
Distributed Algorithms for Coloring Interval Graphs?

Magnús M. Halldórsson and Christian Konrad

ICE-TCS, School of Computer Science, Reykjavik University, Iceland {mmh,christiank}@ru.is

Abstract. We explore the question how well we can color graphs in distributed models, especially in
graph classes for which ∆+ 1-colorings provide no approximation guarantees. We particularly focus on
interval graphs.
In the LOCAL model, we give an algorithm that computes a constant factor approximation to the
coloring problem on interval graphs in O(log∗ n) rounds, which is best possible. The result holds also
for the CONGEST model when the representation of the nodes as intervals is given.
We then consider restricted beep models, where communication is restricted to the aggregate acknowl-
edgment of whether a node’s attempted coloring succeeds. We apply an algorithm designed for the
SINR model and give a simplified proof of a O(logn)-approximation. We show a nearly matching
Ω(logn/ log logn)-approximation lower bound in that model.

1 Introduction

In this paper, we study distributed algorithms for vertex coloring, especially on interval graphs. Given a set
of intervals on the line V = {I1, . . . , In} with Ij = (aj , bj) and aj , bj being real numbers such that aj < bj ,
an interval graph G is obtained from V as follows: The vertex set of G are the intervals V , and two vertices
Ij , Ik ∈ V are adjacent if and only if Ij and Ik intersect. Interval graphs have a multitude of applications,
appear naturally in scheduling problems, and can for instance be seen as one-dimensional projections of disk
graphs that are often used for modeling wireless networks [1–3].

Graph Coloring. For an integer s, an s-coloring of a graph G = (V,E) is an assignment γ : V → {1, . . . , s}
of colors to the vertices of a graph such that any two adjacent vertices have different colors. The chromatic
number χ(G) of a graph G is the minimum number of colors that is needed to color G. It is well-known that
determining χ(G) is NP-complete [4] in general graphs and it is even hard to approximate it within a Θ(n1−ε)
factor, for any ε > 0 [5]. Sequentially, it is easy to find a coloring that uses at most ∆ + 1 colors where ∆
is the maximal degree of a graph: Traverse the vertices of G in any order and assign the smallest possible
color to the current vertex. Since there are graphs for which ∆ = Θ(n) and χ(G) = Θ(1) (for instance a star
graph), such a coloring may be as bad as a Θ(n)-approximation. An optimal coloring of an interval graph
can be found by traversing the intervals with increasing left interval boundary and coloring them with the
smallest possible color. Even if the intervals are traversed in arbitrary order, we obtain a canonical coloring,
where a node colored s(v) is adjacent to nodes colored 1, 2, . . . , s(v) − 1. It is known that such colorings of
interval graphs yield a C-approximation, where 5 ≤ C ≤ 8 [6].

Distributed Graph Coloring. Graph coloring has been extensively studied in the distributed setting (see
[7–11] to name a few). In the distributed computational model, we assume a network of computational
units modeled by a graph G = (V,E) which is also the input graph of the problem. The computational
units constitute the vertices of G, and two computational units can exchange messages if and only if an
edge connecting them is included in E. Then, the runtime of a distributed algorithm is the number of
communication rounds required to complete the algorithm. We assume that each vertex has a unique ID. In
the LOCAL model, in each round, messages of unbounded size may be exchanged. In the CONGEST model,
all message are of size at most O(log n) (n is the number of computational units). Due to the hardness of
the graph coloring problem, the objective of most works on this topic in the distributed model is to find a
coloring that uses ∆+ 1 or O(∆) colors on general graphs. A (∆+ 1)-coloring can be found by a distributed
randomized algorithm in O(log n) communication rounds by a reduction to the maximal independent set

? Both authors are supported by Icelandic Research Fund grant-of-excellence no. 120032011.

problem that was first mentioned in [7] (a maximal independent set can be found in O(log n) time by Luby’s

algorithm [12]). An O(∆)-coloring can be computed by a distributed randomized algorithm in 2O(
√
log logn)

rounds [13]. The best deterministic distributed coloring algorithm that finds an O(∆)-coloring performs
O(∆ε log n) rounds, for any ε > 0 [10]. Only few works consider more specialized graph classes for which
better colorings can be obtained, and we reuse some of those works in this paper. In O(log∗ n) rounds,
Cole and Vishkin showed that a 3-coloring of a ring can be computed [14]. In [15], this technique has been
extended to coloring bounded-independence graphs with ∆+ 1 colors (see Definition 1). Linial showed in [7]
that coloring a ring with 3 colors requires Ω(log∗ n) rounds which renders the previous algorithms optimal.

Distributed Algorithms for Coloring Interval Graph. Our interest in coloring interval graphs in a dis-
tributed fashion stems from the following observation. As previously mentioned, most distributed coloring
algorithms compute (∆+ 1)-colorings which may be as bad as Θ(n) approximations. We are therefore inter-
ested in graph classes for which better approximation ratios can be obtained. Surprisingly, for interval graphs,
we identify that in the LOCAL model, a constant factor approximation with runtime O(log∗ n) can be ob-
tained (Theorem 5). To this end, we identify that the subgraph GP ⊆ G of proper intervals (roughly those
intervals that are not properly contained in other intervals) has a maximal degree of O(χ(G)). Furthermore,
GP is of bounded-independence (Theorem 1) which is defined as follows:

Definition 1. A graph G = (V,E) is of bounded-independence if there is a bounding function f(r) such
that for each node v ∈ V , the size of a maximum independent set in the r-neighborhood of v is at most
f(r),∀r ≥ 0. The r-neighborhood of a node v is the set of nodes at distance at most r from v (excluding v).

Schneider and Wattenhofer present in [15] a distributed maximal independent set algorithm for bounded-
independence graphs that runs in time O(log∗ n). Using this algorithm, we compute an independent set in
the subgraph GP in O(log∗ n) time, and we show how to extend it to a dominating set that dominates the
whole graph G. Then, we use this dominating set to coordinate the coloring of all vertices. By construction,
this coloring is a canonical one, and since every canonical coloring in an interval graph is at least an 8-
approximation, the result follows.

Furthermore, we show that computing an O(log∗ n)-approximation to the coloring problem in interval
graphs requires Ω(log∗ n) time by a reduction to a result of Linial [7]. Linial showed that obtaining a 3-
coloring on a ring requires Ω(log∗ n) rounds. We show that any algorithm that colors interval graphs with
fewer rounds would imply a faster 3-coloring algorithm of the ring contradicting the previous lower bound.
This renders our algorithm tight. Moreover, we observe that if nodes are aware of their interval boundaries
then the previous algorithm can even be implemented in the CONGEST where all messages are of size at
most O(log n).

A Simple Coloring Scheme. We also consider a particular class of simple distributed coloring algorithms
that have been successfully applied in the past to solve the coloring problem in the SINR (Signal to In-
terference plus Noise Ratio) model for wireless communication [16–18]. From a graph theoretical point of
view, in the SINR model, a complete directed edge-weighted graph with vertex set L is given, where each
vertex l ∈ L represents a transmission link consisting of a sender and a receiver. The weights of the edges
between transmission links determine the amount of relative interference that a transmitting sender has on
the receiver of another link. The notion of independent sets and colorings are adapted as follows: A subset
of nodes L′ ⊆ L is an independent set if the in-degree of every node l ∈ L′ from other nodes of L′ is at most
1. An independent set corresponds here to a set of links that can successfully transmit simultaneously. Then
an s-coloring is a decomposition of the vertex set into s independent sets. An s-coloring corresponds here
to a schedule that permits the successful transmission of all links in s rounds. The algorithms for coloring
SINR-instances of [16–18] are round-based, and they follow the scheme of Algorithm 1 (Algorithm 1 is stated
for unweighted graphs G = (V,E) which is the form we need in this paper).

The scheme of Algorithm 1 computes a coloring γ : V → N. In each round i, a probability pi is determined
in Line 4. Different Algorithms that follow this scheme such as the algorithms of [16–18] compute different
sequences (pi)i. The sequence of probabilities pi determine the efficiency of the scheme, and different graphs
classes may require different sequences. Then, all not-yet colored nodes v pre-select themselves as candidates
to be colored with probability pi in Line 6. We assume that we have a function coin: [0, 1]→ {true, false} to

2

Algorithm 1 Simple coloring scheme

Require: G = (V,E) {Input graph}
1: γ(v)← ⊥ for all v ∈ V {The coloring to be computed}
2: i← 1 {Current color}
3: while ∃v ∈ V with γ(v) = ⊥ do
4: Determine pi {Algorithms following this scheme have to implement this line}
5: for all v ∈ V with γ(v) = ⊥ do
6: Tv ←coin(pi) {Pre-selection step: If coin(pi) = true then v is a candidate to be colored}
7: end for
8: for all v ∈ V with γ(v) = ⊥ and Tv = true do
9: if

∨
u∈ΓV (v) with γ(u)=⊥ Tu = false then {Check whether a neighbor of v has been pre-selected}

10: γ(v)← i {Color node v}
11: end if
12: end for
13: i← i+ 1
14: end while
15: return γ

our disposal such that coin(p) returns true with probability p, otherwise false. Next, in Line 10, pre-selected
nodes color themselves with color i if none of its not yet colored neighbors pre-selected themselves.

Algorithms that follow the scheme of Algorithm 1 are simple and easy to implement. They do not require
a complicated mechanism for breaking ties as a pre-selected node is only colored if none of its neighbors is
pre-selected, or, in other words, a node only has to learn the logical OR of the bits of its neighbors indicating
whether a neighbor is pre-selected. As we will discuss in Section 5, exchanging this type of information
does not put high demands on the distributed model in which this algorithm is implemented. This makes the
algorithm a good candidate for being implemented in various models. We will show that an implementation of
this scheme is possible in the very restrictive discrete beeping model [19] in which, among other things, nodes
cannot distinguish between different neighboring nodes, and the number of neighbors of a node is unknown
to the node itself. Algorithms of type Algorithm 1 are essentially the only type of coloring algorithms that
can be implemented in this model.

This scheme of algorithms is referred to as acknowledgement-only (ack-only) algorithms [16–18] in the
SINR community. As previously mentioned, in the SINR model, a set of communication links each consisting
of a sender and a receiver is considered. Links are not aware of their neighborhood. In each round, a
sender may either attempt to transmit (pre-select itself) and hope for a successful transmission, or it may
remain silent and wait. Ack-only algorithms assume that senders receive an acknowledgment of whether
their transmission was successful or whether it failed (check whether there are neighbors that pre-selected
themselves). Successful links then remain silent until all links successfully transmitted (once a node is colored
it does not attempt to color itself again). Since there is no information exchange between communication
links, in each round, senders essentially can only flip a coin and transmit with a certain probability. Note that
this situation is modeled by the scheme of Algorithm 1. While in the scheme of Algorithm 1 the identification
of whether a communication attempt was success is checked in Line 9, this is achieved in the SINR model
with explicit acknowledgments in a separate round that succeed with constant probability.

It is known that:

Theorem 1 ([20]). There is an algorithm that follows the scheme of Algorithm 1 and colors a graph with
O(dχ(G) log n) colors w.h.p. where d is the inductive independence number of a graph.

Inductive independence [21] is defined as follows:

Definition 2. A graph G = (V,E) is inductive d-independent if there exists an ordering π of the vertices
V such that for every independent set I ⊆ V and every vertex v ∈ V :

|{u ∈ ΓG(v) with π(u) > π(v)} ∩ I| ≤ d.

3

The inductive independence number of G is the smallest d such that G is inductive d-independent.

Many interesting graph classes have bounded inductive independence, e.g., disc graphs are inductive 5-
independent, planar graphs are inductive 3-independent, claw-free graphs are inductive 2-independent, and
most importantly, chordal graphs (a superclass of interval graphs) are inductive 1-independent. It is well-
known that chordal graphs are exactly those graphs that admit a perfect elimination ordering: A perfect
elimination ordering in a graph G = (V,E) is an ordering π of the vertices V such that, for each v ∈ V ,
v ∪ {u ∈ ΓG(v) with π(u) > π(v)} forms a clique. Note that this is equivalent to the definition of inductive
1-independence.

Fig. 1. Example of a perfect elimination ordering of an interval graph. For each interval with index i, the size of an
independent set among its neighbors with larger index is at most 1.

In the context of SINR coloring, it is shown in [20] that many important SINR instances are inductive
O(1)-independent, and by Lemma 1, an O(log n)-approximation algorithm to the coloring problem in the
SINR model is obtained. It is an open question whether there is an algorithm that follows the scheme
of Algorithm 1 and computes an O(1)-approximation (in fact, for many instances no algorithm at all is
known that computes an O(1)-approximation). In [18], an instance is provided that can be colored with 2
colors, while any such algorithm requires Ω(log n) rounds. However, no hard instances are known with larger
chromatic number.

In this paper, we settle this question for interval graphs up to a log log n factor. As interval graphs are
inductive 1-independent, we immediately obtain an O(log n)-approximation by Theorem 1. We will show

that every algorithm that follows the scheme of Algorithm 1 requires Ω
(

logn
log lognχ(G)

)
colors (Theorem 7),

matching the upper bound up to a log log n factor.
Furthermore, we provide an alternative proof of Theorem 1. We essentially identify that there is an

algorithm following the scheme of Algorithm 1 that colors graphs G that have the property that any induced
subgraph on α vertices has at most αk edges using O(k log n) colors (Theorem 6). We observe that inductive
d-independent graphs have at most dχ(G)n edges, which allows us to conclude the statement of Theorem 1.
Alternatively, our theorem can also be applied to k-degenerate graphs. A graph is k-degenerate if every
induced subgraph has a node of degree at most k. Clearly, such a graph has at most kn edges.

While the lower bound does not carry over to the geometric SINR model, it shows that in the abstract
SINR model, improved results for scheduling in terms of inductive independence are not possible by these
types of algorithms.

Outline. In Section 2, we present necessary definitions and notations, and we prove a property about
interval graphs that is required in the subsequent section. In Section 3, we present our upper and lower
bound for a constant factor approximation in the LOCAL model and its adaption to the CONGEST model.
Then, in the following sections, we consider the previously mentioned class of simple coloring algorithms.
We revisit the result that an inductive d-independent graph can be colored by an algorithm of the previous
scheme with O(dχ(G) log n) colors in Section 4. Then, In Section 5, we underline the simplicity of algorithms
that follows the scheme of Algorithm 1, and we show that they can be implemented in the very restrictive
discrete beeping model. Finally, we prove in Section 6 that any algorithm of the previous scheme requires
Ω(logn

log lognχ(G)) colors on interval graphs.
Furthermore, we note that due to space restrictions, some proofs are omitted but can be found in the

full version of this article.

4

2 Preliminaries

Definitions. An independent set in a graph G = (V,E) is a subset I ⊆ V of vertices such that for every pair
of vertices v1, v2 ∈ I : (v1, v2) /∈ E. An independent set I is maximal if I ∪ {v} is not an independent set for
all v ∈ V \ I. A dominating set in a graph G = (V,E) is a subset D ⊆ V such that for any vertex v ∈ V \D,
v is adjacent to at least one vertex u ∈ D. Any maximal independent set is a dominating set, however,
the converse is not true. For an integer k, a distance-k-coloring of a graph G = (V,E) is an assignment
γ : V → {1, . . . , s} of colors to the vertices of a graph such that any two vertices at distance at most k have
different colors.

Interval Graphs. Let V = {v1, . . . , vn} be a set of intervals with vj = (aj , bj) for all 1 ≤ j ≤ n and
real numbers aj , bj such that aj < bj . Let G = (V,E) be the corresponding interval graph, i.e., there is an
edge between vertices (intervals) vj , vk if the two intervals overlap. Let m = |E|. We assume that all ai, bi
are distinct. For simplicity, we will assume that the input interval graphs are connected. The neighborhood
of a vertex v in graph G is denoted by ΓG(v), and we define ΓG [v] = ΓG(v) ∪ {v}. For a subset V ′ ⊆ V , we
may write ΓV ′(v) to denote ΓG(v) ∩ V ′. Furthermore, the k-neighborhood of a vertex v is the set of nodes
that are within distance at most k from v, and we denote it by Γ kG(v). Then Γ 1

G(v) = ΓG(v). For a vertex
v ∈ V , we denote by degG(v) the degree of v in G. For a subset V ′ ⊆ V , we may also write degV ′(v) for the
degree of v in the subgraph of G which is induced by the nodes V ′, that is, degV ′(v) := degG|V ′ (v).

We say that an interval v is proper if there is no other interval u such that ΓG [v] (ΓG [u]. For an
interval graph G = (V,E), we denote by GP = (VP , E|VP) the subgraph of G that is induced by the proper
intervals of G. It is easy to see that the subgraph GP of a connected interval graph is connected, too. Then
the following degree bound holds:

Lemma 1. For all v ∈ VP : degGP (v) ≤ 2χ(GP)− 2.

In order to prove Lemma 1, we use the following notations. Given the interval representation of an interval
graph, we denote the intervals that intersect with an interval v on its left (resp. right) boundary by ΓLG(v)
(resp. ΓRG (v)). The set of intervals that are contained in an interval v is denoted by ΓCG (v). Note that
ΓG(v) = ΓLG(v) ∪ ΓCG (v) ∪ ΓRG (v).

Proof. Let v ∈ VP . First, notice that for all v′ ∈ ΓCGP (v) : ΓGP (v′) = ΓGP (v) since otherwise v′ would

not be in VP . Therefore, all intervals v′′ ∈ ΓLGP (v) ∪ ΓRGP (v) intersect with all intervals in ΓCGP (v). Then,

ΓCGP (v)∪ ΓLGP (v) forms a clique as well as ΓCGP (v)∪ ΓRGP (v). Since any clique in a graph G is at most of size
χ(G), we obtain

|ΓGP (v)| ≤ |ΓCGP (v) ∪ ΓLGP (v)|+ |ΓCGP (v) ∪ ΓLGP (v)| − 2 ≤ 2 · (χ(GP)− 1).

ut

Distributed Algorithms. In the following, we will reuse existing distributed algorithms. The determin-
istic distributed algorithm of Wattenhofer and Schneider [15] colors a bounded-independence graph using
∆ + 1 colors in O(log∗ n) time, and we will denote this algorithm by ColBI (BI stands for bounded inde-
pendence). This algorithm can be implemented such that it returns a canonical coloring, i.e., a coloring such
that no node could change its color to a smaller one. In the same work, Wattenhofer and Schneider show
that in a bounded-independence graph, a maximal independent set can be deterministically computed in
O(log∗ n) time, and we denote this algorithm by MisBI. Both, ColBI and MisBI, can be implemented in
the CONGEST model.

3 O(1)-approximation for Coloring Interval Graphs in the LOCAL Model

In this section, we show that an interval graph G can be colored in O(log∗ n) time with O(χ(G)) colors in the
LOCAL model. Our algorithm makes use of the distributed algorithms ColBI and MisBI for computing a
coloring and an independent set in bounded-independence graphs. We run these algorithms on the subgraph

5

GP of proper intervals. Unit disc graphs are of bounded independence [15]. Since the class of proper interval
graphs is equivalent to the class of unit interval graphs, and unit interval graphs are a subclass of unit disc
graphs, the following fact follows immediately:

Fact 1 Proper interval graphs are of bounded independence.

We present our algorithm in Subsection 3.1, its analysis in Subsection 3.2, and we discuss an implementation
of the algorithm in the CONGEST model in Subsection 3.3.

3.1 Algorithm

1. Identify the subgraph GP of proper intervals: Each node v determines if v ∈ GP by checking if
there is a neighbor u ∈ ΓG(v) such that ΓG [u]) ΓG [v]. If no such neighbor exists then v is in GP . This
involves one round of communication where each node sends the list of its neighbors to all its neighbors.

2. Compute a maximal independent set J of GP : Using MisBI, we compute a maximal independent
set J of the graph GP in O(log∗ n) rounds. J is needed for the computation of a dominating set in the
next step.

3. Compute a dominating set N ∪ J : Algorithm 2 computes a set N such that N ∪ J is a dominating
set of the graph G. Ties are broken arbitrarily. In step one, every node communicated already its list of
neighbors to its neighbors, and hence no further communication is required.

Algorithm 2 Computation of a dominating set

1: for all v ∈ J do
2: u1 ← arg maxu∈ΓGP (v) |ΓG(u) \ ΓG(v)|
3: u2 ← arg maxu∈ΓGP (v) |ΓG(u) \ (ΓG(v) ∪ ΓG(u1)) |
4: N ← N ∪ {u1, u2}
5: end for

4. Find a distance-3 coloring of G|N∪J and obtain color classes (Ii)i≥1: We argue in the analysis
that the maximal degree in the vertex induced graph G|N is 4, and hence the maximal degree in G|N∪J
is 5. Therefore, the size of the 4-neighborhood of every node is bounded by some constant C. We build
the graph H on vertex set N ∪ J where nodes are adjacent if they are at distance at most 3 in GP . This
involves two additional rounds of communication to establish knowledge about the 3-neighborhood of
each node. We run ColBI to color H in time O(log∗ n) and we obtain a constant number of color classes
(Ii)i≥1. This coloring is a distance-3 coloring of G|N∪J .

5. Coloring. After each of the following iterations, in one round of communication, each node that has
received a color notifies its neighbors about its own color. This guarantees that a not-yet colored node
always knows the palette of still available colors that it may be colored with.
Iterate over the sets (Ii)i≥1 and do the following:

Every node u′ ∈ Ii coordinates the coloring of not-yet colored nodes u ∈ ΓG[u′] as follows: Nodes u
send the palette of possible colors with which they may be colored to u′. The node u′ is unique for u: As
Ii is a color class of a distance-3 coloring, every other node u′′ ∈ Ii \ {u′} is at distance at least 2 from
u. Then, u′ determines a canonical coloring of all nodes u respecting the color restrictions of the nodes,
and notifies the nodes u about their color.

3.2 Analysis

Lemma 2. The following properties hold:

1. J ∪N is a dominating set in G.

6

2. The maximal degree of a node in the graph G|N is 4.

Proof. First, we prove Item 1. Let v ∈ V \VP . Suppose that v is not adjacent to any node in J since otherwise
the statement is trivially true. Consider the interval representation of the graph. Since v /∈ VP , there is a
node u in VP that is adjacent to v such that ΓG [u] ⊃ ΓG [v]. Since J is a maximal independent set in GP , J
is also a dominating set in GP . Therefore, there is at least one node w ∈ J that is adjacent to v. Consider
Algorithm 2 for node w and consider the interval representation of the vertices. Algorithm 2 basically selects
an interval i1 ∈ ΓLGP (w) that reaches furthest out to the left, and an interval i2 ∈ ΓRGP (w) that reaches
furthest out to the right. Therefore, for either i = i1 or i = i2, we have ΓG(i) \ ΓG(w) ⊇ ΓG(u) \ ΓG(w), and
hence node v is covered by either i1 or i2 which proves Item 1.

Second, we prove Item 2. Consider the interval representation of J . Since J is an independent set, J
is a collection of non-overlapping intervals. Consider three adjacent intervals i1, i2, i3 ∈ J such that i2 lies
in between i1 and i3. For any ij (j = 1, 2, 3), Algorithm 2 selects the intervals that reach out furthest to
the left of right. Denote by i1j and i2j the two selected intervals for ij . Note that each interval ikj (k = 1, 2)

may overlap with at most one other interval from J different from ij . i
k
j cannot completely include such an

interval since J ⊆ GP and GP is the subgraph of proper intervals. Therefore, at most 4 selected intervals
may overlap: The two selected intervals from i2, one interval from i1 and one interval from i3. The maximal
degree is hence 4. ut

Lemma 3. For every u ∈ V there is at least one set Ii s.t. |ΓG[u]∩ Ii| = |ΓG[ΓG[u]]∩ Ii| = 1. That is, each
node is dominated by a node in some Ii but has then no other node in Ii in its 2-neighborhood.

Proof. Let u be a vertex in V . Since J ∪N = ∪iIi is a dominating set, u is adjacent to at least one node u′

of J ∪N . So, |ΓG[ΓG[u]] ∩ Ii| ≥ |ΓG[u] ∩ Ii| ≥ 1. Let i be the index with u′ ∈ Ii.
Suppose that |ΓG[ΓG[u]] ∩ Ii| ≥ 2. Then, there is a vertex v in V that is adjacent to both u and u′′, for

some u′′ in Ii \ {u′}. There is a vertex û (v̂) in GP (not necessarily distinct from u (v)) corresponding to
a proper interval that contains the interval of u (v̂), and the neighbors of u (v) are also neighbors of û (v̂),
respectively. Thus, u′, û, v̂, u′′ is a path of length 3 in GP , contradicting the distance-3 coloring property. ut

Lemma 3 shows that every node will be correctly colored in Step 5 of the algorithm. |ΓG[u]∩Ii| = 1 shows
that all nodes will be considered in the coloring step of the algorithm, and |ΓG[ΓG[u]] ∩ Ii| = 1 guarantees
that the computed colorings of the different nodes of Ii do not interfere with each other. We conclude with
the main theorem:

Theorem 2. In the LOCAL model, there is a deterministic O(1)-approximation algorithm that computes a
canonical coloring of an interval graph and runs in time O(log∗ n).

Proof. Concerning correctness of the algorithm, we showed in Lemma 3 that every node v ∈ G will be colored
in Step 5. By construction, the algorithm computes a canonical coloring, i.e., it always assigns the smallest
color possible to a node. Therefore, the total amount of required colors can be bounded by the fact that
any canonical coloring of an interval graph uses at most 8 · χ(G) colors [6]. The runtime of the algorithm
is O(log∗ n) since we essentially run a constant number of times the algorithms MisBI and ColBI whose
runtimes are O(log∗ n). ut

3.3 Adapting the Algorithm to the CONGEST Model

Suppose that every node vi ∈ V is aware of its interval representation and knows its interval boundaries ai, bi.
We assume that the numbers ai, bi require space O(log n) to be written down. Then the previous algorithm
can be implemented in the CONGEST model: Concerning Step 1, exchanging interval boundaries and the
number of neighbors is enough to determine whether a node v ∈ V is also in VP . Step 2 remains unchanged.
Since each node v ∈ VP knows the interval boundaries of its neighbors, Step 3 is simplified and v simply
selects incident intervals that reach out furthest to the left and to the right. Step 4 remains unchanged. Since
the maximal degree in H is bounded by a constant, all messages sent in order to compute the 3-neighborhood

7

of every node are still of size O(log n). Concerning Step 5, note that it is impossible that every node u sends
its palette of still available colors to the coordinator u′ with a message of size O(log n). We therefore give
up on obtaining a canonical coloring, and, instead, for each coloring round we use a set of new colors (for
instance round i uses the colors {(i− 1)n+ 1, in}. Since, however, each coloring round uses O(χ(G)) colors
and there are only a constant number of sets Ii, we still obtain a constant factor approximation.

Theorem 3. There is a deterministic O(1)-approximation algorithm that computes a coloring of an interval
graph in the CONGEST model and runs in time O(log∗ n) if each node knows its interval boundaries.

3.4 Lower Bound For Coloring Interval Graphs In The LOCAL Model

Linial’s lower bound shows that any distributed algorithm for coloring the n-cycle with three colors requires
time Ω(log∗ n). This lower bound even holds if each node is aware that the graph to be colored is an n-cycle,
and the n nodes have distinct labels in {1, . . . , n}. The difficulty stems from the fact that the n nodes may
have arbitrary labels from the set {1, . . . , n}. For our reduction in the proof of Theorem 5, it is important
that there is one arbitrary node that can distinguish itself from the other ones. We assume that nodes have
labels from the set {1, . . . , n}, and we select the node with label 1 as a distinct one. Linial’s lower bound
still holds in that case.

Theorem 4. [7] Every possibly randomized distributed algorithm that colors the n-cycle with at most three
colors requires time Ω(log∗ n).

We require a well-known color reduction in our proof. The following lemma is well-known and we prove it
here for completeness.

Lemma 4. Let γ denote a coloring of the graph G = (V,E) that uses α ≥ ∆+2 colors. Then, in one round,
a coloring can be computed that uses α− 1 colors.

Proof. In one round, every node communicates its current color to its neighbors. The set of nodes with
color α forms an independent set. This allows every vertex v ∈ V with color α to picks a new color from
{1, . . . ,∆+ 1} \ γ(ΓG(v)). Since a node has at most ∆ neighbors, there is always an available color. ut

Theorem 5. Every possibly randomized distributed algorithm that colors an interval graph G = (V,E) with
|V | = n using o(log∗(n)χ(G)) colors requires time Ω(log∗ n).

Proof. Suppose that there is a distributed algorithm A which colors an interval graph using o(log∗(n)χ(G))
colors in o(log∗ n) time. We will show that this leads to a contradiction to Theorem 4 as with the help of
such an algorithm, we can color the n-cycle with 3 colors in o(log∗ n) time as follows:

Given an n-cycle, the vertex with label 1 removes one of its edges which transforms the n-cycle to a
line of length n. Denote by s the vertex with label 1 and by t the other endpoint of the line. Note that the
chromatic number of a line is 2. A line of length n is an interval graph, and we run algorithm A on this graph
to color it with o(log∗ n) colors. By Lemma 4, in o(log∗ n) rounds, this coloring of the line can be reduced
to a 3-coloring. Finally, if vertex s and t have the same color, then vertex s picks a different color that goes
along with its two neighbors. The runtime of this procedure is clearly o(log∗ n). ut

4 Simple Coloring Algorithm

We show now that an algorithm that follows the scheme of Algorithm 1 can be used to compute a (k log n)-
coloring on graphs G that have the property that every induced subgraph on α nodes has at most αk edges
(Theorem 6). This property is fulfilled by k-degenerate graphs since clearly k-degenerate graphs have at most
kn edges, and k-degeneracy inherits to induced subgraphs. Furthermore, it is easy to see that the degeneracy
k of an inductive d-independent graph is bounded as k ≤ dχ(G). Theorem 1 as stated in the introduction
follows hence immediately from Theorem 6.

8

In order to color a graph with a limited number of edges in each induced subgraph with an algorithm
of type Algorithm 1, we use the following sequence of probabilities: we start with probability p1 = 1, and

we repeat it 32e2 logn
p1

times. Then, we halve this probability, i.e., p2 = p1/2 and we repeat it 32e2 logn
p2

times.

This procedure of halving the previous probability pi+1 = pi/2 and repeating it 32e2 logn
pi+1

times continues

until all nodes are colored. We will prove now Theorem 6. We note again that this type of proof was already
used in [18] and [17].

Theorem 6. There is an algorithm that follows the scheme of Algorithm 1 and colors graphs G = (V,E)
that have the property that every induced subgraph on α vertices has at most αk edges with O(k log n) colors
and rounds w.h.p. Thus, the algorithm uses O(dχ(G) log n) colors, where d is the inductive independence.

Proof. We use the previously described sequence of probabilities. Let i be such that k ≤ 1
pi
< 2k, and let U

be the subset of vertices of V that are not yet colored just before the first iteration with probability pi. The
graph G|U has at most k|U | edges, and, therefore, by the Markov Inequality, at least 1

2 |U | nodes of U have
a degree of at most 2k. Let U ′ be this subset. The probability that a node u ∈ U ′ is colored in an iteration
where the current probability is pi is:

P [u is colored] = P [u is pre-selected] · P [no neighbor of u is pre-selected]

= pi · (1− pi)degU′ (u) ≥
1

2k
·
(

1− 1

k

)2k

≥ 1

2k

(
1

2e

)2

,

where we used (1 − 1/x)x ≥ 1/(2e) for any x ≥ 2. Let U0 = U and denote by Ul the number of uncolored
nodes after l iterations with probability pi. Then:

E|Ul| ≤ E|Ul−1| −
1

2k

(
1

2e

)2
1

2
E|Ul−1| = E|Ul−1|

(
1− 1

k16e2

)
= |U0|

(
1− 1

k16e2

)l
≤ ne−

l
k16e2 .

We have E|Ut| ≤ n−1 for t ≥ 32e2k log n. Therefore, by the Markov Inequality, we conclude that

P [|Ut| ≥ 1] ≤ E|Ut| = n−1.

Therefore, running 32e2k log n ≤ 32e2 logn
pi

iterations of the algorithm with probability pi will color all nodes
with high probability. The iterations with probabilities pj with j < i do only account to a constant factor in
the total number of iterations since we double the number of iterations each time we increase the probability.

ut

5 Implementation in the Beep Model

In the discrete beeping communication model as introduced in [19], nodes of a network modeled by a graph
G = (V,E) communicate with each other via beeps. Nodes are not aware of their neighborhoods. In each
round, a node v ∈ V has the choice between two actions: Either v transmits a beep signal (v beeps), or v is in
listening mode. If v is in listening mode, then v receives a signal only if at least one of its neighbors transmits
a beep. The reception of a beep signal does not allow v to determine the number of its neighbors that
transmitted it. Node v can only distinguish between the situation where none of its neighbors transmitted,
or at least one of its neighbors transmitted. While in [19] asynchronous wake-up times of nodes are considered,
we assume a synchronous model where all nodes are awake at time 0. Furthermore, we assume that nodes
know a polynomial upper bound on n, the number of nodes. We assume that they have only O(log n) memory.

Despite the fact that the discrete beeping model is very restrictive, many non-trivial problems can be
solved in this model. It models aspects of wireless networks (carrier sensing) and biological phenomena.

9

Algorithms that can be implemented in this model can certainly be implemented in many other distributed
models.

We will show now that the scheme of Algorithm 1 can be implemented in the discrete beeping model.
In Line 9 of Algorithm 1, a pre-selected node has to determine whether either none of its neighbors pre-
selected themselves, or whether there is at least one neighbors that pre-selected itself. Note that if we gave
a node the ability to beep and listen at the same time, Line 9 of Algorithm 1 could be implemented in one
communication round. The main difficulty for an implementation in the discrete beeping model stems from
the fact that if a node decides to beep it cannot receive any information. Therefore, the pre-selected nodes
cannot simply beep simultaneously in one round since the beep of a node wouldn’t be heard by another
beeping node. We will show, however, that this task can be computed in O(log n) rounds of communication.
In the following, we denote by beep() the action that a node decides to beep, and by listen() the action
that a node is in listening mode. The function listen() returns true, if at least one neighboring node beeped,
otherwise it returns false. Algorithm 3 implements one round of Algorithm 1 in the discrete beeping model.

Algorithm 3 Iteration i in the beep model

Require: pi {Probability pi, integer C ≥ 4}
1: if coin(pi) then
2: Select uniformly at random S ⊂ {1, 2, . . . , C logn} such that |S| = C logn

2

3: B ← false
4: for l = 1 . . . C logn do
5: if l ∈ S then beep() else B ← B ∨ listen() end if
6: end for
7: if B = false then γ(v)← i end if
8: end if

Lemma 5. Let C ≥ 4 be an integer. The probability that a pre-selected node v ∈ V colors itself in Line 7,
despite having a pre-selected neighbor, is at most 1

nC−3 assuming that n > 2C.

Proof. Let v ∈ V be a node that pre-selected itself (coin(pi) in Line 1 evaluated true). Let V ′ ⊆ ΓG(v)
denote the neighbors of v that also pre-selected themselves, and suppose that |V ′| > 0. Denote by S the
subset of indices that v has chosen, and for a pre-selected neighbor u ∈ V ′ of v, denote by Su the indices
that u has chosen. Then, v colors itself only if ∀u ∈ V ′ : Su = S. Denote by N = |ΓG(v)| the size of the
neighborhood of node v. We bound this probability as follows:

P [∀u ∈ V ′ : Su = S] =
∑
i≥1

P [∀u ∈ V ′ : Su = S | |V ′| = i] · P [|V ′| = i]

≤
N∑
i≥1

 1(C logn
1
2C logn

)
i

, (1)

since clearly P [|V ′| = i] ≤ 1 for all i. By the formula for the central binomial coefficient, we have
(C logn

1
2C logn

)
≥

2C log(n)−log(2C)−log logn. Using this in Inequality 1, we obtain

N∑
i≥1

 1(C logn
1
2C logn

)
i

≤
∑
i≥1

2−i(C log(n)−log(2C)−log logn) ≤ N2−C log(n)+log(2C)+log logn ≤ 1

nC−3
,

for n ≥ 2C. ut

Since every node may get pre-selected at most O(dχ(G) log n) times in the algorithm of Theorem 1,
selecting a large enough value for C (for instance C ≥ 7) guarantees that the overall error probability is

10

small enough when implementing this algorithm in the discrete beeping model. From Lemma 5 and Theorem 1
we obtain the following corollary:

Corollary 1. There is an algorithm that follows the scheme of Algorithm 1 that can be implemented in the
discrete beeping model with O(dχ(G) log2 n) rounds and colors a graph with O(dχ(G) log n) colors w.h.p.
where d is the inductive independence number of a graph.

6 Lower Bound For Algorithms of Type Algorithm 1

We discuss now a hard instance showing that no algorithm that follows the scheme of Algorithm 1 can achieve
an approximation ratio of o(logn

log logn) on interval graphs. We present the hard instance graph GT,b = (V,E)
in its interval representation, where T and b are parameters as follows: As basic building blocks of our
construction we use cliques of size T = o(n) (we determine the precise value of T later). Their adjacency
relations follow a tree structure with branching factor logb n for an integer b ≥ 6 (we set b = 6, but any
constant b ≥ 6 equally works), and we obtain a containment interval graph as in Figure 2, i.e., an interval
graph where the set {ΓGT,b(v) | v ∈ V } forms a laminar family. The vertex set V is decomposed into layers

V0, . . . , Vk. We have |Vi| = T · (log n)ib, and, therefore, k = Θ(logn
log logn) in order to have a total of n vertices.

The chromatic number of this graph is χ(GT,b) = Tk. We aim to construct the hard instances for a given
chromatic number, and we therefore set the parameter T to be T = χ(GT,b)/k. Let us summarize the
values of our parameters: We consider the n-vertex graph GT,b with chromatic number χ(GT,b) and we set
T = χ(GT,b)/k = Θ(χ(GT,b) log log n/ log n) and b = 6.

V0

V1

V2

Fig. 2. Hard instance GT,b = (V,E). V0 is a clique of size T , V1 are logb(n) cliques each of size T . This construction

continues recursively until level k = Θ(
log(nT)
log logn

).

We shall prove now that any algorithm following the scheme of Algorithm 1 requires Ω(χ(GT,b)k) it-
erations on graph GT,b. However, due to space restrictions, all proofs of this section are omitted and can
be found in the full version of this article. Our argument is as follows: Let p1, p2, . . . be the sequence of
probabilities chosen by the algorithm, where pi is the probability chosen in round i. We will argue that for
any k/2 ≤ i < k, layer Vi+1 will be eliminated by the algorithm before the elimination of at most 1/10 of
the nodes of layer Vi since the presence of layer Vi+1 induces high degrees to all nodes in layer Vi. For the
nodes in Vi, this reduces the probability of being selected and colored. We show that the elimination of a
layer takes time Ω(χ(GT,b)) for any choice of probabilities. Since there are k = Θ(logn

log logn) layers, the result
follows.

Denote by V ji ⊆ Vi the set of not-yet colored nodes after iteration j. Then V 0
i = Vi. Let V j =

⋃
i V

j
i .

Denote by ti the least number of iterations of the algorithm such that at least one clique of Vi lost at least
1/2T of its vertices, i.e., at least half of the vertices of at least one clique of layer i have disappeared. In
any iteration j, any node v ∈ V j gets pre-selected with probability pj . Then it is colored only if none of its
neighbors have been preselected. Therefore, the probability of v being chosen and colored is pi(1−pi)degV j (v).

11

Next, we show that it is very unlikely that a node of layer i is colored before iteration ti+1.

Lemma 6. Consider graph GT,b. Let 0 ≤ i < k. For every iteration j < ti+1, every v ∈ V ji , and large
enough n:

P [v is colored in iteration j] ≤ 1

T logb−2 n
.

Proof. The probability for v to be colored in round j is pj(1− pj)degV j (v). Since j < ti+1, we have deg(v) ≥
T/2 logb(n), and hence

P [v is colored in iteration j] ≤ pj(1− pj)T/2 logb n ≤ min{pj , (1− pj)T/2 logb n}. (2)

We consider the cases pj ≤ 1
T logb−2 n

and pj >
1

T logb−2 n
separately. If pj ≤ 1

T logb−2 n
then the RHS of

Inequality 2 is clearly also smaller than 1
T logb−2 n

. Suppose that pj >
1

T logb−2 n
. Then the RHS of Inequality 2

is bounded by

(1− pj)T/2 logb n ≤ e−
T logb(n)pj

2 < e−
log2 n

2 <
1

n
1
2 logn

,

where we used 1− pj ≤ e−pj . Therefore, for large enough n, Inequality 2 is bounded by 1
T logb−2 n

. ut

This fact is then used in the following lemma. With high probability, all cliques of layer i are still of size
at least 9/10 of its initial size just after iteration ti+1.

Lemma 7. Consider graph GT,b. Suppose that ti+1 ≤ T log2 n. Then with probability at least 1−O
(

1

nlogb−5(n)T−1

)
and n large enough, the size of the smallest clique in Vj after iteration ti+1 is at least 9

10T for any j ≤ i.

Proof. For any moment j < ti+1, by Lemma 6, the probability that a node v ∈ Vj is colored is at most
1

T logb−2 n
. Using the assumption ti+1 ≤ T log2 n, we obtain

P [v ∈ Vj colored in the first ti+1 rounds] ≤ ti+1

T logb−2 n
≤ 1

logb−4 n
.

Consider any clique C ∈ Vj . Then C \ V ti+1

j is the number of nodes of clique C that have been colored in
the first ti+1 rounds. By the previous inequality, we obtain

E|C \ V ti+1

j | ≥ T · 1

logb−4 n
,

and we apply the Chernoff bound (for δ = logb−4(n)
10 − 1):

P
[
|C \ V ti+1

j | ≥ 1/10T
]
≤ e−1/3·(

logb−4(n)
10 −1)2·T 1

logb−4 n

< e−
logb−4(n)T

300 = Θ

(
1

nlog
b−5(n)T

)
.

Since there are at most n/T cliques in Vj for all j, we use the union bound and we obtain

P
[
∃clique C ∈ Vj : |C \ V ti+1

j | ≥ 1/10T
]
≤ n

T
Θ

(
1

nlog
b−5(n)T

)
= O

(
1

nlog
b−5(n)T−1

)
.

ut

Using Lemma 7 we conclude that the number of rounds between ti+1 and ti is Θ(χ(G)).

12

Lemma 8. Suppose that GT,b is such that χ(GT,b) ≥ log5 n. Then for any i ≥ k/2, a small enough but
constant c, and n large enough:

P [ti − ti+1 ≤ cχ(G)] = O

(
1

nlogn−1

)
.

Proof. Let E denote the event that every gadget C ∈ Vj is of size at least (9/10)T before iteration tj+1.

Then by Lemma 7, we have P [E] ≥ 1 − O
(

1

nlogb−5(n)T−1

)
. Conditioned on E, for any ti+1 − 1 ≤ j ≤ tk/2,

the degree of any node v ∈ V ji is therefore at least 9Tk
20 . Since the probability that any node v is colored in

round i is pi(1− pi)degV i (v), the probability that a node v ∈ V ji for ti+1 − 1 ≤ j ≤ tk/2 is colored in round j
is at most:

P [v is colored in round j |E] = pj(1− pj)
9Tk
20 ≤ pje−

9Tkpj
20 ≤ 20

9Tk
,

for any pj , where we used 1+x ≤ ex for any x in the first inequality, and we applied Lemma 9 for the second

inequality. Let t be an integer. Then conditioned on the event E, the probability for one node v ∈ V ji with
ti+1 − 1 ≤ j ≤ tk/2 − t to be colored in t rounds is at most t · 20

9Tk . Consider now a clique C ∈ Vi. Then
the expected number of eliminated nodes of C between round ti+1 − 1 and round ti+1 − 1 + t is bounded as
follows:

E
[
|C \ V ti+1−1+t

i | − |C \ V ti+1−1
i |

]
≤ Tt · 20

9Tk
=

20t

9k
.

For any t < cTk and for a small enough but constant c, we obtain by the Chernoff bound:

P
[
|C \ V ti+1−1+t

i | − |C \ V ti+1−1
i | ≥ 4/10T

]
≤ e−

(18kT
100t)

2
20t

3·9k =
1

eΘ(T
2

tk)
,

and we conclude that conditioned on the event E:

P
[
|C \ V ti+1−1+t

i | ≥ 5/10T |E
]
≤ 1

eΘ(T
2

tk)
.

Now, since there are at most n
T gadgets in any level i, we apply the union bound and obtain:

P
[
every gadget C ∈ Vi is such that|C \ V ti+1−1+t

i | ≥ 5/10T |E
]
≤ n

T

1

eΘ(T
2

tk)
.

Since for any two events A,B, we have P [A] ≤ P [A |B] + (1− P [B]), we obtain

P
[
every gadget C ∈ Vi is such that|C \ V ti+1−1+t

i | ≥ 5/10T
]
≤

P
[
every gadget C ∈ Vi is such that|C \ V ti+1−1+t

i | ≥ 5/10T |E
]

+ (1− P [E]) ≤

n

T

1

eΘ(T
2

tk)
+ O

(
1

nlog
b−5(n)T−1

)
. (3)

Note that T = χ(G)/k. Furthermore, k = O(log n) and we assumed that χ(G) = Ω(log5 n). We furthermore
assumed that t ≤ cχ(G). Then, the first addend of the right side of Inequality 3 is bounded as follows:

n

T

1

eΘ(T
2

tk)
=

nk

χ(G)

1

eΘ(
χ(G)2

tk3
)

= O

(
n

log4 n

1

elog
2 n

)
= O

(
1

nlogn−1

)
.

This expression also bounds Inequality 3 which proves the lemma. ut

13

The following lemma was used in the proof of Lemma 8.

Lemma 9. For any real number x and any value 0 ≤ p ≤ 1, the following inequality holds:

p · e−xp ≤ 1

x
.

Proof. Clearly, for any real number y, we have y ≤ ey. Let y = xp and we obtain xp ≤ exp. This implies the
result. ut

Lemma 8 allows us to obtain our lower bound result.

Theorem 7. Suppose that GT,b is such that log5 n ≤ χ(GT,b) ≤ n1−ε for any ε > 0 and let n be sufficiently

large. Then any algorithm that follows the scheme of Algorithm 1 requires Ω(χ(GT,b)
logn

log logn) colors to color
GT,b with high probability.

Proof. It follows from Lemma 8 that the elimination of one level i ≥ k/2 takes at least Ω(χ(G)) rounds with
probability at least 1 − O

(
1

nlogn−1

)
. Therefore, by the union bound, the elimination of the first k/3 levels

takes Ω(χ(G)k) rounds with probability at least 1− log n ·O
(

1
nlogn−1

)
= 1−O

(
1

nlogn−2

)
. ut

References

1. Marathe, M., Breu, H., III, H.B.H., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks
25 (1995) 59–68

2. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Theory Appl. 9(1-2) (1998)
3–24

3. Halldórsson, M.M.: Wireless scheduling with power control. ACM Trans. Algorithms 9(1) (2012) 7:1–7:20
4. Karp, R.M.: Reducibility Among Combinatorial Problems. In Miller, R.E., Thatcher, J.W., eds.: Complexity of

Computer Computations. Plenum Press (1972) 85–103
5. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In:

Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing. STOC ’06, New York, NY,
USA, ACM (2006) 681–690

6. Smith, D.A.: The First-fit Algorithm Uses Many Colors on Some Interval Graphs. PhD thesis, Tempe, AZ, USA
(2010) AAI3428197.

7. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1) (1992) 193–201
8. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proceedings of the Twenty-fifth

Annual ACM Symposium on Principles of Distributed Computing. PODC ’06, New York, NY, USA, ACM (2006)
7–15

9. Kothapalli, K., Scheideler, C., Onus, M., Schindelhauer, C.: Distributed coloring in
√

logn bit rounds. In:
Proceedings of the 20th International Conference on Parallel and Distributed Processing. IPDPS’06, Washington,
DC, USA, IEEE Computer Society (2006) 44–44

10. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58(5)
(2011) 23:1–23:25

11. Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: On the time and the bit complexity of distributed
randomised anonymous ring colouring. Theor. Comput. Sci. 502 (2013) 64–75

12. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing. STOC ’85, New York, NY, USA, ACM (1985)
1–10

13. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. FOCS ’12, Washington, DC,
USA, IEEE Computer Society (2012) 321–330

14. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control
70(1) (1986) 32–53

15. Schneider, J., Wattenhofer, R.: An Optimal Maximal Independent Set Algorithm for Bounded-Independence
Graphs. Distributed Computing 22 (2010)

16. Fanghänel, A., Kesselheim, T., Vöcking, B.: Improved algorithms for latency minimization in wireless networks.
Theor. Comput. Sci. 412(24) (2011) 2657–2667

14

17. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Proceedings of the
24th International Conference on Distributed Computing. DISC’10, Berlin, Heidelberg, Springer-Verlag (2010)
163–178

18. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless scheduling in the SINR model. In:
Proceedings of the 38th International Conference on Automata, Languages and Programming - Volume Part II.
ICALP’11, Berlin, Heidelberg, Springer-Verlag (2011) 625–636

19. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Proceedings of the 24th International
Conference on Distributed Computing. DISC’10, Berlin, Heidelberg, Springer-Verlag (2010) 148–162

20. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-uniform wireless power. In: Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013. (2013)
1595–1606

21. Ye, Y., Borodin, A.: Elimination graphs. ACM Trans. Algorithms 8(2) (2012) 14:1–14:23

15

