In-class Test
 COMS10007 Algorithms 2018/2019

12.03.2019

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$. We also write $\log ^{c} n$ as an abbreviation for $(\log n)^{c}$.

Make sure to put your name on every piece of paper that you hand in!

1 O-notation

1. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. Define the set $\Omega(f(n))$.
2. Give a formal proof of the statement:

$$
10 \log n \in O\left(\log ^{2} n\right)
$$

3. For each of the following statements, indicate whether it is true of false: (no justification needed)
(a) $n \in O\left(n^{2}\right)$
(b) $\log n \in O\left(n^{3}\right)$
(c) $\log n \in O(\sqrt{\log n})$
(d) $n!\in O\left(2^{n}\right)$
(e) $2^{\sqrt{\log n}}=O\left(\log ^{2} n\right)$
(f) $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$
(g) $f(n) \notin O(g(n))$ implies $g(n) \in O(f(n))$

2 Sorting Algorithms

Let A be an array of length n with $A[i]=A[j]$, for every $0 \leq i, j \leq n-1$.

1. What is the runtime of Heapsort on A ? (in Θ-notation, no justification needed)
2. What is the runtime of Mergesort on A ? (in Θ-notation, no justification needed)
3. What is the runtime of Insertionsort on A ? (in Θ-notation, no justification needed)
4. What are the best-case and worst-case runtimes of Mergesort? (no justification needed)
5. Illustrate how the Mergesort algorithm sorts the following array (for example using a recursion tree):

$$
\begin{array}{llllllll}
9 & 3 & 2 & 7 & 1 & 6 & 11 & 4
\end{array}
$$

3 Loop-Invariant

Consider the following algorithm: (it takes two parameters, an array A of length n of positive integers, and an integer x)

```
Algorithm 1
Require: \(A\) is an array of \(n\) positive integers, \(x\) is an integer
    \(c \leftarrow 0\)
    for \(i \leftarrow 0,1, \ldots, n-1\) do
        if \(A[i]<x\) then
            \(c \leftarrow c+1\)
        end if
    end for
    return \(c\)
```

1. Consider the for-loop of the algorithm. One of the following options is a correct loopinvariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in Lines 3,4 , and 5 is executed) ...
(a) $\ldots c=\mid\{j: 0 \leq j<i$ and $A[j]<x\} \mid$
(b) $\ldots c=\mid\{j: 0 \leq j \leq i$ and $A[j]<x\} \mid$
(c) $\ldots c=\mid\{j: 0 \leq j<i$ and $A[j] \leq x\} \mid$
(d) $\ldots c=\mid\{j: 0 \leq j \leq i$ and $A[j] \leq x\} \mid$

State which one is correct.
2. Initialization: Consider the correct invariant. Argue that at the beginning of the first iteration, i.e. when $i=0$, the loop-invariant holds.
3. Maintenance: Consider the correct invariant. Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop-invariant then also holds at the beginning of iteration $i+1$.
4. Termination: What does the algorithm compute? Argue that this follows from the correct loop invariant.

