

DISC 2018

Artur Czumaj Christian Konrad

18.10.2018

WARWICK
THE UNIVERSITY OF WARWICK

University of BRISTOL
The CONGEST Model of Distributed Computation

Network $G = (V, E)$

CONGEST Model:
- Synchronous communication rounds
- Individual messages along edges of size $O(\log n)$ ($n = |V|$)
- Local computation is free

Objective: Minimize runtime = number of communication rounds
Subgraph Detection Problem:
- If G contains a copy of H then with probability at least $2/3$ at least one node outputs 1;
- If G does not contain a copy of H then with probability at least $2/3$ no node outputs 1.

This paper: $H = K_l$, for some $l \geq 4$ (clique on l vertices)
Subgraph Detection Problem:

- If G contains a copy of H then with probability at least $2/3$ at least one node outputs 1;
- If G does not contain a copy of H then with probability at least $2/3$ no node outputs 1.

This paper: $H = K_l$, for some $l \geq 4$ (clique on l vertices)
Distributed Subgraph Detection Problem

Subgraph Detection Problem:
- If G contains a copy of H then with probability at least $2/3$ at least one node outputs 1;
- If G does not contain a copy of H then with probability at least $2/3$ no node outputs 1.

This paper: $H = K_l$, for some $l \geq 4$ (clique on l vertices)
Known Results

Trivial Bounds:
- Every subgraph H can be detected in $O(n^2)$ rounds
- Every clique K_l can be detected in $O(n)$ rounds

Related Works:
- There exists a graph H on $O(l)$ vertices that requires $\Omega(n^{2-\frac{1}{l}}/\log n)$ rounds [Fischer et al., SPAA 2018]
- K_3 can be detected in $\tilde{O}(\sqrt{n})$ rounds [Chang et al., SODA 2019] (Breakthrough $\tilde{O}(n^{2/3})$ rounds by [Izumi, Le Gall, PODC 2017])
- K_l detection for $l \geq 4$ requires $\Omega(n/\log n)$ rounds in broadcast CONGESTED-CLIQUE [Drucker et al., PODC 2014]

Related Problems:
- Triangle enumeration: $\tilde{O}(n^{1/2})$ rounds [Chang et al., SODA 2019]
- Every vertex lists all triangles it is contained in: $\Omega(n/\log n)$ rounds [Izumi, Le Gall, PODC 2017]
Main Result:

Theorem: Detecting K_l in the CONGEST model requires:
- $\Omega(\sqrt{n}/\log n)$ rounds, if $l \leq \sqrt{n}$, and
- $\Omega(n/(l \log n))$ rounds, if $l > \sqrt{n}$.

Technique:

Two-party communication complexity in vertex partition model

Optimality of our Lower Bound:

There is a two-party communication protocol that detects all cliques in $O(\sqrt{n})$ rounds.
LBs for CONGEST via Two-party Communication

Two-party Communication Model:

Alice \rightleftharpoons Bob

\[X \in \{0, 1\}^N \quad \text{and} \quad Y \in \{0, 1\}^N \]

\[f(X, Y) \]

Example: EQUALITY

- Deterministic protocols: \(\Theta(N) \) bits communication
- Randomized protocols: \(\Theta(\log N) \) bits communication

Set-Disjointness: \(f(X, Y) = \text{DISJ}(X, Y) = \bigvee_{i=1}^{N} X_i \land Y_i \)
Randomized protocols (constant error): \(\Omega(N) \)

Reduction: Alice and Bob simulate CONGEST algorithm to solve \(\text{DISJ} \)

\[K_4 \text{ detection in CONGEST in } o(\sqrt{n} \log n) \text{ rounds} \]

\(\Rightarrow \)

Set-Disjointness in Two-party communication in \(o(N) \) rounds
Technique: Vertex Partition Model

Lower Bounds via the Vertex Partition Model:

Alice’s part shared Bob’s part

depends on X fixed CUT depends on Y

- Alice and Bob simulate CONGEST alg. for K_4 detection in r rounds
- Graph construction such that: G contains K_4 iff $\text{Disj}(X, Y) = 1$
- At most $2 \cdot r \cdot |CUT| \cdot \log n = \Omega(N)$ bits exchanged:

$$r = \Omega\left(\frac{N}{|CUT| \log n}\right).$$
Objective: (Recall: \(r = \Omega\left(\frac{N}{|\text{CUT}| \log n}\right)\))
- Maximize \(N \), the size of the Set-disjointness instance
- Minimize \(|\text{CUT}|\), the cut between Alice’s and Bob’s private vertices

K₄ Gadget:

- If \(X_i = Y_i = 1 \), then gadget forms a \(K_4 \) and \(\text{DISJ}(X, Y) = 1 \)
- Difficulty: Gadget adds 4 edges to cut
- Strategy: Overlapping gadgets
Random Bipartite Graph: $G_p = (A, B, E)$, each edge included with probability $p = \frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2}$s.

Peeling Process: Remove few edges from G_p such that $K_{2,2}$s do not interfere.

Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the $K_{2,2}$s to K_{4}s.
Random Bipartite Graph: $G_p = (A, B, E)$, each edge included with probability $p = \frac{1}{\sqrt{n}}$. This creates many overlapping $K_{2,2}$s

Peeling Process: Remove few edges from G_p such that $K_{2,2}$s do not interfere

Lower Bound Graph: Based on inputs X, Y, Alice and Bob add edges to potentially complete the $K_{2,2}$s to K_4s
Analysis

There are many $K_{2,2}$s in G_p:

- There are $\left(\frac{n}{2}\right)^2$ potential copies of $K_{2,2}$
- Probability that one potential $K_{2,2}$ is realized is p^4
- Expected number of $K_{2,2}$s is $\left(\frac{n}{2}\right)^2 \cdot p^4 \approx n^2$ (similar statement holds with high probability).

Constant fraction of pairs (a_1, a_2) in at most 5 $K_{2,2}$s:

- Expected number of $K_{2,2}$s that contain vertices a_1, a_2: $\left(\frac{n}{2}\right)p^4 = O(1)$
- Similar statement holds with high probability

Peeling Process:

- Only consider $K_{2,2}$s $\{a_1, a_2, b_1, b_2\}$ where a_1, a_2 (b_1, b_2) are contained in at most 5 $K_{2,2}$s
- Choose one of these $K_{2,2}$s greedily and remove interfering $K_{2,2}$s
Summary:

- Construction allows encoding of \(\text{DISJ} \) instance of size \(N = \Omega(n^2) \)
- \(|CUT| = O(n^2 \cdot p) = O(n\sqrt{n}) \) (with high probability)
- Hence, \(r = \Omega\left(\frac{N}{|CUT| \log n}\right) = \Omega\left(\frac{n^2}{n\sqrt{n} \log n}\right) = \Omega\left(\frac{\sqrt{n}}{\log n}\right) \).

Extension to \(K_l, l \geq 5 \):

- If \(l < \sqrt{n} \), we add \(l \cdot n = O(n\sqrt{n}) \) edges to CUT
 \(\rightarrow \) LB remains the same
- If \(l \geq \sqrt{n} \), the added edges dominate
 \(\rightarrow \) LB becomes \(\frac{n^2}{ln \log n} = \Omega\left(\frac{n}{l \log n}\right) \).
Two-party Protocol for Detecting all Cliques

Report All Cliques:
- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain at least two red or two blue vertices

if $|\text{CUT}| \geq n\sqrt{n}$ then
Alice sends all its edges to Bob in $O(\sqrt{n})$ rounds

else
Let $V_{\leq \sqrt{n}} :=$ Alice’s vertices that are incident to $\leq \sqrt{n}$ CUT-edges

1. **Detect cliques containing at least one vertex from $V_{\leq \sqrt{n}}$:**
 For each $v \in V_{\leq \sqrt{n}}$, Bob sends induced subgraph of vertices incident to v of Bob’s side (at most \sqrt{n} rounds)

2. **Detect cliques that contain at least one vertex from $V_{> \sqrt{n}}$:**
 Alice sends induced subgraph by $V_{> \sqrt{n}}$ to Bob (at most \sqrt{n} rounds)
Two-party Protocol for Detecting all Cliques

Report All Cliques:
- Alice and Bob report all cliques containing at most one red/blue vertex without communication
- Focus on cliques that contain at least two red or two blue vertices

if $|CUT| \geq n\sqrt{n}$ **then**
Alice sends all its edges to Bob in $O(\sqrt{n})$ rounds

else
Let $V_{\leq \sqrt{n}} :=$ Alice’s vertices that are incident to $\leq \sqrt{n}$ CUT-edges

1. **Detect cliques containing at least one vertex from $V_{\leq \sqrt{n}}$:**
 For each $v \in V_{\leq \sqrt{n}}$, Bob sends induced subgraph of vertices incident to v of Bob’s side (at most \sqrt{n} rounds)

2. **Detect cliques that contain at least one vertex from $V_{> \sqrt{n}}$:**
 Alice sends induced subgraph by $V_{> \sqrt{n}}$ to Bob (at most \sqrt{n} rounds)
Summary:

- Detecting K_l ($4 \leq l \leq \sqrt{n}$) in CONGEST requires $\Omega(\sqrt{n}/\log n)$ rounds.
- Stronger LB not possible in 2-party vertex partition model.

Open Problems:

- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K_4 detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply.)
Summary:
- Detecting K_l ($4 \leq l \leq \sqrt{n}$) in CONGEST requires $\Omega(\sqrt{n}/\log n)$ rounds
- Stronger LB not possible in 2-party vertex partition model

Open Problems:
- Is there a stronger LB using different techniques or is there a sublinear rounds algorithm for K_4 detection?
- Are there non-trivial algorithms/lower bounds for CLIQUE approximation? (our LB does not apply)

Thank you.