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Abstract7

Given a graph G, it is well known that any maximal matching M in G is at least half the size of8

a maximum matchingM∗. In this paper, we show that if G is bipartite, then running the Greedy9

matching algorithm on a sampled subgraph of G produces enough additional edges that can be10

used to augmentM such that the resulting matching is of size at least (2−
√

2)|M∗| ≈ 0.5857|M∗|11

(ignoring lower order terms) with high probability.12

The main applications of our method lie in the area of data streaming algorithms, where an13

algorithm performs few passes over the edges of an n-vertex graph while maintaining a memory14

of size O(n polylogn). Our method immediately yields a very simple two-pass algorithm for15

Maximum Bipartite Matching (MBM) with approximation factor 0.5857, which only runs16

the Greedy matching algorithm in each pass. This slightly improves on the much more involved17

0.583-approximation algorithm of Esfandiari et al. [ICDMW 2016]. To obtain our main result, we18

combine our method with a residual sparsity property of the random order Greedy algorithm and19

give a one-pass random order streaming algorithm for MBM with approximation factor 0.5395.20

This substantially improves upon the one-pass random order 0.505-approximation algorithm of21

Konrad et al. [APPROX 2012].22
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1 Introduction27

Computing Large Matchings. Given a bipartite graph G = (A,B,E), a matchingM ⊆ E28

in G is a subset of non-adjacent edges. In this paper, we address the Maximum Bipartite29

Matching (MBM) problem, which consists of finding a matching of maximum size. Many30

classic algorithms for MBM, such as the Hopcroft-Karp algorithm [20] or Edmonds’ algorithm31

[11], as well as many more recent algorithms, first compute an arbitrary matching and then32

iteratively improve it by finding augmenting paths until it is of maximum size. A good33

starting point is a maximal matching, i.e., a matching that cannot be enlarged by adding an34

edge outside the matching to it, which is known to be of size at least 1/2 times the size of a35

maximum matching, i.e., one of maximum size. A maximal matching is for example produced36

by the Greedy matching algorithm, which processes the edges of a graph in arbitrary order37

and adds the current edge to an initially empty matching if the resulting set is still a matching.38

For an integer k ≥ 1, a (2k + 1)-augmenting path P = e1, e2, e3, . . . , e2k+1 with respect to39

a matching M is a path of odd length that alternates between edges outside M and edges40

contained in M such that both e1 and e2k+1 are incident to vertices that are not matched in41

M . Since P contains k + 1 edges outside M and k edges of M , removing the matched edges42
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in P from M and inserting the unmatched edges in P into M thus increases the size of M43

by 1. It is known that a non-maximum matching always admits an augmenting path, and,44

thus, repeatedly finding one and augmenting eventually yields a maximum matching.45

To decrease the number of improvement steps required, one common approach is to com-46

pute a large set of disjoint augmenting paths and augment along each of them simultaneously.47

This approach is particularly beneficial when designing algorithms in restricted computational48

models such as the data streaming model (see below) or various distributed computational49

models, since typically the number of passes (streaming) or rounds (distributed algorithms)50

grows linearly with the number of augmentation rounds.51

Our Results. In this paper, we give a new method that allows us to find a large fraction of52

disjoint 3-augmenting paths such that, when augmenting along those paths, the resulting53

matching is of size at least (2 −
√

2)|M∗| − o(|M∗|) ≈ 0.5857|M∗| − o(|M∗|) with high54

probability, where M∗ is a maximum matching (Theorem 8). The strength of our method55

lies both in its simplicity and effectiveness: It only requires running the Greedy matching56

algorithm on a random subgraph to produce the necessary edges. Despite its simplicity, it57

outperforms other more complicated methods and yields improvements over the state-of-the-58

art one- and two-pass data streaming algorithms for matchings (see below). Our method can59

also be applied repeatedly and for example yields a 3-pass streaming algorithm that also60

outperforms the currently best 3-pass streaming algorithm known.61

Applications to Data Streaming Algorithms. While our method can be applied in62

essentially all computational models that allow an implementation of the Greedy matching63

algorithm, it has been designed with the data streaming model in mind. Given an n-vertex64

graph G = (V,E), a p-pass, s-space data streaming algorithm processing G performs p passes65

over the edges E of G (the edges may arrive in arbitrary, potentially adversarial order)66

while maintaining a memory of size s. Since many graph problems require space Ω(n logn)67

(observe that storing a large matching already requires this amount of space) [32], research68

has focussed on the semi-streaming model [16], where a graph streaming algorithm is allowed69

to use space O(n polylogn). Concerning the MBM problem, Feigenbaum et al. [16] observed70

that the Greedy matching algorithm constitutes a one-pass 1
2 -approximation semi-streaming71

algorithm for MBM. Interestingly, despite intense research efforts, no better one-pass72

streaming algorithms are known, even if space O(n2−δ) is granted, for any δ > 0, while lower73

bounds only rule out the existence of semi-streaming algorithms with approximation ratio74

larger than 1− 1/e ≈ 0.6321 [22, 18]. Konrad et al. [26] studied minimal extensions to the75

one-pass semi-streaming model that allow us to improve on Greedy. They showed that76

approximation ratios strictly larger than 1
2 can be obtained if either the edges of the input77

graph arrive in uniform random order, or a second pass is granted. More specifically, they78

gave a symbolic improvement showing that a ( 1
2 + 0.005)-approximation can be obtained if79

edges arrive in random order, and a ( 1
2 + 0.02)-approximation can be achieved if two passes80

are allowed. Their two-pass result has since been improved by Kale and Tirodkar [21] to81

1
2 + 1

16 = 1
2 + 0.0625 and independently by Esfandiari et al. to 1

2 + 0.083 [14].82

Our method for finding augmenting paths immediately yields a two-pass semi-streaming83

algorithm with approximation factor 0.5857 (Theorem 9), thus slightly improving over the84

algorithm of Esfandiari et al. [14]. Our algorithm has constant update time (i.e., the running85

time between two read operations from the stream) and does not need a post-processing step,86

while the algorithm of Esfandiari et al. requires the computation of a maximum matching87

in the post-processing step. Our main result is a one-pass random order semi-streaming88

algorithm with approximation factor 0.5395 (Theorem 16), showing that more substantial89

improvements over 1
2 than the symbolic improvement given by Konrad et al. [26] are possible90
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Figure 1 Left: Bipartite graph G = (A, B, E) with maximal matching M . The dotted edges
show a perfect matching in G. Matched vertices are grey, free vertices are white. Center: Subset
M ′ ⊆ M is highlighted in red. The blue edges are produced by the runs of Greedy on G′

L and G′
R.

Observe that one 3-augmenting path is found. Right: M after the augmentation.

in the random order scenario. This algorithm is obtained by combining our method for91

finding augmenting paths with a residual sparsity property of the random order Greedy92

matching algorithm (e.g. [25]) that has recently been exploited in various contexts [25, 1, 17].93

Techniques. For illustration purposes, consider a bipartite graph G = (A,B,E) that94

contains a perfect matching M∗, i.e., a matching that matches all vertices, and a maximal95

matching M with |M | = 1
2 |M

∗|. It can be seen that M ⊕M∗ := (M \M∗)∪ (M∗ \M) forms96

a set of 1
2 |M

∗| disjoint 3-augmenting paths. In other words, there exists a matching of size97

1
2 |M

∗| in graph GL := G[A(M) ∪B(M)], where A(M) is the set of matched A-vertices, and98

B(M) := B \B(M), and also one of size 1
2 |M

∗| in GR = G[A(M) ∪B(M)], see Figure 1.99

We now sample a random subset of edgesM ′ ⊆M such that every edge e ∈M is included100

in M ′ with probability p. Using an argument by Konrad et al. [26], it follows that when101

running the Greedy matching algorithm on the subgraph G′L := G[A(M ′) ∪B(M)] ⊆ GL,102

then in expectation a 1
1+p fraction of the vertices A(M ′) is matched. Observe that if we103

chose p = 1, then half of the vertices get matched, which is what we expect from the104

Greedy matching algorithm. However, if we chose p substantially smaller than 1, then a105

large fraction of vertices of A(M ′) is matched. We also apply this argument to subgraph106

G′R := G[B(M ′) ∪ A(M)] ⊆ GR, which thus allows us to find large matchings in both107

subgraphs G′L and G′R and in turn extract many 3-augmenting paths. Observe that this108

method directly yields a two-pass semi-streaming algorithm, by computing a maximal109

matching in the first pass, and augmenting it using the described method in the second pass.110

The main shortcoming of this method is that the result by Konrad et al. [26] only111

holds in expectation, which would imply that our result also only holds in expectation. We112

therefore strengthen their result and prove that a similar version holds with high probability.113

Our proof models the execution of the algorithm with a Doob martingale and applies114

Azuma’s inequality to obtain a concentration result. We then use our result and additional115

combinatorial arguments to bound the number of 3-augmenting paths found.116

Our one-pass random order streaming algorithm combines our method for finding 3-117

augmenting paths with a residual sparsity property of the random order Greedy algorithm.118

We run Greedy on the first 1
logn fraction of edges in the stream to produce a matching M .119

The residual sparsity property states that the residual graph H = G[V \ V (M)] contains120

O(n polylogn) edges with high probability, which we then collect while processing the121

remaining edges in the stream. Our main argument is as follows: If |M | is relatively small,122

then the residual graph H contains a sufficiently large matching. On the other hand, if |M |123

is relatively large (close to a 1
2 -approximation), then we can use the remainder of the stream124

to find 3-augmenting paths using the method described above.125
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Comparison to Esfandiari et al. [14] and Kale and Tirodkar [21]. The two-pass126

streaming algorithms of Esfandiari et al. and Kale and Tirodkar proceed similarly in that they127

compute a maximal matching M in the first pass and then find additional edges in the second128

pass that are used to augmentM . Their algorithms are in fact almost identical and only differ129

in the post-processing stage. With GL = G[A(M) ∪ B(M)] and GR = G[B(M) ∪ A(M)]130

being as above, they compute incomplete semi-matchings SL in GL and SR in GR, i.e.,131

subsets of edges such that every vertex in A(M) (B(M)) is matched at most once in SL132

(resp. SR) and every vertex B(M) (resp. A(M)) is matched at most k times, for some133

integer k. Using a Greedy algorithm for computing SL and SR, it can be seen that a large134

fraction of vertices A(M) (resp. B(M)) are matched in SL (resp. SR). This allows the135

extraction of multiple 3-augmenting paths. In Kale and Tirodkar, the extraction step is done136

greedily, which is efficient but leads to a worse approximation factor than in Esfandiari et al.137

Esfandiari et al. solve an optimization problem in a post-processing phase that allows the138

extraction of more 3-augmenting paths, which in turn leads to an improved approximation139

guarantee. Our method is much simpler in this regard, since our additional edges form140

matchings and it is thus straightforward to extract 3-augmenting paths.141

Comparison to Konrad et al. [26]. The one-pass random order algorithm by Konrad142

et al. proceeds as follows: First, run Greedy on roughly the first third of the edges in the143

input stream and obtain a matching M . Konrad et al. prove that if Greedy on the entire144

input stream produces a matching that is close to a 1
2 -approximation, then the matching is145

built early on, i.e., |M | is relatively large. They then use the remaining part of the stream146

for finding 3-augmenting paths. To this end, they compute a matching in GL on roughly147

the next third of the edges, and then use the last third to compute a matching in GR to148

complete the 3-augmenting paths. Their method only yields a marginal improvement over149

1/2 and their result only holds in expectation.150

Observe that we also argue that the matching M is large, which we achieve by exploiting151

the residual sparsity property of Greedy. While Konrad et al. have already processed a152

third of the edges at this stage, we have only processed a 1
log(n) fraction, and there are thus153

more remaining edges to our disposal for finding 3-augmenting paths. Further, our method154

produces more 3-augmenting paths than the method proposed by Konrad et al.155

Further Related Work. Matching problems are the most studied graph problems in156

the data streaming model. Besides the already mentioned works, algorithms have been157

designed for weighted matchings (e.g. [16, 29, 33, 9, 31]), multiple passes (e.g. [29, 12, 2]),158

insertion/deletion streams (e.g. [10, 6, 24, 7, 4, 30]), sparse graphs (e.g. [13, 8]), and other159

variants of the matching problem [27]. Regarding random order streams, Kapralov et al. [23]160

showed that the size of a maximum matching can be estimated within a poly-log factor using161

poly-log space, and a (2/3− ε)-approximation can be computed using Õ(n3/2) space [3].162

Outline. We proceed as follows. We first give notation and definitions in Section 2. We163

then present our method for finding a large set of disjoint 3-augmenting paths in Section 3.164

Implementation details when implementing our method in the adversarial order streaming165

model are then discussed in Section 4. In Section 5, we give our one-pass random order166

algorithm. Finally, we conclude in Section 6 with open problems.167

2 Preliminaries168

Notation. Let G = (A,B,E) be a bipartite graph. We generally use n to denote the number169

of vertices, i.e., n = |A|+ |B|, and m = |E| to denote the number of edges. For a subset of170
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vertices U ⊆ A ∪ B and a subset of edges F ⊆ E, we denote the vertex induced subgraph171

of G by vertices U by G[U ], and the edge induced subgraph of G by edges F by G[F ]. Let172

M be a matching in G. We denote by A(M) (B(M)) the vertices of A (resp. B) that are173

matched by M , and we write V (M) = A(M)∪B(M). Similarly, for an edge e ∈ E, we write174

A(e) to denote its incident A-vertex, B(e) to denote its B vertex, and V (e) = {A(e), B(e)}.175

The complement of a subset A′ ⊆ A (B′ ⊆ B) is denoted by A′ = A \A′ (resp. B′ = B \B′).176

The matching number of a graph G, i.e., the size of a maximum matching in G, is denoted177

µ(G). We write opt(G) to denote an arbitrary but fixed maximum matching in G. For two178

sets X,Y , we write X ⊕ Y := (X \ Y ) ∪ (Y \X) to denote their symmetric difference. For a179

graph G, ∆(G) denotes the maximum degree.180

Concentration Bounds. In this paper, we will use two concentration bounds. The first181

one is Azuma’s inequality for martingales (we refer the reader to [28] for the an introduction182

to martingales and Azuma’s inequality), and the second is a Chernoff-type bound for weakly183

dependent random variables.184

I Theorem 1 (Azuma’s Inequality ([5, 28])). Suppose that X0, X1, X2, . . . is a martingale
and let |Xi −Xi−1| ≤ ci for suitable constants ci. Then:

P [|Xn −X0| ≥ t] ≤ 2 exp
(

−t2

2
∑n
i=1 c

2
i

)
.

I Theorem 2 (Chernoff Bound for Weakly Dependent Variables, e.g. [15]). Let X1, X2, . . . , Xn

be 0/1 random variables for which there is a p ∈ [0, 1] such that for all k ∈ [n] the inequality

P [Xk = 1 |X1, X2, . . . , Xk−1] ≤ p

holds (i.e., the probability of Xk = 1 conditioned on any possible outcome of X1, . . . , Xk−1 is
at most p). Let further µ ≥ p · n. Then, for every δ > 0:

P

[
n∑
i=1

Xi ≥ (1 + δ)µ
]
≤
(

eδ

(1 + δ)1+δ

)µ
.

We will say that an event occurs with high probability in variable x, if the the probability of185

the event occurring is at least 1− x−C , for some C ≥ 1. If we do not mention x explicitly,186

then the high probability statement is in n, the number of vertices of the input graph.187

We say that an algorithm is a C-approximation algorithm for MBM if it computes a188

matching M of size at least C · µ(G)− o(µ(G)).189

3 Finding a Large Set of Disjoint 3-augmenting Paths190

We now present an algorithm that, given a maximal matching M in a bipartite graph191

G = (A,B,E), finds a set of disjoint 3-augmenting paths P by running the Greedy192

matching algorithm on a random subgraph of G. The set P is such that, when augmentingM193

along the paths P , a matching of size at least (2−
√

2)µ(G)−o(µ(G)) ≈ 0.5857µ(G)−o(µ(G))194

is obtained.195

Our algorithm is illustrated in Algorithm 1. For the sake of a clear presentation, the196

algorithm employs two invocations of Greedy on two disjoint subgraphs. This is equivalent197

to invoking Greedy only once on their union. Our algorithm is parametrized by a sampling198

probability p. To obtain the claimed bound stated above, we will later optimize p.199

To obtain a better understanding of our algorithm, we first discuss structural properties200

that help us locate 3-augmenting paths in G with respect to the matching M .201
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Input: Bipartite graph G = (A,B,E), maximal matching M , parameter 0 < p < 1

1. Sample each edge e ∈M with probability p; let M ′ be the resulting sample
2. ML ← Greedy(G[A(M ′) ∪B(M)]); MR ← Greedy(G[A(M) ∪B(M ′)])
3. P ← {paths b′a, ab, ba′ | b′a ∈ML, ab ∈M, ba′ ∈MR}
4. return P

Algorithm 1. Finding a large set of 3-augmenting paths

Let M∗ be a maximum matching in G and let ε be such that |M | = ( 1
2 + ε)|M∗|. Observe202

first that M ⊕M∗ contains a collection of ( 1
2 − ε)|M

∗| disjoint augmenting paths. Further,203

observe that the endpoints of each augmenting path are a free vertex in A (i.e., a vertex204

in A(M)) and a free vertex in B. Hence, the subgraphs GL := G[A(M) ∪ B(M)] and205

GR := G[A(M) ∪B(M)] each contain a matching of size ( 1
2 − ε)|M

∗|. We summarize this in206

Observation 3:207

I Observation 3. Let ε be such that |M | = ( 1
2 + ε)µ(G). Then:

min{µ(GL), µ(GR)} ≥ (1
2 − ε)µ(G) .

Suppose now that ε is small. Further, suppose that we could compute maximum matchings208

M∗L in GL and M∗R in GR. Then for almost every edge e ∈M there are edges el ∈ML and209

er ∈MR such that eleer forms a 3-augmenting path. We will call el a left wing for edge e210

and er a right wing for edge e.211

Our augmentation method should of course not be based on computing maximum212

matchings themselves. We therefore proceed differently. First, observe that if we computed213

maximal matchings, i.e., 1
2 -approximations, in GL and GR, then we may not find any 3-214

augmenting path at all, since it may happen that we find left wings for half of the edges of215

M , and right wings for the other half. Our strategy therefore is as follows: We first sample a216

subset of edges M ′ ⊆M , where each edge of M is included in M ′ with probability p, and we217

attempt to augment only the edges in M ′ by computing Greedy matchings in the subgraphs218

G′L := G[A(M ′) ∪B(M)] and G′R := G[A(M) ∪B(M ′)]. Konrad et al. [26] proved that, in219

expectation, the resulting matchings are essentially 1
1+p ≥

1
2 -approximations, albeit for a220

slightly different notion of approximation, which is nevertheless suitable for our purposes:221

I Theorem 4 (Konrad et al. [26]). Let G = (U, V,E) be a bipartite graph, and let U ′ ⊆ U be
such that every vertex u ∈ U is included in U ′ with probability p (p ∈ [0, 1]). Then, for any
arbitrary but fixed order in which Greedy processes the edges, the following holds:

EU ′ |Greedy(G[U ′ ∪ V ])| ≥ p

1 + p
µ(G) .

Hence, if ε is close to 0, and p is substantially smaller than 1, then it follows from the222

previous theorem that a large fraction of the vertices A(M ′) will be matched by Greedy in223

G′L, and a large fraction of the vertices of B(M ′) will be matched by Greedy in G′R. This224

in turn implies that a substantial amount of edges of M ′ both have left and a right wings225

and are thus included in 3-augmenting paths.226

Before we make this intuition formal, we point out one shortcoming of applying the227

previous theorem by Konrad et al. directly. They prove that the resulting matching is large228

only in expectation, which in turn would imply that our result only holds in expectation.229
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We therefore first strengthen their result and prove that a similar version holds with high230

probability. To this end, we first prove a technical lemma that is employed in the proof of231

our strengthened theorem.232

I Lemma 5. Let G = (U, V,E) be a bipartite graph and let u ∈ U, v ∈ V be arbitrary vertices.
Let U ′ ⊆ U be such that every vertex u ∈ U is included in U ′ with probability p. Then, for
any arbitrary but fixed order in which Greedy processes the edges, the following holds:

0 ≤ EU ′ |Greedy(G[U ′ ∪ V ])| − EU ′ |Greedy(G[(U ′ ∪ V ) \ {u, v}])| ≤ 2 .

Proof. First, observe that233

EU ′ |Greedy(G[U ′ ∪ V ])| − EU ′ |Greedy(G[(U ′ ∪ V ) \ {u, v}])| =234

EU ′ (|Greedy(G[U ′ ∪ V ])| − |Greedy(G[(U ′ ∪ V ) \ {u, v}])|) .235

We will prove next that 0 ≤ Greedy(G[U ′ ∪ V ]) − Greedy(G[U ′ ∪ V − {u, v}]) ≤ 2236

holds for any U ′ ⊆ U , which then proves the lemma. We will in fact argue the stronger237

statement that for any graph G = (V,E) and any vertex v ∈ V , the inequality 0 ≤238

Greedy(G) − Greedy(G \ {v}) ≤ 1 holds. The result then follows by applying this239

statement twice.240

Consider thus an arbitrary graph G = (V,E) and a vertex v ∈ V . First observe that241

if Greedy(G) leaves v unmatched, then Greedy(G) = Greedy(G \ {v}). If Greedy(G)242

matches v, then it is not hard to see that Greedy(G)⊕Greedy(G \ {v}) consists of one243

alternating path whose one endpoint is v. This further implies that Greedy(G \ {v}) ≤244

Greedy(G) ≤ Greedy(G \ {v}) + 1, which completes the proof. J245

We now give our strengthened version of Theorem 4.246

I Theorem 6. Let G = (U, V,E) be a bipartite graph, and let U ′ ⊆ U be such that every
vertex u ∈ U is included in U ′ with probability p (p ∈ [0, 1]). Then, for any arbitrary but
fixed order in which Greedy processes the edges, the following holds with probability at least
1− (µ(G))−12:

|Greedy(G[U ′ ∪ V ])| ≥ p

1 + p
µ(G)− o(µ(G)) .

Proof. Let X := |Greedy(G[U ′ ∪ V ])|. By Theorem 4 we have EX ≥ p
1+pµ(G).247

For 1 ≤ i ≤ n, let Zi be the ith edge selected by Greedy, and let Zi = ⊥ if i > X. Let248

Yi be the Doob martingale induced by the first i choices of the algorithm, i.e.,249

Yi := EZi+1,Zi+2,...,Zn(X |Z1, . . . , Zi) .

Observe that the expectation in the previous expression is in itself a random variable,250

since the expectation is only taken over Zi+1, . . . , Zn, while Z1, . . . , Zi are random variables.251

It is not hard to check that the sequence (Yi)i always forms a martingale, independently of252

the underlying sequence Zi. Observe next that Y0 = EX and Yn = X. We thus need to show253

that |Yn − Y0| is small with high probability. To this end, we will apply Azuma’s inequality,254

which requires bounding the differences |Yi+1 − Yi|, for every i, first.255

First, observe that |Yi+1 − Yi| = 0 for every i ≥ X. Next, we claim that |Yi+1 − Yi| ≤ 1,
for every i < X. Indeed, observe that Yi is the expected size of the computed matching
conditioned on the first i choices of the algorithm. We can thus rewrite Yi as:

Yi = i+ EU ′ |Greedy(Hi)| ,

MFCS 2018



74:8 A Simple Augmentation Method for Matchings with Applications to Streaming

where Hi := G[(U ′ ∪ V ) \ ∪j≤iV (Zj)] is the residual graph obtained when removing the256

vertices incident to the first i selected edges. We thus obtain:257

Yi+1 − Yi = 1 + EU ′ |Greedy(Hi+1)| − EU ′ |Greedy(Hi)|258

= 1 + EU ′ |Greedy(Hi \ V (Zi+1))| − EU ′ |Greedy(Hi)| ∈ {−1, 0, 1} ,259

where we applied Lemma 5.260

Next, since X ≤ µ(G[U ′ ∪ V ]) ≤ µ(G), we have |Yi+1 − Yi| ≤ 1 for every i ≤ µ(G), and261

|Yi+1 − Yi| = 0 for every i > µ(G). Applying Azuma’s Inequality (Theorem 1), we obtain:262

P
[
|Yn − Y0| ≥ 5

√
µ(G) ln(µ(G))

]
≤ µ(G)−12 .

J263

Equipped with Theorem 6, we now show that our algorithm finds many disjoint 3-264

augmenting paths, provided that M is close to a 1
2 -approximation.265

I Lemma 7. Consider Algorithm 1 and suppose that |M | = ( 1
2 + ε)µ(G). Then, with

probability at least 1− µ(G)−10,

|P| ≥ µ(G)p
(

1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) .

Proof. First, by an application of a Chernoff bound, we obtain |M ′| = p|M |±O(
√
|M | ln(|M |)),266

with probability at least 1 − |M |−C , for an arbitrarily large constant C. Next, by The-267

orem 6 and Observation 3, with probability at least 1 − 2(µ(G))−12, we have |ML| ≥268
p

1+p ( 1
2 − ε)µ(G) − o(µ(G)) and |MR| ≥ p

1+p ( 1
2 − ε)µ(G) − o(µ(G)). Observe that at most269

|M ′|− |ML| edges of M ′ do not have a left wing, and at most |M ′|− |MR| edges of M ′ do not270

have a right wing. Hence, at least |M ′|− (|M ′|− |ML|)− (|M ′|− |MR|) = |ML|+ |MR|− |M ′|271

edges have both left and right wings and therefore form 3 augmenting paths. We thus obtain:272

|P| ≥ |ML|+ |MR| − |M ′| ≥ 2 · p

1 + p
(1
2 − ε)µ(G)− o(µ(G))− p|M | −O(

√
|M | ln(|M |))273

≥ 2 · p

1 + p
(1
2 − ε)µ(G)− p(1

2 + ε)µ(G)− o(µ(G))274

= µ(G)p
(

1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) .275

By the union bound, the error is bounded by |M |−C + 2(µ(G))−12 ≤ (µ(G))−10. J276

We are now ready to prove our main theorem:277

I Theorem 8. Let M be a maximal matching. Then, setting p =
√

2 − 1 in Algorithm 1278

guarantees that M augmented by P gives a matching of size at least (2−
√

2)µ(G)−o(µ(G)) ≈279

( 1
2 + 0.0857)µ(G)− o(µ(G)) with high probability in µ(G).280

Proof. Observe that the final matching is of size |M | + |P|. Let ε be such that |M | =281

( 1
2 + ε)µ(G). By Lemma 7, we have282

|M |+ |P| ≥ (1
2 + ε)µ(G) + µ(G)p

(
1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) . (1)283

It can be seen that for any value of p, the right side of Inequality 1 is minimized for ε = 0.284

On the other hand, for any value of ε, the value p(ε) =
√

1−2ε
1
2 +ε − 1 maximizes Inequality 1.285

Using ε = 0 and p(0) =
√

2−1 in Inequality 1 gives |M |+ |P| ≥ (2−
√

2)µ(G)−o(µ(G)). J286



C. Konrad 74:9

Multiple augmentation rounds with decreasing values of p allow further improvements. For287

example, a second round with p =
√

2−
√

2√
2−1 − 1 ≈ 0.1892 guarantees that the resulting288

matching is of size at least 0.6067µ(G)− o(µ(G)). As we will discuss in the next section, this289

can give a 3-pass streaming algorithm for MBM with approximation factor 0.6067, which290

slightly improves the 3-pass 0.605-approximation algorithm by Esfandiari et al. [14].291

4 Adversarial Order Streams292

Our method for finding augmenting paths given in Section 3 can directly be implemented in293

the streaming model. In the first pass, we compute a maximal matching M . If the current294

edge is added to M , then with probability p we add the edge to M ′ as well. In the second295

pass, we run Greedy on the subgraphs G′L and G′R and as soon as a 3-augmenting path is296

completed, we augment M . This can be done with constant update times.297

Since we would like our streaming algorithm to succeed with high probability in n, the298

number of vertices, we need to address the fact that our method as stated in Theorem 8 only299

succeeds with high probability in µ(G), the size of a maximum matching in G. If µ(G) is of300

size at least, say, Ω(n 1
4 ), our method can also gives a high probability result with respect301

to n. To deal with the case µ(G) = o(n 1
4 ) we run the 1-pass algorithm of Chitnis et al. [7]302

in parallel to our algorithm, which computes a subset of edges E′ ⊆ E of size O(n 1
2 ) that303

contains a maximum matching provided that µ(G) = O(n 1
4 ). Observe that after the first304

pass, we know in which of the two cases we are. We then run the Hopcroft-Karp maximum305

matching algorithm [20] in time O(
√
n ·
√
n) = O(n) on the set of collected edges. To obtain306

a streaming algorithm with constant update time, we amortize the previous computation307

during the processing of the second pass, which is possible under the natural assumption308

that m = Ω(n). This gives the following theorem:309

I Theorem 9. There is a two-pass streaming algorithm for MBM with approximation factor310

2−
√

2 ≈ 1
2 + 0.0857 that succeeds with high probability (in n). Using one additional pass, a311

0.6067-approximation algorithm can be obtained.312

5 1-pass Random Order Streaming Algorithm313

In this section, we assume that µ(G) = Ω(n 1
4 ). To deal with the case µ(G) = o(n 1

4 ) we314

run the algorithm of Chitnis et al. [7] as outlined in Section 4 in parallel and compute and315

output a maximum matching after processing the stream. We also assume that the input316

graph has at least C1 · n logC2 n edges, for suitably large constants C1, C2. If this is not the317

case then we could simply store all edges within the semi-streaming space constraint and318

compute and output a maximum matching.319

Our 1-pass random order streaming algorithm combines our method for finding augmenting320

paths with a residual sparsity property of the random order Greedy matching algorithm:321

I Theorem 10 (Residual Sparsity of Greedy). Suppose that Greedy processes the edges
E of a graph G = (V,E) with m = |E| in uniform random order. Let Mi be the matching
produced by Greedy after having processed the ith edge. Then:

∆(G [V \ V (Mi)]) = O(m logn
i

)

with probability 1− n−12 (over the uniform random ordering of the edges).322
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This theorem is implied by a similar theorem concerning the random order Greedy algorithm323

for independent sets as given in [25]. Observe that the Greedy algorithm for matchings on a324

randomly ordered sequence of the edges of a graph G can be seen as the Greedy algorithm325

for independent sets on a randomly ordered sequence of the vertices of the line graph L(G).326

Our one-pass random order algorithm is parametrized by a probability p, and is illustrated327

in Algorithm 2. In this listing, we write π = π[1], π[2], . . . , π[m] to be a uniform random328

ordering of the edges E. For a < b we also write π[a, b] to denote edges π[a], π[a+ 1], . . . , π[b],329

and π(a, b] to denote edges π[a+ 1], π[a+ 2], . . . , π[b].330

Input: Bipartite graph G = (A,B,E) with m edges, parameter 0 < p < 1

Let π = π[1], π[2], . . . π[m] be the edges of G in uniform random order
1. M ← Greedy(π[1, m

logn ])
2. Let M ′ ⊆M be such that every edge of M is included in M ′ with probability p
3. while processing π( m

logn ,m] do in parallel:
a. Compute set EM of edges ab ∈ π( m

logn ,m] with a, b /∈ V (M); if |EM | ≥ C · n log2 n,
for some appropriate large constant C, then abort

b. ML ← Greedy(GrL), where GrL is the subgraph of G induced by all edges π( m
logn ,m]

between A(M ′) and B(M)
c. MR ← Greedy(GrR), where GrR is the subgraph of G induced by all edges π( m

logn ,m]
between A(M) and B(M ′)

4. P ← {paths b′a, ab, ba′ | b′a ∈ML, ab ∈M, ba′ ∈MR}
5. if |P| ≥ µ(G[EM ]) then return M augmented by P

else return M ∪ opt(G[EM ])

Algorithm 2. One-pass random order matching algorithm

We run Greedy on the first m
logn edges to compute a matching M . Theorem 10 implies331

that the maximum degree in the residual graph H := G[V \ V (M)] is O(log2 n). This allows332

us to collect the entire residual graph (i.e., set EM ) within the semi-streaming space bound,333

since it has O(n log2 n) edges with high probability. We abort if |EM | becomes too large.334

In the next stage, we proceed as in our two-pass algorithm: We sample a subset of edges335

M ′ ⊆M and we try to find 3-augmenting paths for M ′ by computing matchings ML and336

MR in the subgraphs GrL and GrR. Ideally we would like to search for left and right wings337

in the subgraphs GL := G[A(M) ∪B(M)] and GR := G[A(M) ∪B(M)]. Since however the338

first 1
logn fraction of edges in the stream has already been processed, we can only search for339

augmenting paths in GrL and GrR. Concentration bounds however allow us to prove that not340

many important edges have arrived among the first 1
logn fraction of edges (Lemma 14).341

Our analysis is build on the following important observation. Suppose first that the342

matching M is small, i.e., |M | = α|M∗|, for a small value of α. Then we will argue in the343

next lemma that a maximum matching in the residual graph is large:344

I Lemma 11. Let α be such that |M | = α|M∗|, and let H := G[EM ] (= G[V \ V (M)]) be
the residual graph. Then:

µ(H) ≥ (1− 2α)|M∗| .

Proof. Let M∗ be a maximum matching in G. Let M∗1 ⊆ M∗ be those edges of M∗ that345

share at least one endpoint with an edge in M , and let M∗2 = M∗ \M∗1 . Then |M∗1 | ≤ 2|M |,346

since each edge of M can only be incident to at most two edges of M∗. Observe further that347

M∗2 ⊆ EM . Hence: µ(H) ≥ |M∗2 | = |M∗| − |M∗1 | ≥ |M∗| − 2|M | = (1− 2α)|M∗| . J348
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By combining M with a maximum matching in H we obtain the following corollary:349

I Corollary 12. Algorithm 2 finds a matching of size at least (1−α)|M∗| with high probability.350

The previous corollary shows that either the matching M ∪ opt(H) is large (if α is small),351

or the matching M itself is already reasonably large (if α is large). This is an important352

property since we next attempt to augment M , which necessitates that M is already close to353

a 1
2 -approximation. For this to succeed, we need to show that µ(GrL) and µ(GrR) are large.354

To this end, let δ be such that |M |+ µ(G[EM ]) = ( 1
2 + δ)µ(G). We will first bound µ(GL)355

and µ(GR) and then prove a similar bound for µ(GrL) and µ(GrR).356

I Lemma 13. Suppose that |M |+ µ(G[EM ]) = ( 1
2 + δ)µ(G). Then:

min{µ(GL), µ(GR)} ≥ (1
2 − δ)µ(G) .

Proof. LetM∗ be a maximum matching in G and letM∗H be an arbitrary maximum matching357

in H(= G[EM ]). First, it is not hard to see that M ∪M∗H is a maximal matching. Next,358

consider the set of edges M∗ ⊕ (M ∪ M∗H). Since |M | + |M∗H | = ( 1
2 + δ)µ(G), the set359

M∗ ⊕ (M ∪ opt(H)) contains ( 1
2 − δ)µ(G) augmenting paths.360

Observe that none of these augmenting paths only contain edges of M∗ and M∗H , since361

this would imply that M∗H is not maximum in H. Consider now one such augmenting path362

P and remove all edges of M∗H from P . Then P contains at least one augmenting path that363

only contains edges from M and M∗. Applying this argument to all augmenting paths, this364

proves that there are matchings in GL and GR of sizes ( 1
2 − δ)µ(G). J365

I Lemma 14. Suppose that |M |+ µ(G[EM ]) = ( 1
2 + δ)µ(G). Then, with high probability,

min{µ(GrL), µ(GrR)} ≥ (1− 4
logn ) · (1

2 − δ)µ(G) .

Proof. We only give the argument for GrL, the argument for GrR is identical. Let M∗L =366

opt(GL). We will show that most edges ofM∗L are included in π( m
logn ,m] with high probability.367

By Lemma 13, we have |M∗L| ≥ ( 1
2 − δ)µ(G). Let ei be the i-th edge of M∗L, let ti be its368

position in the stream, and let Yi be the indicator variable of the event “ti ≤ m
logn”. Our369

aim is to bound the probabilities P[Yi = 1 |Y1, . . . , Yi−1] and then apply the Chernoff bound370

stated in Theorem 2.371

In the following, all our arguments are conditioned on the event “|E(G[V \ V (M)])| =372

O(n log2 n)” (without explicitly mentioning it), which we denote by E1. This implies that373

the algorithm does not abort in Line 3a. By the residual sparsity property as stated in374

Theorem 10, E1 occurs with probability at least 1− n−12.375

We will argue now that376

P
[
π[ m

logn + 1] ∪M is not a matching ∧ π[ m

logn + 1] /∈M∗L |Y1, . . . , Yi−1

]
≥ 1− 1

log5 n
. (2)377

Since E1 happens, observe that the second part of the stream consists of m(1− 1
logn )−378

O(n log2 n) edges that cannot be added to matching M , at most n/2 edges of M∗L (depending379

on the outcome of variables Y1, . . . , Yi−1), and at most O(n log2 n) edges that could extend380

M . Further, the arrival order of the edges π( m
logn ,m] in the second part of the stream is381

MFCS 2018



74:12 A Simple Augmentation Method for Matchings with Applications to Streaming

uniform random, since the computed matching M is not affected by their order. Hence,382

P
[
π[ m

logn + 1] ∪M is not a matching ∧ π[ m

logn + 1] /∈M∗L |Y1, . . . , Yi−1

]
383

≥
m(1− 1

logn )−O(n log2 n)
m(1− 1

logn )
≥ 1− 1

log5 n
,384

using the assumption that the graph has at least C · n log10 n edges, for a large enough C.385

The key part of our argument is as follows: Let Π be the set of permutations that fulfill386

the event in Inequality 2. Given Π, we generate a set of permutations Π′ with Π′ ⊇ Π,387

which thus implies that the respective event is more likely to happen than the event in388

Inequality 2. Let π ∈ Π be any permutation. Consider edge ei and let ji be such that389

π[ji] ∈ M is the edge incident to ei. Since ei ∈ M∗L, we know that ti > ji. Construct390

now new permutations such that ei is removed from its position ti and is inserted at every391

position {ti + 1, ti + 2, . . . ,m} and add the resulting permutations to Π′. Observe that for392

any permutation π′ created this way, the exact same matching M is computed, which uses393

the fact that π[ m
logn + 1] cannot be added to M , which is important if ei is inserted at a394

position larger than m
logn + 1. Observe further that the conditionings Yj stay the same, which395

uses the fact that π[ m
logn + 1] /∈M∗L. Observe that Π′ and Π are not identical, since we do396

not necessarily have that π′[ m
logn + 1] ∪M is not a matching for π′ ∈ Π′. By construction,397

at least a (1− 1
logn )-fraction of the permutations in Π′ imply Yi = 0. We thus obtain:398

P [Yi = 0 |Y1, . . . , Yi−1] ≥399

(1− 1
logn ) · P

[
π[ m

logn + 1] ∪M is not a matching ∧ π[ m

logn + 1] /∈M∗L |Y1, . . . , Yi−1

]
400

≥ (1− 1
logn )(1− 1

log5 n
) ≥ 1− 2

logn .401

We now use the Chernoff bound for dependent variables stated in Theorem 2. Using
k = ( 1

2 − δ)µ(G), we obtain (using µ = 2k/ logn, and δ = 1 in Theorem 2):

P

[
k∑
i=1

Yi ≥ 2 2k
logn

]
≤
(e

4

) 2k
log n ≤ n−10 ,

using the assumption µ(G) = Ω(n 1
4 ). The result follows. J402

In the remaining analysis, with the help of the previous lemma we bound the number of403

augmenting paths found in Lemma 15. We then conclude with our main theorem, where we404

show that one of the two computed matchings returned by the algorithm is necessarily large.405

I Lemma 15. Let p = Ω(1), suppose that |M |+ µ(H) = ( 1
2 + δ)µ(G), and let |M | = αµ(G).

Then, with high probability,

|P| ≥ pµ(G)
(

1− 2δ
1 + p

− α
)
− o(µ(G)) .

Proof. We follow the structure of the proof of Lemma 7. By an application of a Chernoff
bound, we obtain |M ′| = p|M | ±O(

√
|M | ln(|M |)), with probability at least 1− |M |−C , for

an arbitrarily large constant C. Next, by Theorem 6 and Lemma 14, with high probability
in µ(G) we have

min{|ML|, |MR|} ≥
p

1 + p
(1
2 − δ)µ(G)− o(µ(G)) .



C. Konrad 74:13

Since we assumed that µ(G) = Ω(n 1
4 ), this event also holds with high probability in n. As406

argued in the proof of Lemma 7, the quantity |ML|+ |MR| − |M ′| bounds the number of407

3-augmenting paths found, which then completes the proof:408

|P| ≥ |ML|+ |MR| − |M ′| ≥
2p

1 + p
(1
2 − δ)µ(G)− p|M | − o(µ(G))409

= pµ(G)
(

2
1 + p

(1
2 − δ)− α

)
− o(µ(G)) = pµ(G)

(
1− 2δ
1 + p

− α
)
− o(µ(G)) .410

J411

I Theorem 16. Setting p =
√

2 − 1 in Algorithm 2 gives a one-pass random order semi-412

streaming algorithm for MBM with approximation ratio 1
2 + 2

√
2−3

4
√

2−10 ≥ 0.5390 that succeeds413

with high probability.414

Proof. Suppose that |M | = αµ(G) and |M |+ µ(H) = ( 1
2 + δ)µ(G). By Lemma 11, we have415

µ(H) ≥ (1− 2α)µ(G). Hence, (1− α)µ(G) ≤ ( 1
2 + δ)µ(G), which in turn implies α ≥ 1

2 − δ.416

Plugging this into the bound given in Lemma 15, we obtain (ignoring the o(µ(G)) term):417

|M |+ |P| ≥ αµ(G) + pµ(G)
(

1− 2δ
1 + p

− α
)

= µ(G)
(
α(1− p) + p

(
1− 2δ
1 + p

))
418

≥ µ(G)
(

(1
2 − δ)(1− p) + p

(
1− 2δ
1 + p

))
.419

The quantity |M |+ max{|P|, µ(H)}, i.e., the size of the resulting matching, is minimizes if420

|P| = µ(H). Hence, setting the right side of the previous inequality equal to ( 1
2 + δ)µ(G),421

we obtain δ = p(p−1)
2p2−6p−4 , which is maximized for p =

√
2− 1 (observe that this is the same422

value as in the proof of Theorem 8). In this case, we obtain δ = 2
√

2−3
4
√

2−10 ≈ 0.03950, which423

completes the proof. J424

6 Conclusion425

In this paper, we gave a new method for finding a set of disjoint 3-augmenting paths that426

allows the augmentation of a maximal matching such that the resulting matching is of size at427

least
√

2− 2 times the size of a maximum matching. Our method is simple and only requires428

running the Greedy matching algorithm on a random subgraph. We applied this method429

in the data streaming setting and improved over the state-of-the-art one-pass random order430

algorithm and the state-of-the-art two- and three-pass adversarial order algorithms.431

How large a matching can we compute in a single pass in the random order setting? All432

relevant known lower bounds for matchings [18, 22, 19] are highly sensitive to the arrival433

order of the edges and do not translate to the random order setting. Can we compute a434

2/3-approximation in a single pass in the random order semi-streaming setting? In the435

adversarial order setting, it is known how to obtain a 2/3− δ approximation in O( 1
δ ) passes.436

How many passes are required to obtain a 2/3-approximation?437

References438

1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.439

Correlation clustering in data streams. In Proceedings of the 32nd International Conference440

on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 2237–2246, 2015.441

URL: http://jmlr.org/proceedings/papers/v37/ahn15.html.442

MFCS 2018

http://jmlr.org/proceedings/papers/v37/ahn15.html


74:14 A Simple Augmentation Method for Matchings with Applications to Streaming

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with ap-443

plication to the maximum matching problem. Inf. Comput., 222:59–79, January 2013. URL:444

http://dx.doi.org/10.1016/j.ic.2012.10.006, doi:10.1016/j.ic.2012.10.006.445

3 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff446

Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.447

CoRR, abs/1711.03076, 2017. URL: http://arxiv.org/abs/1711.03076, arXiv:1711.448

03076.449

4 Sepelir Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings450

in dynamic graph streams and the simultaneous communication model. In Proceedings of the451

Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages452

1345–1364, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics.453

URL: http://dl.acm.org/citation.cfm?id=2884435.2884528.454

5 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Math.455

J. (2), 19(3):357–367, 1967. URL: https://doi.org/10.2748/tmj/1178243286, doi:10.456

2748/tmj/1178243286.457

6 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in458

dynamic data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium,459

Patras, Greece, September 14-16, 2015, Proceedings, pages 263–274, 2015. URL: https:460

//doi.org/10.1007/978-3-662-48350-3_23, doi:10.1007/978-3-662-48350-3_23.461

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-462

drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling463

with applications to finding matchings and related problems in dynamic graph streams. In464

Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,465

SODA ’16, pages 1326–1344, Philadelphia, PA, USA, 2016. Society for Industrial and Ap-466

plied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2884435.2884527.467

8 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The468

Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs.469

In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Al-470

gorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Informatics471

(LIPIcs), pages 29:1–29:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum472

fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7849, doi:473

10.4230/LIPIcs.ESA.2017.29.474

9 Michael Crouch and Daniel M. Stubbs. Improved Streaming Algorithms for Weighted475

Matching, via Unweighted Matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. De-476

vanur, and Cristopher Moore, editors, Approximation, Randomization, and Combinatorial477

Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28 of Leib-478

niz International Proceedings in Informatics (LIPIcs), pages 96–104, Dagstuhl, Germany,479

2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.480

de/opus/volltexte/2014/4690, doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.481

10 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-482

window model. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA483

2013, pages 337–348, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.484

11 Jack Edmonds. Paths, trees and flowers. CANADIAN JOURNAL OF MATHEMATICS,485

pages 449–467, 1965.486

12 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite487

matching in the semi-streaming model. Algorithmica, 63(1):490–508, Jun 2012. doi:10.488

1007/s00453-011-9556-8.489

13 Hossein Esfandiari, Mohammad T. Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and490

Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs491

and beyond. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete492

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://arxiv.org/abs/1711.03076
http://arxiv.org/abs/1711.03076
http://arxiv.org/abs/1711.03076
http://arxiv.org/abs/1711.03076
http://dl.acm.org/citation.cfm?id=2884435.2884528
https://doi.org/10.2748/tmj/1178243286
http://dx.doi.org/10.2748/tmj/1178243286
http://dx.doi.org/10.2748/tmj/1178243286
http://dx.doi.org/10.2748/tmj/1178243286
https://doi.org/10.1007/978-3-662-48350-3_23
https://doi.org/10.1007/978-3-662-48350-3_23
https://doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dl.acm.org/citation.cfm?id=2884435.2884527
http://drops.dagstuhl.de/opus/volltexte/2017/7849
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.29
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.29
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.29
http://drops.dagstuhl.de/opus/volltexte/2014/4690
http://drops.dagstuhl.de/opus/volltexte/2014/4690
http://drops.dagstuhl.de/opus/volltexte/2014/4690
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8


C. Konrad 74:15

Algorithms, SODA ’15, pages 1217–1233, Philadelphia, PA, USA, 2015. Society for Indus-493

trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2722129.494

2722210.495

14 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding496

large matchings in semi-streaming. In IEEE International Conference on Data Min-497

ing Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain., pages498

608–614, 2016. URL: https://doi.org/10.1109/ICDMW.2016.0092, doi:10.1109/ICDMW.499

2016.0092.500

15 Alexander Fanghänel, Thomas Kesselheim, and Berthold Vöcking. Improved algorithms501

for latency minimization in wireless networks. Theor. Comput. Sci., 412(24):2657–2667,502

May 2011. URL: http://dx.doi.org/10.1016/j.tcs.2010.05.004, doi:10.1016/j.503

tcs.2010.05.004.504

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.505

On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, De-506

cember 2005. URL: http://dx.doi.org/10.1016/j.tcs.2005.09.013, doi:10.1016/j.507

tcs.2005.09.013.508

17 Mohsen Ghaffari, Themis Gouleakis, Slobodan Mitrovic, and Ronitt Rubinfeld. Improved509

massively parallel computation algorithms for mis, matching, and vertex cover. CoRR,510

abs/1802.08237, 2018. URL: http://arxiv.org/abs/1802.08237, arXiv:1802.08237.511

18 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-512

ing complexity of maximum bipartite matching. In Proceedings of the Twenty-Third An-513

nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, Jan-514

uary 17-19, 2012, pages 468–485, 2012. URL: http://portal.acm.org/citation.cfm?515

id=2095157&CFID=63838676&CFTOKEN=79617016.516

19 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph517

processing. Algorithmica, 76(3):654–683, November 2016. URL: http://dx.doi.org/10.518

1007/s00453-016-0138-7, doi:10.1007/s00453-016-0138-7.519

20 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in520

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.521

21 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes522

over graph streams. In Approximation, Randomization, and Combinatorial Optimization.523

Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,524

USA, pages 15:1–15:21, 2017. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.525

2017.15, doi:10.4230/LIPIcs.APPROX-RANDOM.2017.15.526

22 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings527

of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,528

pages 1679–1697, Philadelphia, PA, USA, 2013. Society for Industrial and Applied Mathe-529

matics. URL: http://dl.acm.org/citation.cfm?id=2627817.2627938.530

23 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size531

from random streams. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium532

on Discrete Algorithms, SODA ’14, pages 734–751, Philadelphia, PA, USA, 2014. Society533

for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=534

2634074.2634129.535

24 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene536

Finocchi, editors, Algorithms - ESA 2015, pages 840–852, Berlin, Heidelberg, 2015. Springer537

Berlin Heidelberg.538

25 Christian Konrad. MIS in the congested clique model in O(log log ∆) rounds. CoRR,539

abs/1802.07647, 2018. URL: http://arxiv.org/abs/1802.07647, arXiv:1802.07647.540

26 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-541

streaming with few passes. InApproximation, Randomization, and Combinatorial Optimiza-542

MFCS 2018

http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dl.acm.org/citation.cfm?id=2722129.2722210
https://doi.org/10.1109/ICDMW.2016.0092
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://arxiv.org/abs/1802.08237
http://arxiv.org/abs/1802.08237
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1007/s00453-016-0138-7
http://dx.doi.org/10.1007/s00453-016-0138-7
http://dx.doi.org/10.1007/s00453-016-0138-7
http://dx.doi.org/10.1007/s00453-016-0138-7
http://dx.doi.org/10.1137/0202019
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
http://dl.acm.org/citation.cfm?id=2627817.2627938
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://arxiv.org/abs/1802.07647
http://arxiv.org/abs/1802.07647


74:16 A Simple Augmentation Method for Matchings with Applications to Streaming

tion. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th543

International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-544

ceedings, pages 231–242, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_20,545

doi:10.1007/978-3-642-32512-0_20.546

27 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in547

two-party communication. ACM Trans. Algorithms, 12(3):32:1–32:21, April 2016. URL:548

http://doi.acm.org/10.1145/2898960, doi:10.1145/2898960.549

28 Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics550

1989. Cambridge University Press, Cambridge, 1989.551

29 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus552

Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and553

Combinatorial Optimization. Algorithms and Techniques, pages 170–181, Berlin, Heidelberg,554

2005. Springer Berlin Heidelberg.555

30 Andrew McGregor and Sofya Vorotnikova. A Simple, Space-Efficient, Streaming Algorithm556

for Matchings in Low Arboricity Graphs. In Raimund Seidel, editor, 1st Symposium on557

Simplicity in Algorithms (SOSA 2018), volume 61 of OpenAccess Series in Informatics558

(OASIcs), pages 14:1–14:4, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum559

fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/8295, doi:10.560

4230/OASIcs.SOSA.2018.14.561

31 Ami Paz and Gregory Schwartzman. A 2 + ε-approximation for maximum weight matching562

in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-563

posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January564

16-19, pages 2153–2161, 2017. URL: https://doi.org/10.1137/1.9781611974782.140,565

doi:10.1137/1.9781611974782.140.566

32 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion567

Streams. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Ap-568

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques569

(APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informat-570

ics (LIPIcs), pages 435–448, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum571

fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2015/5316, doi:572

10.4230/LIPIcs.APPROX-RANDOM.2015.435.573

33 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1):1–574

20, Feb 2012. URL: https://doi.org/10.1007/s00453-010-9438-5, doi:10.1007/575

s00453-010-9438-5.576

https://doi.org/10.1007/978-3-642-32512-0_20
http://dx.doi.org/10.1007/978-3-642-32512-0_20
http://doi.acm.org/10.1145/2898960
http://dx.doi.org/10.1145/2898960
http://drops.dagstuhl.de/opus/volltexte/2018/8295
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.14
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.14
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.1137/1.9781611974782.140
http://dx.doi.org/10.1137/1.9781611974782.140
http://drops.dagstuhl.de/opus/volltexte/2015/5316
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
https://doi.org/10.1007/s00453-010-9438-5
http://dx.doi.org/10.1007/s00453-010-9438-5
http://dx.doi.org/10.1007/s00453-010-9438-5
http://dx.doi.org/10.1007/s00453-010-9438-5

	Introduction
	Preliminaries
	Finding a Large Set of Disjoint 3-augmenting Paths
	Adversarial Order Streams
	1-pass Random Order Streaming Algorithm
	Conclusion

