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Abstract

State-of-the-art practical algorithms for solving large Set Cover instances can all be regarded as
variants of the Greedy Set Cover algorithm. These algorithms maintain the input sets in memory,
which yields a substantial memory footprint. In particular, in the context of massive inputs, these
sets may need to be maintained on the hard disk or on external memory, and, consequently, access
to these sets is slow.

In this paper, we demonstrate that simple one-pass algorithms with small memory footprints
are able to compete with the more involved Greedy-like algorithms for Set Cover in practice. Our
experiments show that a recent Set Cover streaming algorithm by Emek and Rosén [ACM Trans. on
Alg. 2016] produces covers whose sizes are on average within 8% of those produced by state-of-the-art
algorithms, while using between 10 and 73 times less memory.

We also provide a theoretical analysis of an extension of the Emek-Rosén algorithm to multiple
passes and demonstrate that multiple passes allow us to further reduce cover sizes in practice.

1 Introduction

Given a collection S of m sets containing elements from some universe U of size n, the Set Cover problem
is to find a smallest subcollection A ⊆ S that covers the entire universe, i.e.,

⋃
S∈A S = U . This

fundamental problem arises at the heart of many practical applications, including document retrieval [1],
test suite reduction [28] and protein interaction prediction [18] to name a few. The ubiquity of Set
Cover stems from the abstract nature of its input. In the domain of connected data, Set Cover can be
equivalently expressed in terms of hypergraphs, where vertices comprise the universe and hyperedges
comprise the set collection. For graphs, a solution to Set Cover over the collection of edges results in a
minimum Edge Cover, and a solution of Set Cover over the inclusive neighborhoods of the vertices results
in a minimum Dominating Set.

The Set Cover problem is known to be NP-hard to solve exactly [20], and also NP-hard to approximate
to within a factor of (1− o(1)) lnn [8, 11]. The Greedy Set Cover algorithm, which produces a (lnn−
ln lnn+ Θ(1))-approximate solution [25], is therefore essentially optimal from a theoretical perspective.
Intuitively, Greedy repeatedly adds to the solution the set with the most as-yet-uncovered elements,
terminating when the universe is covered. This simple algorithm clearly runs in polynomial time, and
has been shown to perform well in practice [15, 16]. However, the non-trivial task of efficiently finding
the set with the most uncovered elements means Greedy (1) requires space linear to the size of input;
(2) has an arbitrary memory access pattern; and (3) proves awkward to implement in practice, requiring
multiple ancillary data structures. As arbitrary access to disk is typically slow,1 Greedy does not scale
well to data sets whose sizes exceed the capacity of the available Random Access Memory (RAM). For
this reason, a focus of recent research has been to find memory efficient algorithms with close-to-optimal
approximation guarantees.

Cormode et al. [6] propose Disk Friendly Greedy (DFG), a variant of Greedy which instead adds
sets to the solution if they have an uncovered element count that is close to maximal. This relaxation does
not have a significant impact on the approximation factor, and affords a mostly sequential memory access
pattern which greatly improves the efficiency of interactions with disk. Cormode et al. also demonstrate
that DFG performs well in practice, producing solutions of a similar size to Greedy and, for the larger
data sets, in a fraction of the time. Lim et al. [23] explore the in-memory implementation options of
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Greedy in greater detail, and introduce Lazy Greedy, a variant of Greedy which has a smaller
memory footprint at the cost of occasional set difference recomputations. An equivalent algorithm is
also described in [26]. Though these algorithms have similar approximation factors to Greedy, they still
require access to space linear to the size of input, be it RAM, disk or external memory. As accessing disk
is, in most circumstances, orders of magnitude slower than accessing RAM, the performance of Greedy-
like algorithms declines when applied to problem instances whose size necessitates disk residence, even
if the access pattern is mostly sequential.

To quickly process such data sets, we can instead consider Set Cover under the data streaming model,
where algorithms are permitted only sequential access to the problem instance set collection, and must
produce a solution using working memory of size sublinear to the size of the input. In 2014, Emek
and Rosén [9] (see also [10]) presented the first one-pass streaming algorithm for Set Cover, which gives

an O(
√
n)-approximate solution using Õ(n) space.2 This work received considerable attention in the

algorithms research community and led to a large number of follow-up works (e.g., [7, 3, 17, 4, 2, 19]),
giving algorithms with different characteristics and space lower bounds.

Small-space streaming algorithms for Set Cover inherently have a worse approximation guarantee than
Greedy and the aforementioned Greedy-like state-of-the-art algorithms. For example, it is known that
p-pass algorithms (for any constant p ≥ 1) with space complexity Õ(n) cannot have an approximation

ratio smaller than Θ(n
1

p+1 ) [4], which implies that the approximation factor of O(
√
n) of the (Õ(n)-

space) Emek-Rosén algorithm is optimal. Improving on the approximation factor of O(
√
n) in a single

pass requires much more space: one-pass C-approximation algorithms, for C = o(
√
n), require Ω(nm/C)

space [3].
In this paper, we ask whether the recent (theoretical) streaming algorithms for Set Cover are able

to compete with the state-of-the-art algorithms in practice. The obvious advantage of the streaming
approach is the sublinear memory usage. In addition, streaming algorithms are typically conceptually
simple which gives reason to hope that such algorithms yield fast runtimes in practice. As mentioned
previously, streaming algorithms for Set Cover have worse theoretical approximation guarantees than
the state-of-the-art Greedy-like algorithms, though past empirical Set Cover evaluations observed that
theoretical guarantees do not well predict practical solution sizes [15, 16]. Our aim is therefore to
determine whether this theoretical solution size difference is significant in practice, and to learn the
extent of working memory savings afforded by employing a streaming approach. Depending on the
application, savings in RAM usage may well outweigh marginally larger solutions.

Our Contributions

In this paper, we conduct an empirical evaluation of the Emek-Rosén algorithm [10] and compare its
performance on practical instances to the DFG algorithm by Cormode et al. [6]. To the best of our
knowledge, we are the first to evaluate one of the recent theoretical Set Cover streaming algorithms. We
remark that, among the known streaming algorithms, the Emek-Rosén algorithm and the Progressive
Greedy algorithm by Chakrabarti and Wirth [4] stand out as potentially competitive practical algorithms,
since they are deterministic, simple, and use the least space. We also include Progressive Greedy in
our experiments, showing that the produced covers are larger than those obtained by the Emek-Rosén
algorithm.

Our experiments show that the Emek-Rosén algorithm produces solution sizes which are on average
8% larger than those produced by DFG, while using only 1.4% to 9.9% of the memory required by DFG
on our input data sets. In passing, we also show that the approximation ratio of the Emek-Rosén
algorithm can be expressed in terms of ∆, the size of the largest set, showing that the algorithm has an
approximation ratio of at most 4

√
2
√

∆. We note that in practical instances ∆ is typically much smaller
than n and is therefore the more relevant parameter. Last, we extend the Emek-Rosén algorithm to

multiple passes. We show that p passes, for constant p, yield an approximation factor of O(∆
1

p+1 ), which
is known to be optimal up to constant factors [4]. We demonstrate that multiple passes allow us to
further narrow the gap in solution sizes between the Emek-Rosén algorithm and DFG in practice.

2We write Õ(·) to mean O(·) with poly log factors suppressed.
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Figure 1: An example instance of Set Cover. Here, U = {A,B,C,D,E, F,G,H, I} and S =
{S0, S1, S2, S3, S4}, where S0 = {A,B, F,G}, S1 = {A,B,D}, S2 = {C,D,E}, S3 = {H, I} and
S4 = {E,F,G}.

2 Preliminaries

2.1 Problem Definition

An instance of the Set Cover problem is defined over a universe U , where |U| = n. Given a collection S
of m sets {S0, S1, ..., Sm−1}, where Si ⊆ U for all 0 ≤ i < m and

⋃
S∈S = U , the aim is to find a smallest

set A ⊆ S such that
⋃

S∈A S = U . The size of the largest set in the instance is denoted by ∆, and the
combined size of all sets is denoted by M =

∑
S∈S |S|. We hereafter assume, without loss of generality,

that each set S ∈ S is associated with an identifier id(S) of size O(logm) bits. A solution to Set Cover is
therefore given as a collection I of identifiers, where {S ∈ S | id(S) ∈ I} = A. We refer to the optimal
solution to any given Set Cover instance as Opt.

Figure 1 shows an example instance of the Set Cover problem with n = 9, m = 5, ∆ = 4 and M = 15.
In this instance, {S1, S2, S3, S4} is a cover of U , however the smallest cover, and hence the optimal
solution to the Set Cover problem in this context, is {S0, S2, S3}.

2.2 Streaming

A stream is a sequence of data points which arrive as input to an algorithm one at a time. Since the
size of this stream is often unknown (size is typically only discovered upon arrival of the final data
point) or very large, a complete history of the stream cannot necessarily be stored in memory. For this
reason, streaming algorithms maintain some internal summary of the visited portion of the input in space
sublinear—and ideally polylogarithmic—to the size of the stream. As the whole input does not reside in
memory, a second pass over the stream would be required to access data points which have already been
visited; additional passes such as this are permitted in the context of multi-pass algorithms. In contrast,
a one-pass algorithm is constrained to a single traversal of the stream.

Considering the Set Cover problem under the streaming model, the set collection S forms the input
stream, with the set St arriving at time t. It is not always possible to approximate Set Cover in
polylogarithmic space; we realise this by observing that O(n logm) bits of space is required simply to store
a solution. We therefore consider an algorithm to be space efficient if it uses only O(npolylog(n,m)) =

Õ(n) bits of space, and refer to such an algorithm as a semi-streaming algorithm [12, 10].

Algorithm 1: Greedy Set Cover

input : A collection of sets S
output: A covering collection of identifiers I

1 I, C ← ∅
2 while C 6= U do
3 i← i′ which maximises |Si′ \ C|
4 I ← I ∪ {id(Si)}
5 C ← C ∪ Si

6 return I

3



3 Greedy and Greedy-Like Algorithms

The Greedy algorithm for Set Cover is formally given in Algorithm 1. The algorithm maintains a
collection C of covered elements, initialised to the empty set. Until every universe element is present
in C, the algorithm finds the set Si containing the most uncovered elements, then adds the identifier
of Si to I, and updates C to include all elements in Si. This simple algorithm leaves implementation
details unspecified, including how to find the set containing the most uncovered elements. This task
is non-trivial, as the uncovered element count of each set may change after the collection of covered
elements is updated.

A simple approach to this task would be to repeatedly iterate through the problem instance set
collection, noting the identifier of the set with the most uncovered elements for each pass. This method
accesses memory sequentially, however, in the worst case, m traversals of the problem instance would be
required. Under the reasonable assumption that membership of C can be checked in constant time, this
method would require O(Mm) time—this is clearly inefficient.

An alternative solution would be to maintain a priority queue storing the uncovered element counts
of each set. At each execution step, the set at the head of the queue would be added to the solution,
and, after updating C, all other sets which contain those elements freshly included in C would need
their priority queue entries updating. This can be achieved with an inverted index: a precomputed
data structure which stores for each element the identifiers of the sets in which it is included. This
inverted index requires O(M logm) additional bits of space, effectively doubling the space usage of the
algorithm. Assuming that each change to the priority queue occurs in O(logm) time, this approach
has a time complexity of O(M logm), which can be further improved to O(M) with a more involved
implementation [23].

Lazy Greedy, a variant of Greedy first described by Lim et al. [23] and later reinvented by Stergiou
and Tsioutsiouliklis [26], forgoes the use of an inverted index by updating the priority queue only when
necessary. At each execution step, the uncovered element count of the set at the head of the priority
queue is checked; if the value stored in the priority queue is accurate, then this set is added to the
solution and C is updated. If not, then the set is reinserted into the priority queue with the updated
uncovered element count. This process repeats until all elements are covered. Though the space required
by this approach is roughly half that of the inverted index implementation, the number of main loop
iterations is no longer bounded by m, and the total number of times that sets are compared with C is no
longer bounded by M . Lim et al. show that there exists an adverserial Set Cover instance of size M on
which Lazy Greedy expends Θ(M4/3) time, but observe that such instances rarely occur in practice.
They also demonstrate empirically that Lazy Greedy runs faster than the inverted index approach on
typical large problem instances.

Both the inverted index and lazy implementations of Greedy have a predominantly arbitrary
memory access pattern. While this is fine for data sets small enough to reside fully in RAM, the
overheads associated with arbitrary access to disk mean these algorithms run painfully slowly on larger-
than-RAM data sets. Cormode et al. [6] address this problem, introducing Disk Friendly Greedy
(DFG), a Greedy-like algorithm which accesses memory in large contiguous chunks. DFG employs a
bucketing approach with granularity controlled by an input parameter p. In a preprocessing sweep of the
input, each set is placed in a bucket, such that the sets in the kth bucket have size between pk (inclusive)
and pk+1 (exclusive). Depending on the size of the problem instance, these buckets can be stored either
in RAM or in files on disk. DFG then processes each bucket in sequence, starting with the bucket holding
the largest set. For each set in the bucket, the uncovered element count is first computed, after which the
set is added to the solution if this value is at least pk. If not, then the uncovered elements are removed
from the set, and the set is then demoted to the bucket associated with its new cardinality. This repeats
until only the bucket with k = 0 remains; sets in this bucket are added to the solution if they contain a
non-zero number of uncovered elements. Though DFG is no longer guaranteed to choose the set with the
most uncovered elements at each execution step, it has an approximation factor of 1+p lnn, which is only
marginally worse than the approximation guarantee of Greedy. In practice, the solutions produced by
DFG are very similar in size to those given by Greedy [6].

Importantly, the largely sequential memory access pattern of DFG means interactions with disk are
quite efficient, so DFG scales to data sets whose sizes exceed the capacity of RAM better than the other
approaches described. Despite this, DFG still maintains an ancillary data structure of size linear to the
size of input, and when this structure resides on disk, accessing it is inherently slower than accessing
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Figure 2: Effective subset example.

RAM (sometimes by orders of magnitude), even when accessing sequentially.

4 Emek-Rosén Algorithm

We now turn our attention to streaming algorithms, which are able to solve larger-than-RAM Set Cover
instances without the use of disk. Specifically, we consider the recent theoretical one-pass semi-streaming
algorithm introduced by Emek and Rosén [10]. This algorithm is designed to solve the weighted Set Cover
problem, a generalisation of Set Cover which admits element costs and set benefits. As we address the
unweighted Set Cover problem here, we describe a version of the algorithm that is simplified for our
context. The algorithm is conceptually simple and easy to implement, and is well suited to problem
instances which naturally take the form of a stream, such as real-time data or data received over a
network.

The Emek-Rosén algorithm uses a simple heuristic to build a small in-memory summary of the sets
as they arrive in a stream. For each element x ∈ U , the algorithm maintains an integer effectiveness and
an effectiveness identifier, denoted eff(x) and eid(x) respectively. Intuitively, eid(x) stores the identifier
of the set which is currently covering x, and eff(x) aims to quantify the quality of this set. As the values
of eid(x) and eff(x) change throughout execution, we define eidt(x) and efft(x) to be the values of eid(x)
and eff(x) respectively at time t, i.e., just before the set St ∈ S is processed. The following two definitions
are central to the algorithm.

Definition 1 (Level). The level of some set S is defined as

lev(S) = dlog2 |S|e.

Definition 2 (Effective subset). A subset T ⊆ St is said to be effective at time t if and only if all
elements in T have an effectiveness strictly less than the level of T. Formally,

T ⊆efft St iff. ∀x ∈ T, efft(x) < lev(T ).

Figure 2 shows an example of an effective subset. Here, St = {A,B,C,D,E, F,G,H}, and the
effectiveness values corresponding to these elements are given. The underlined elements together form
the effective subset {A,C,D,E,H}. Indeed, this is the largest effective subset in this example: if any
other elements were added to this subset, the level would not increase, and thus the subset would cease
to be effective.

Rather than returning a solution as a list of identifiers, the algorithm returns a cover certificate χ,
which is a mapping from universe elements to set identifiers. More formally, χ is a total function with
domain U and codomain {id(S) | S ∈ S} where if χ(x) = id(S), then x ∈ S. The image of χ, which is
given by

Im(χ) = {id(S) | ∃x ∈ U such that χ(x) = id(S)},

is equivalent to I, the set of identifiers which together cover S.
The Emek-Rosén algorithm is formally given in Algorithm 2. Execution starts by initialising the

effectiveness and effectiveness identifier values; this step is done implicitly in practice. Then, sets are
read from the stream one by one, with the set St being read at time t. When considering the set St,
an effective subset T ⊆efft

St is first found with maximum cardinality, after which for each x ∈ T the
effectiveness of x is set to the level of T , and the effectiveness identifier is set to that of St. Intuitively,
this means the set St is only added to the cover certificate if it contains a subset T ⊆ St where the size
of T is at least a factor of 2 greater than the size of the subsets previously designated to covering the
elements in T . The algorithm proceeds in this way until the stream terminates, at which point it returns
the resulting cover certificate (alongside the final effectiveness values if desired).

To find the largest effective subset T ⊆ St, Emek and Rosén present Observation 1 and suggest
sorting St by descending effectiveness.

5



Algorithm 2: Emek-Rosén Set Cover

input : A set stream S
output: A cover certificate and an effectiveness map

1 ∀x ∈ U : eid(x)← NULL; eff(x)← −1

2 for t← 0 to m− 1 do
3 Read the set St from S
4 T ← T ′ ⊆efft St which maximises |T ′|
5 foreach x ∈ T do
6 eid(x)← id(St)
7 eff(x)← lev(T )

8 return eid(·) and eff(·)

Observation 1. If T ⊆efft
St and x ∈ T , then T ∪ {y} is effective at time t for every y ∈ St such that

efft(y) ≤ efft(x).

When subsequently iterating through the sorted list, the first encountered effective element defines
the starting point from which the list tail equals T . Due to the initial sort, this method processes the
set St in O(|St| log |St|) time. Simplifying the Emek-Rosén algorithm to our unweighted context allows
us to improve upon this asymptotic bound. To this end, we establish two further observations, the first
of which does not apply in the context of weighted Set Cover.

Observation 2. For all 0 ≤ t < m and x ∈ U , we have −1 ≤ efft(x) ≤ dlog2 ∆e. Furthermore, efft(x)
is integral.

Observation 3. If x ∈ St and efft(x) ≥ lev(St), there exists no subset T ⊆efft
St where x ∈ T .

By Observation 2, effectiveness values are integral and bounded from above and below, so we can
find the maximal effective subset T ⊆ St in linear time by iterating over the frequency distribution of the
effectiveness values in St. Specifically, a counter array of size lev(St)+1 can be populated with an initial
pass over St, such that the (i+ 1)th value of the array corresponds to the number of elements in St with
effectiveness i (the offset accounts for effectiveness values of −1). Per Observation 3, any effectiveness
which is beyond the bounds of this counter array can safely be omitted. Then, to obtain a mapping of
effectiveness values to would-be subset sizes, a cumulative sum of this counter array can be computed.
With this mapping, the largest effectiveness value which is exceeded by the level of its corresponding
sum becomes the critical effectiveness; in a final pass over St, all elements whose effectiveness is at most
this critical value are added to the resulting subset. Finding the maximal effective subset with this
asymptotically favourable method allows the Emek-Rosén method to run in O(M) time. We also note
that the additional space required by this approach is negligible: to process a set, a number of bits
polylogarithmic to the size of the set are required.

Approximation Factor

Applying the Emek-Rosén algorithm to the simplified context of unweighted Set Cover also allows for a
slightly improved approximation factor. To see this, we reuse two key lemmas given by Emek and Rosén
in their analysis of the algorithm [10]. We start by introducing relevant definitions, in which eff∞(x)
denotes the value of eff(x) for some x ∈ U upon termination of the input stream.

Definition 3 (I(r)). For some r ∈ Z, let

I(r) = {x ∈ U | eff∞(x) = r}.

Definition 4 (S(r)). For some r ∈ Z, let

S(r) = {S ∈ S | ∃x ∈ I(r) s.t. eid(x) = id(S)}.

Definition 3 and Definition 4 are extended to the real interval [a, b] as follows:

I([a, b]) = {x ∈ U | a ≤ eff∞(x) ≤ b}, and

S([a, b]) = {S ∈ S | ∃x ∈ I([a, b]) s.t. eid(x) = id(S)}.
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The real intervals (−∞, r] and (r,∞) are denoted by ≤ r and > r respectively. We now give the two key
lemmas, which have been modified to be defined over the real numbers. It is easy to see that the original
proof of the first lemma by Emek and Rosén also applies to real numbers without modifications. Besides
allowing for real numbers, the second lemma has also been simplified by observing that |Opt| ≥ n/∆ and
|I(>dlog2 ∆e)| = 0. For completeness, we provide a proof of the second lemma in Appendix A.

Lemma 1. For some r ∈ R,
|I(≤r)| < 2r+1 · |Opt|.

Proof. See [10].

Lemma 2. For some r ∈ R,

|S(>r)| <
(

∆

2r−2
− 1

)
· |Opt|.

Proof. See Appendix A.

The approximation factor can now be established.

Theorem 1. The cardinality of the solution produced by the Emek-Rosén algorithm is within a factor
4
√

2
√

∆ of |Opt|.

Proof. Consider some r ∈ R. By combining the bounds of the solution subsets addressed in Lemma 1 and
Lemma 2, and noting that |S(r)| ≤ |I(r)| for all r, the cover certificate χ returned by the Emek-Rosén
algorithm satisfies

|Im(χ)| <
(

2r+1 +
∆

2r−2
− 1

)
· |Opt|.

This approximation factor is minimised, i.e.,

∂

∂r

(
2r+1 +

∆

2r−2
− 1

)
=

(
2r+1 − ∆

2r−2

)
ln 2 = 0,

when r = log2

√
2∆. With this r, it follows that

|Im(χ)| <
(

4
√

2
√

∆− 1
)
· |Opt|.

5 Evaluation

We now demonstrate the practical performance of the Emek-Rosén algorithm on typical Set Cover
instances.

5.1 Data Sets

For our empirical analysis, we use six benchmark data sets, detailed in Table 1. Of the six files,
accidents.dat, kosarak.dat and webdocs.dat come from the Frequent Itemset Mining Dataset Repository
and have previously been used by Cormode et al. [6] for the evaluation of the DFG algorithm.3 The
remaining three come from the Stanford Large Network Dataset Collection.4 All files have been modified
to fit the same format: a text file with one set to a line (terminated with a line feed), where the elements
are space delimited integers. Additionally, the elements of each data set were mapped in order of
appearance to the contiguous interval [1, n] for consistency. The twitter.dat and friendster.dat files,
which originally encoded (directed and undirected, respectively) graphs as edge lists, have both been
reformatted to Set Cover instances whose solutions are a Dominating Set of the respective networks. We
define for some set S the value id(S) to be its position in the problem instance file, indexed from 0; a
solution can therefore be given in a text file as a newline-separated list of set indices.

3http://fimi.uantwerpen.be/data/
4https://snap.stanford.edu/data/
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File name Credit File size (MB) n m M ∆
accidents.dat [14, 13] 35.17 468 340 183 11 500 870 51
kosarak.dat [14] 32.05 41 270 990 002 8 018 988 2497
orkut-cmty.dat [22, 24, 27] 805.44 2 322 299 15 301 901 107 080 530 9120
webdocs.dat [14, 5] 1481.89 5 267 656 1 692 082 299 887 139 71 472
twitter.dat [22, 21] 12 576.85 41 652 230 40 103 281 1 508 468 165 2 997 470
friendster.dat [22, 27] 32 353.29 65 608 366 65 608 366 3 677 742 636 5215

Table 1: Benchmark data set statistics.

File name Cover size Time (s) Peak RAM (MB)
DFG Emek-Rosén DFG Emek-Rosén DFG Emek-Rosén

accidents.dat 181 213 1.43 0.72 66.65 0.91
kosarak.dat 17 741 18 618 1.03 0.79 75.45 2.37
orkut-cmty.dat 149 244 158 439 15.44 12.35 1094.59 21.67
webdocs.dat 406 338 413 819 18.39 15.51 1401.55 56.04
twitter.dat 9 246 029 9 955 112 213.48 158.35 8044.29 797.70
friendster.dat - 13 310 036 - 367.52 - 1183.56

Table 2: A comparison between RAM-based DFG (p = 1.001) and the Emek-Rosén algorithm.

File name Cover size Time (s) Peak RAM (MB) Peak disk (MB) Disk I/O (MB)
accidents.dat 183 2.55 1.22 51.62 173.65
kosarak.dat 17 746 1.57 2.16 40.00 86.41
orkut-cmty.dat 149 239 21.66 4.69 551.03 1404.53
webdocs.dat 406 375 27.69 8.81 1213.09 2698.33
twitter.dat 9 246 096 238.25 146.69 6356.30 17 753.60
friendster.dat 10 616 833 670.17 120.15 15 373.80 48 667.50

Table 3: Disk-based DFG results (p = 1.065).
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Figure 3: Cover contribution distributions, truncated at 10, for the file accidents.dat.
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5.2 Experimental Setup

C++ implementations of RAM-based DFG, disk-based DFG and the Emek-Rosén algorithm were
prepared; these were compiled with G++ using the -O2 optimisation flag. All experiments were performed
on a 2.4GHz Intel Core i5 machine running macOS Mojave 10.14.6, with 4 cores, 256KB L2 cache (per
core), 6MB L3 cache, 16GB RAM and 512GB SSD.

To ensure only the required resources are used during execution, the implementations assume prior
knowledge of the necessary problem instance parameters. The universe elements and set indices are
stored as 4-byte integers and, for the Emek-Rosén implementation, effectiveness values are stored as
1-byte integers. The Emek-Rosén implementation computes a maximal effective subset using the linear
time approach we describe in Section 4. A bit vector is used to maintain the set of covered elements for
the DFG algorithms. For each algorithm, we measured the output solution size, total execution time,
and peak RAM usage. The execution time encompasses all necessary algorithm steps, including reading
the problem instance from disk, the DFG bucketing preprocess, and the time taken to extract a list of
identifiers from the cover certificate given by the Emek-Rosén algorithm. The non-essential task of
writing the solution to disk is excluded from the total execution time for all algorithms.

5.3 Results

We present the results of a comparison between RAM-based DFG (with p = 1.001) and the Emek-Rosén
algorithm in Table 2. For the largest file (friendster.dat), RAM-based DFG had not found a solution
after 6 hours. This is as a result of the problem instance exceeding the capacity of RAM: the abstraction
to virtual memory means the implementation effectively uses portions of disk as an extension to RAM,
at the cost of significantly slower arbitrary access.

From these results, some clear patterns emerge. Firstly, solutions produced by the Emek-Rosén
algorithm are of a slightly lower quality than those given by DFG: Emek-Rosén covers are 18%
larger in the worst case (accidents.dat), 2% larger in the best case (webdocs.dat), and 8% larger in
the (geometric) average case. However, the differences in resource usage are more pronounced, strongly
favouring the Emek-Rosén algorithm. Emek-Rosén used 73 times less RAM than DFG in the best
case (accidents.dat), and 10 times less RAM in the worst case (twitter.dat), which is still an improvement
of an order of magnitude. Emek-Rosén was also successfully able to process friendster.dat—which was
intractable for RAM-based DFG on our machine—using only 1.2GB of RAM. In terms of speed, Emek-
Rosén is consistently faster than DFG, but only by a small margin. Specifically, the Emek-Rosén
algorithm finds a solution in 50% of the time taken by DFG in the best case (accidents.dat), 84% of the
time taken by DFG in the worst case (webdocs.dat), and 72% of the time taken by DFG in the average
case.

We also applied disk-based DFG—which stores the set buckets in files, with one file per bucket—to
each of the problem instances, and present the results in Table 3. To guarantee that the limit of 253
open files (imposed by the operating system) is not exceeded during execution, we select p = 1.065 which
satisfies p > ∆1/253 for all values of ∆ in the benchmark data set collection. In addition to the usual
metrics, we also measure peak disk usage (discounting the storage of the problem instance and solution)
and disk I/O : the number of bytes read from and written to disk (not including the initial reading of
the problem instance, or the writing of the solution). In the context of disk-based algorithms, disk I/O
serves as a better indicator of performance than time, as it is invariant to hardware. At the expense
of using 13 times more memory than Emek-Rosén and exchanging 49GB of data with the disk during
execution, disk-based DFG was able to process friendster.dat and produce a solution whose size is 20%
smaller than that given by Emek-Rosén.

6 Multi-Pass Emek-Rosén

In comparison to DFG, the Emek-Rosén algorithm typically includes in the solution a higher number
of sets which cover only a few elements, leading to larger cover sizes. To demonstrate this, it is useful
to first define the contribution of a set to be the number of elements for which this set is the designated
coverer. In the context of Emek-Rosén, the contribution of a set S can be found by evaluating |{x ∈
U | eid(x) = id(S)}| after the algorithm has terminated. For DFG, the contribution of a set is given by
the number of as-yet-uncovered elements it contains at the point which it is added to the solution. By
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direct comparison of Figure 3a and Figure 3b, which show the distribution of contributions for solutions
given by DFG and the Emek-Rosén algorithm respectively, we observe that the Emek-Rosén cover
contains more sets which contribute only one or two elements.

Algorithm 3: Multi-Pass Emek-Rosén

input : A set stream S, a pass count p, and a threshold value rj for each 1 ≤ j ≤ p
output: A cover certificate and an effectiveness map

1 ∀x ∈ U : eid(x)← NULL; eff(x)← −1

2 for j ← 1 to p do
/* Do an Emek-Rosén pass */

3 for t← 0 to m− 1 do
4 Read the set St from S
5 S′t ← St ∩ U
6 T ← T ′ ⊆efft S

′
t which maximises |T ′|

7 foreach x ∈ T do
8 eid(x)← id(St)
9 eff(x)← lev(T )

/* Restrict the universe */

10 foreach x ∈ U do
11 if j = p or eff(x) > rj then
12 U ← U \ {x}
13 else
14 eff(x)← −1

15 return eid(·) and eff(·)

To better cover these elements at the lower end of the contribution distribution, we present in
Algorithm 3 Multi-Pass Emek-Rosén, a generalisation of the original algorithm which makes multiple
passes over the input stream. On the first pass, normal Emek-Rosén is applied to the set stream. Then,
the universe is restricted to a subset of the original, such that all elements in this restricted universe
have an effectiveness of at most some threshold value r1. Only those sets covering the elements not in
this restricted universe remain in the cover certificate. The Emek-Rosén algorithm is then applied on
the second pass, this time omitting all elements not in the restricted universe, after which the universe is
again restricted with the slightly lower threshold r2, and so this recursive approach continues for a total
of p passes.

We note that a solution set can be obtained during execution without post-processing the cover
certificate: if we aggregate the identifiers of those sets responsible for covering the elements excluded
from the universe on line 12, this is equivalent to the resulting cover.

6.1 Approximation Factor

We now establish the approximation factor of Multi-Pass Emek-Rosén.

Theorem 2. The cardinality of the solution produced by p-pass Emek-Rosén is within a factor 8(p +
1)∆1/(p+1) of |Opt|.

Proof. We prove this by induction.

Induction hypothesis. For some p ≥ 1, p-pass Emek-Rosén produces a solution within a factor αp

of |Opt|, where αp = (p+ 1)8p/(p+1)∆1/(p+1) − p.
Base case. Let us first consider the base case p = 1. The predicted approximation factor α1 is given by

α1 = (1 + 1)81/(1+1)∆1/(1+1) − 1 = 4
√

2
√

∆− 1,

which matches the approximation factor given in Theorem 1.

Induction step. Assume the induction hypothesis is true for p = k, i.e.,

αk = (k + 1)8k/(k+1)∆1/(k+1) − k.
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We now show that the induction hypothesis holds for p = k + 1.
Consider some threshold r ∈ R. In the first of our k + 1 passes, we keep only those sets in S(>r) in

our final solution Im(χ), leaving the subproblem of finding a cover for the remaining subuniverse I(≤r).
As we have k passes remaining, we now apply k-pass Emek-Rosén to this subproblem, which we know
under our assumption produces a solution of size less than(

(k + 1)8k/(k+1)∆2
1/(k+1) − k

)
· |Opt2|,

where ∆2 corresponds to the maximum number of elements in I(≤r) contained in a single set and Opt2
is the optimal covering of I(≤ r) which satisfies |Opt2| ≤ |Opt|. We know that every set contains fewer
than 2r+1 elements of I(≤r), therefore ∆2 < 2r+1. Considering this alongside Lemma 2, it follows that

|Im(χ)| <
(

(k + 1)8k/(k+1)
(
2r+1

)1/(k+1) − k +
∆

2r−2
− 1

)
· |Opt|.

This approximation factor is minimised, i.e.,

∂

∂r

(
(k + 1)8k/(k+1)

(
2r+1

)1/(k+1) − k +
∆

2r−2
− 1

)
=

(
8k/(k+1)

(
2r+1

)1/(k+1) − ∆

2r−2

)
ln 2

= 0,

when the threshold r is set to

r =
(k + 1) log2 ∆ + 1− k

k + 2
.

With this threshold, and after some simplification,

|Im(χ)| <
(

(k + 2)8(k+1)/(k+2)∆1/(k+2) − k − 1
)
· |Opt|

= αk+1 · |Opt|,

thus showing that αk+1 indeed holds.

Conclusion. We have shown that p-pass Emek-Rosén produces a solution that satisfies

|Im(χ)| <
(

(p+ 1)8p/(p+1)∆1/(p+1) − p
)
· |Opt|

<
(

8(p+ 1)∆1/(p+1)
)
· |Opt|,

which completes the proof.

Naturally, this approximation factor relies on selecting the appropriate threshold value rj for the jth

pass. Though we omit the proof here for the sake of brevity, we find by induction that the approximation
factor given in Theorem 2 is achieved when

rj = ((p− j + 1) log2 ∆ + 3j − p− 1)/(p+ 1).

Chakrabarti and Wirth [4] show that a semi-streaming algorithm cannot achieve an approximation
factor better than 0.99n1/(p+1)/(p + 1)2, thus Multi-Pass Emek-Rosén is essentially tight up to a
factor of 8(p+ 1)3. They also introduce Progressive Greedy, a multi-pass semi-streaming Greedy-
like algorithm for Set Cover. During the jth of p passes, Progressive Greedy adds to the solution
all sets whose uncovered element count is at least some threshold τj . The algorithm also folds the final
two passes into one by noting sets with a non-zero contribution during the would-be penultimate pass
and merging these into the solution as a post-processing step. With τj = n1−j/(p+1), they show that
Progressive Greedy is a (p + 1)n1/(p+1)-approximation algorithm for Set Cover; we note that this
bound also holds for ∆ when τj = ∆1−j/(p+1), i.e., solutions given by Progressive Greedy are at
most a factor (p + 1)∆1/(p+1) larger than |Opt| with this threshold. Though this is favourable to the
result of our analysis of Multi-Pass Emek-Rosén by a constant factor, the performance of the two
algorithms asymptotically match.
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Figure 4: Solution quality comparison between Multi-Pass Emek-Rosén (dashed) and Progressive
Greedy (dotted), with DFG (p = 1.065, solid) for reference.

6.2 Multi-Pass Emek-Rosén in Practice

To show that multiple passes improve resulting covers, and for comparison with a Greedy-like algorithm
which operates under the same computational model, we prepared C++ implementations of both Multi-
Pass Emek-Rosén and Progressive Greedy. We obtained better results when using rj = (p −
j) dlog2 ∆e /p (rather than the theoretical threshold given in Section 6.1) for Multi-Pass Emek-Rosén
and τj = ∆1−j/(p+1) (rather than τj = n1−j/(p+1)) for Progressive Greedy, so we assume these
thresholds hereafter.

We ran both algorithms on each of the data sets given in Table 1 for each pass count from 1 to 16 using
the same system described in Section 5.2. The memory usage and (I/O dominated) execution times were
very similar between the two algorithms for each run; the main difference was solution quality. In Figure 4,
we compare for each data set the cover sizes given by Multi-Pass Emek-Rosén and Progressive
Greedy, and show the solution size obtained by DFG for reference. In each case, the solution sizes all
tend towards the result given by DFG, with the Multi-Pass Emek-Rosén solutions typically converging
in fewer passes. We note also an inherent weakness of Multi-Pass Emek-Rosén: for a given data
set, there are at most dlog2 ∆e + 2 possible effectiveness values (levels), therefore if the universe is
partitioned by each of these levels, the performance of the algorithm cannot improve any further. With
the effectiveness threshold as formulated in our implementation, Multi-Pass Emek-Rosén reaches a
steady final solution size after dlog2 ∆e+1 passes, and any further passes are superfluous. Figure 3c shows
the contribution distribution of a cover given by Multi-Pass Emek-Rosén after dlog2(51)e + 1 = 7
passes. By comparison to Figure 3b, we see that there are fewer sets covering only one or two elements;
the distribution better matches that given by DFG in Figure 3a.

7 Conclusions and Future Work

In this work, we have demonstrated that a streaming approach to the Set Cover problem works well
in practice. We empirically compared the semi-streaming Emek-Rosén algorithm to the state-of-the-
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art Disk Friendly Greedy algorithm. We found that, at the cost of slightly larger cover sizes, the
Emek-Rosén algorithm was able to approximate instances of the Set Cover problem faster and using
significantly less space than Disk Friendly Greedy, giving a strongly positive answer to Emek and
Rosén’s remark in their paper [10] that the algorithm may be useful in practice.

In the last decade, a tremendous number of new data streaming algorithms with provable guarantees
have been designed for large scale problems. Most of these algorithms have never been implemented,
which we believe is a missed opportunity. We therefore strongly advocate further research into the
applicability of recent data streaming algorithms, thereby bridging the gap between theory and practice.
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A Proof of Lemma 2

Lemma 3. For some r ∈ Z, |S(r)| < n/2r−1.

Proof. See [10].

Lemma 2. For some r ∈ R,

|S(>r)| <
(

∆

2r−2
− 1

)
· |Opt|.

Proof. Consider Lemma 3, which is given by Emek and Rosén in their original analysis of the algorithm.
Summing this bound over the integer interval [brc+ 1, dlog2 ∆e] results in the converging series

dlog2 ∆e∑
r′=brc+1

n

2r′−1
= n

(
1

2brc−1
− 1

2dlog2 ∆e−1

)

< n

(
1

2r−2
− 1

∆

)
≤
(

∆

2r−2
− 1

)
· |Opt|,

where the final inequality follows from the observation that |Opt| ≥ n/∆.
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