
Exercise Sheet 1

COMS10007 Algorithms 2018/2019

05.02.2019

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 O-notation

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. n2 ∈ O(n3) .

Proof. To fulfill the definition of Big-O, we need to show that there are constants
C, n0 such that n2 ≤ Cn3, for every n ≥ n0. The previous inequality is equivalent to
1 ≤ Cn. C = 1 and n0 = 1 clearly fulfills this requirement.

2. 2n2

logn ∈ O( n2

log logn) . (log log n is short for log(log n))

Proof. We need to find constants C, n0 such that 2n2

logn ≤ C · n2

log logn . The previous
inequality can be transformed into the following equivalent one:

2n2

log n
≤ C · n2

log log n

2 log log n ≤ C log n .

Let us pick n0 = 4. Observe that:

(2 log log n)′ =
2

ln(2) ln(n)n

(C log n)′ =
C

ln(2)n
.

The racetrack principle implies that 22 log logn ≤ 2C logn holds for every n ≥ 4 if
2

ln(2) ln(n)n ≤
C

ln(2)n holds, for every n ≥ 4. We hence need to show that we can pick C

such that 2
ln(2) ln(n)n ≤

C
ln(2)n holds.

2

ln(2) ln(n)n
≤ C

ln(2)n

e2/C ≤ n ,

which holds for n ≥ n0 = 4 if we select for example C = 2 (recall that e ≈ 2.71). This
proves the result.

1



3. 2
√
logn ∈ O(n) .

Proof. We need to find constants C, n0 such that 2
√
logn ≤ Cn, for every n ≥ n0. We

pick C = 1. Then it remains to find an n0 such that 2
√
logn ≤ n, for every n ≥ n0.

Next, observe that n = 2logn. Hence, we need to find an n0 such that
√

log n ≤ log n,
for every n ≥ n0. Observe that the right side of the previous inequality is the square
of the left side. Since it holds that x2 ≥ x, for every x ≥ 1, we can pick n0 = 2, since
log n ≥ 1 for every n ≥ 2.

4. Prove the following statements from the lecture:

(a) f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Proof. We need to find constants C, n0 such that f(n) + g(n) ≤ C(h1(n) +
h2(n)), for every n ≥ n0. Since f ∈ O(h1), we know that there are constants
c1, n1 such that:

f(n) ≤ c1 · h1(n), for every n ≥ n1 .

Similar, since g ∈ O(h2), we know that there are constants c2, n2 such that:

g(n) ≤ c2 · h2(n), for every n ≥ n2 .

Combining these two inequalities, we obtain:

f(n) + g(n) ≤ c1 · h1(n) + c2 · h2(n) ≤ max{c1, c2} (h1(n) + h2(n)) ,

for every n ≥ max{n1, n2} .

Hence, setting C = max{c1, c2} and n0 = max{n1, n2} completes the proof.

(b) f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)
Proof. We need to find constants C, n0 such that f(n)·g(n) ≤ C(h1(n)·h2(n)),
for every n ≥ n0. Since f ∈ O(h1), we know that there are constants c1, n1

such that:
f(n) ≤ c1 · h1(n), for every n ≥ n1 .

Similar, since g ∈ O(h2), we know that there are constants c2, n2 such that:

g(n) ≤ c2 · h2(n), for every n ≥ n2 .

Combining these two inequalities, we obtain:

f(n) · g(n) ≤ c1 · h1(n) · c2 · h2(n) = (c1 · c2) (h1(n) · h2(n)) ,

for every n ≥ max{n1, n2} .

Hence, setting C = c1 · c2 and n0 = max{n1, n2} completes the proof.

Remind yourself why these statements could be useful for the analysis of algorithms.

5. Given are the functions:

f1 = 2
√
n, f2 = log2(20n), f3 = n!, f4 =

1

2
n2/ log(n), f5 = 4 log2(n), f6 = 2

√
logn .

Relabel the functions such that fi ∈ O(fi+1) (no need to give any proofs here).

2



Proof. The ordering is:

log2(20n), 4 log2(n), 2
√
logn,

1

2
n2/ log(n), 2

√
n, n!

The positions of the two expressions log2(20n), 4 log2(n) can be exchanged.

2 Θ and Ω

1. Let c > 1 be a constant. Prove or disprove the following statements:

(a) logc n ∈ Θ(log n).

Proof. We need to find constants c1, c2, n0 such that

c1 log n ≤ logc n ≤ c2 log n ,

for every n ≥ n0. Observe that logc n = logn
log c . We can hence chose c1 = c2 =

1
log c and n0 = 1, since c1 · log n = c2 · log n = logc n. This clearly holds for
every n ≥ 1.

(b) log(nc) ∈ Θ(log n).

Proof. Again, we need to find constants c1, c2, n0 such that

c1 log n ≤ log(nc) ≤ c2 log n ,

for every n ≥ n0. Observe that log(nc) = c log n. We can hence chose c1 =
c2 = c and n0 = 1.

2. Let c > 2 be a constant. Prove or disprove the following statement:

2n ∈ Θ(cn) .

Proof. This statement is false. We will show that cn /∈ O(2n). This disproves
this statement since if f ∈ Θ(g) then g ∈ O(f) as well.
For the sake of a contradiction, suppose that cn ∈ O(2n). Then there are
constants d, n0 such that

cn ≤ d · 2n ,

for every n ≥ n0. Taking logarithms on both sides, we obtain the equivalent
inequality:

n log(c) ≤ log(d2n) = log(d) + n

n ≤ log(d)

log(c)− 1
.

Observe that we only obtain the last inequality since c > 2 (since c > 2 we
also have log c > 1 and log(c) − 1 > 0). This inequality hence does not hold

for every n > log(d)
log(c)−1 . This is a contradiction to the assumption that it holds

for every n ≥ n0.

3. Prove that the following two statements are equivalent:

(a) f ∈ Θ(g) .

3



(b) f ∈ O(g) and g ∈ O(f) .

Proof. Assume that f ∈ Θ(g). This means that there are constants c1, c2, n0

such that c1g(n) ≤ f(n) ≤ c2g(n), for every n ≥ n0.
To show that f ∈ O(g), we need to show that there are constants c, n′0 such
that f(n) ≤ cg(n), for every n ≥ n′0. This follows immediately by chosing
c = c2 and n′0 = n0.
To show that g ∈ O(f), we need to show that there are constants c, n′0 such
that g(n) ≤ cf(n), for every n ≥ n′0. This follows immediately by chosing
c = 1

c1
and n ≥ n′0.

Next, we assume that f ∈ O(g) and g ∈ O(f). This implies that there are
constants c1, n1 such that f(n) ≤ c1g(n), for every n ≥ n1, and constants c2, n2

such that g(n) ≤ c2f(n), for every n ≥ n2. We need to show that there are
constants d1, d2, n0 such that d1g(n) ≤ f(n) ≤ d2g(n), for every n ≥ n0. We
can chose d2 = c1, d1 = 1

c2
, and n0 ≥ max{n1, n2}.

4. Prove that the following two statements are equivalent:

(a) f ∈ Ω(g) .

(b) g ∈ O(f) .

Proof. Let’s first assume that f ∈ Ω(g). This means that there are constants
c1, n1 such that c1g(n) ≤ f(n), for every n ≥ n1. We need to show that there
are constants c2, n2 such that g(n) ≤ c2f(n), for every n ≥ n2. We can pick
c2 = 1

c1
and n2 = n1.

The reverse direction, i.e., assuming that g ∈ O(f) and deducing that f ∈ Ω(g)
is very similar.

3 Peak Finding in 2D

In the lecture we discussed a recursive algorithm for PeakFinding. Below is an algorithm that
finds a peak in two dimensions. Your task is to analyze this algorithm, by bounding its runtime
and proving its correctness. As in the lecture, the runtime of the algorithm is defined as the
number of accesses to the input matrix.

Let A be an n-by-n matrix of integers. A peak in A is a position (i, j) such that Ai,j is
at least as large as its (at most) 4 neighbors (above, below, left, and right). The algorithm is
defined for non-square matrices. It is recursive and proceeds as follows:

4



Require: n-by-m matrix A of integers
Suppose that the number of columns is larger than the number of rows, i.e., n ≥ m.
If this is not the case then consider AT (i.e., rotate the matrix by 90◦) instead of A.
Observe that a peak in AT is also necessarily a peak in A.
if n ≤ 10 then

Compute the maximum of A and return its position
end if
Find the position of a maximum (imax, jmax) among the elements in the boundary (top
row, bottom row, first column, last column) and the most central column (column dn/2e).
if (imax, jmax) is a peak in A then
return (imax, jmax)

else
Let (i′, j′) be an adjacent element (either above, below, left, or right) of (imax, jmax)
such that Ai′,j′ > Aimax,jmax .
Ai′,j′ is necessarily contained in either the submatrix A1 consisting of the first dn/2e−1
columns or the submatrix A2 consisting of columns dn/2e+ 1, dn/2e+ 2 . . . n. Let As

be this submatrix (i.e., s ∈ {1, 2}).
return Find a peak in As recursively using this algorithm

end if

It is not required that you give formal proofs in this exercise. However, try to find a clear
argumentation.

1. Explain the algorithm in plain English.

2. Argue why the algorithm is correct, i.e., why is a peak found by the algorithm in the
submatrix As necessarily also a peak in A?

3. Bound the runtime of this algorithm using O-notation when executed on an n-by-n matrix.

5


