
Mock Exam - Answers

COMS10007 Algorithms 2018/2019

10.05.2019

1 Sorting

1. What is a comparison-based sorting algorithm? Give an example of a sorting algorithm
that is not comparison-based (only mention its name).

Answer: A comparison-based sorting algorithm determines the order of the array
elements by repeatedly comparing two selected elements of the input array, i.e., for
two elements A[i] and A[j] with i 6= j, the algorithm is only allowed to use the answer
to the query A[i] < A[j] (or A[i] ≤ A[j] or similar). No other operation on the
array elements (except moving them) is allowed. For example, Countingsort is not a
comparison-based sorting algorithm.

2. Is Insertionsort stable? If yes, explain why this is. If no, illustrate this with an example.

Answer: Insertionsort is stable. It iterates through the array elements from left to
right and inserts the current element A[i] at the correct position in the already sorted
prefix array A[0, i− 1]. The insertion operation does not break stability: The current
element x can always be inserted to the right of any element with the same value as
x.

3. Heapsort interprets the input array A of length n as a binary tree. The first step of the
algorithm is to heapify the tree (turn the tree into a heap). Argue that this can be done
in time O(n log n).

Answer: We need to ensure that the heap property is fulfilled at every node. To this
end, we iterate through the array from right to left, which corresponds to iterating
through the tree nodes from right to left and bottom to top. For every internal node
x, we check whether the heap condition is fulfilled. If it is not, we switch the positions
of x and its child with the larger value in the tree, thus moving x one level down in the
tree. If the heap condition is still not satisfied for x we exchange positions of x and
its child with the larger value again. Repeating this process, the heap condition for x
will eventually be fulfilled: Either x remains an internal node and the heap condition
is fulfilled, or it becomes a leaf (the heap condition is always fulfilled at a leaf).
Since each node can move at most O(log n) steps in the tree (a complete binary tree
has height O(log n)), and the tree has O(n) nodes, the runtime of this procedure is
O(n log n).

4. Give an example input array A of length n and a pivot selection method so that:

(a) Quicksort runs in time Θ(n log n) on A.

1



Answer: Since the best-case runtime of Quicksort is Θ(n log n) (i.e., we do not have
to worry that our algorithm runs faster than Θ(n log n)), we can pick an arbitrary
input sequence (let’s pick the already sorted input sequence 1, 2, 3, 4, 5, . . . , n) and we
select a uniform random element as the pivot. As argued in the lecture, Quicksort runs
in expected time O(n log n) when choosing a uniform random element as the pivot.
Alternatively, we can run a linear time median selection algorithm as the method for
picking a pivot. There are other examples: For example, we can select the already
sorted input sequence 1, 2, 3, 4, 5, . . . , n and select the element at position A[dn/2e] as
the pivot.

(b) Quicksort runs in time Θ(n2) on A.

Answer: We use the already sorted input sequence 1, 2, 3, 4, . . . , n and we select the
right-most element as the pivot. Observe that in the divide step of the algorithm, the
input of length n is split into a subproblem of length n− 1 and one of length 1. This
happens for every subproblem of length larger than 1. If only bad splits happen, the
runtime is Θ(n2).

5. Consider the following algorithm:

Algorithm 1 Sorting algorithm

Require: Array A of length n
while 1 do

if IsSorted(A) then
return A

end if
A←Next-Perm(A)

end while

We assume that the instruction A ← Next-Perm(A) takes time O(1) and returns the
next permutation of A so that the sequence:

A,Next-Perm(A),Next-Perm(Next-Perm(A)), . . .

cycles through all permutations of A. The function IsSorted(A) checks whether the
input array A is sorted.

(a) Explain how IsSorted(A) can be implemented to run in O(n) time.

Answer: We go through A from left to right starting at position 1 (and ignoring
position 0) and we check for every element A[i] whether A[i] ≥ A[i−1] holds. If this is
not the case, we return false. If none of the checks evaluated to false, we return true.
The check takes time O(1) and since we perform this check O(n) times, the runtime
is O(n).

(b) What is the worst-case runtime of the algorithm?

Answer: The algorithm cycles through all permutations of the input array and checks
whether the current permutation is sorted. In the worst case, the sorted permutation
is the last permutation considered. Since there are n! permutations of the input array,
and IsSorted(A) takes time O(n) (in fact Θ(n)), the worst-case runtime is Θ(n ·n!).

(c) What is the best-case runtime of the algorithm?

Answer: In the best case, the input is already sorted. In this case, the algorithm
runs in time O(n). The best-case runtime therefore is Θ(n).

2



2 O-notation

1. Give a formal proof of the following statement:

4n +
1

2
n2 ∈ O(6n2) .

Answer: We need to show that there are constants c, n0 such that 4n+ 1
2n

2 ≤ c · 6n2

holds for every n ≥ n0. We compute:

4n +
1

2
n2 ≤ c · 6n2

4 ≤ (6c− 1

2
)n

4

6c− 1
2

≤ n .

Hence, we can for example choose c = 1 and n = 1, since 4
6·1− 1

2

≤ 1.

2. Consider two functions f, g with f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). Does this imply
that f(n) ∈ Θ(g(n))? (no justification needed)

Answer: Yes.

3. Let f be a function with f(n) ≥ 2 for all n and f(n) ∈ O(n). Prove that log(f(n)) ∈
O(log n).

Answer: We need to show that there are constants c, n0 such that log(f(n)) ≤ c·log n,
for every n ≥ n0. Since f(n) ∈ O(n), we know that there are constants c′, n′0 such
that f(n) ≤ c′n, for every n ≥ n′0. Since f(n) ≤ c′n, we obtain log(f(n)) ≤ log(c′n) =

log(c′) + log(n). We require that log(c′) + log(n) ≤ c log n or c ≥ log(c′)
logn + 1. The

function 1
logn is decreasing in n and thus takes its largest value at n = n′0. We can

hence set c = log(c′)
log(n0)′

+ 1 and n0 = n′0.

4. Order the following sets so that each is a subset of the one that comes after it:

O(n2 + log n), O((log n)n), O(7), O(
√

2log logn), O(3n), O(n2 log n), O(log(n)− log log(n))

Answer:

O(7), O(
√

2log logn), O(log(n)−log log(n)), O(n2+log n), O(n2 log n), O(3n), O((log n)n)

3 Algorithmic Design Principles

1. In the lecture we discussed a O(log n) time algorithm for finding a peak in a one-dimensional
array A of length n. The algorithm checks whether the central element at position bn/2c
is a peak. If it is then we are done. If it isn’t then the algorithm recursively looks for a
peak either in the left or the right half of the input array.

Explain how the algorithm decides whether to recurse on the left or on the right half.
Furthermore, give an example array A so that if we always recursed on the left half then
the algorithm would not find a peak in A.

3



Answer: The algorithm recurses on the side where the larger of the two neighboring
elements to the central element lies. That is, if A[bn/2c − 1] > A[bn/2c+ 1] then the
algorithm recurses on the left side, otherwise on the right side.
Consider for example the array 1, 2, 3, 4, . . . , n. This array contains a single peak,
which is the right-most element. If we recurse on the left side, then the algorithm will
never consider the right-most element and thus not find it.

2. Consider the following recurrence:

f(1) = 2, f(2) = 4, f(3) = 7, and f(n) = f(n− 1) + f(n− 2) + f(n− 3) for n ≥ 4 .

Use the substitution method to show that f(n) = O(Cn), for some constant C (state such
a constant explicitly). Show that the smallest possible value for C can be determined by
a cubic equation (no need to solve the equation).

Answer: Our guess is f(n) ≤ c · Cn, for constants c, C. We plug our guess into the
recurrence:

f(n) = f(n− 1) + f(n− 2) + f(n− 3) ≤ cCn−1 + cCn−2 + cCn−3 .

It is required that the right side of the prevous inequality is bounded by cCn. This
yields the following inequality:

cCn−1 + cCn−2 + cCn−3 ≤ cCn

C2 + C + 1 ≤ C3 . (1)

The smallest value for C is the solution of the cubic equation C2 + C + 1 = C3. One
potential value for C that fulfills the inequality given in Inequality 1 is 2. We will thus
use the value C = 2. It remains to verify the base cases. We have: C1 = 2 ≥ f(1),
C2 = 4 ≥ f(2), and C3 = 8 ≥ f(3). We can hence set c = 1 and all base cases are
still fulfilled. We thus proved that f(n) ≤ 2n, for every n ≥ 1. This implies that
f(n) ∈ O(2n).

3. Consider the following algorithm:

Algorithm 2 Algorithm ALG

Require: Integer array A of length n
if n = 1 then

return A[0]
else
return max{ALG(A[0, bn/2c − 1]), ALG(A[bn/2c, n− 1])}

end if

We denote by A[i, j] the subarray A[i], A[i + 1], . . . , A[j].

(a) Draw the recursion tree that corresponds to the invocation of ALG on the array A =
7, 1, 22, 4, 8, 6, 3. Annotate each node of the recursion tree with the value returned
by the function call that corresponds to this node.

4



Answer:

(b) What is the runtime of this algorithm? Justify your answer.

Answer: The runtime is O(n) (even Θ(n)). Each invocation of the algorithm takes
time O(1) without the recursive calls. Overall, there are O(n) recursive calls: Observe
that the recursion tree has height at most log(n)+1, since the size of the array roughly
halves every step. The recursion tree is a binary tree. A binary tree of height k has
at most 2k+1 − 1 nodes. Hence, the recursion tree has at most 2log(n)+2 − 1 = 4n− 1
nodes. The runtime is therefore O(1) ·O(4n− 1) = O(n).

(c) Describe (in plain English, no code or pseudo-code) a non-recursive algorithm with
runtime O(n) that computes the exact same output.

Answer: The algorithm simply computes the maximum in the input array. This can
be done non-recursively as follows: We set an auxiliary variable x equal to A[0]. We
then go through the array from position 1 to n − 1 and check whether the current
element A[i] is larger than x. If it is, then we update x and set it to A[i]. At the end
of the loop, we return x.

4. Suppose that we have an infinite supply of coins of values 1, 3, 5 and 7. Given a number
n, the goal is to select the least number of coins possible whose values sum up to n. For
example, if n = 8 then one coin of value 7 and one coin of value 1 suffices (or one coin of
value 3 and one coin of value 5).

Let T (n) be the smallest number of coins needed to make up the value n. Then, T (1) =
T (3) = T (5) = T (7) = 1, T (2) = T (4) = T (6) = T (8) = 2, and T (15) = 3.

Describe a dynamic programming algorithm that computes T (n) bottom-up. What is
the runtime of your algorithm? What is the recursive definition of T (n) used in your
algorithm?

Answer: We use the following recursive definition: (for every n ≥ 8)

T (n) := 1 + min{T (n− 1), T (n− 3), T (n− 5), T (n− 7)} ,

and we use the values T (1) = T (3) = T (5) = T (7) = 1 and T (2) = T (4) = T (6) = 2.
This can be implemented in a dynamic programming algorithm as follows: We de-
fine an array A of size n + 1. We initialize the values A[i] = T (i), for every
i ∈ {1, 2, 3, 4, 5, 6, 7}. Then, we iterate from i = 8 to n and compute the value A[i]
by the formula: A[i] = 1 + max{A[i − 1], A[i − 3], A[i − 5], A[i − 7]}. The runtime of
this algorithm is O(n), since computing each value A[i] takes time O(1) and there are
O(n) values to compute.

5


