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Reminder: logn denotes the binary logarithm, i.e., logn = logyn. We also write logn as an
abbreviation of (logn)°.
1 O-notation

1. Let f: N — N be a function. Define the set Q(f(n)). (3 pts)
Proof.

Q(f(n)) = {g(n) : There exist positive constants ¢ and ng
such that 0 < ¢f(n) < g(n) for all n > ng}

2. Give a formal proof of the statement: (2 pts)

10logn € O(log?n) .

Proof. We need to find constants ¢, ng such that 10logn < clog?n, for every n > ng.
The previous inequality is equivalent to % < logn, which in turn gives g <n. We
can hence for example select ¢ = 10 and ng = 2. O

3. For each of the following statements, indicate whether it is true of false: (no justification
needed) (1 pt each)

(2) n € (n?) [true]

(b) logneO( 3) [true

(c) logn € O(v/Iogn)

(d) n! € O(2") [false]

(e) 2187 = O(log? n) [false |

(f) f(n) € O(g(n)) implies g(n) € Q(f(n))
) f(n) & O(g(n)) implies g(n) € O(f(n))
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2 Sorting Algorithms

Let A be an array of length n with A[i] = A[j], for every 0 <4,5 <n — 1.

1.

What is the runtime of Heapsort on A? (1 pt)
e(n)

. What is the runtime of Mergesort on A? (1 pt)
©(nlogn)

. What is the runtime of Insertionsort on A? (1 pt)
O(n)

. What are the best-case and worst-case runtimes of Mergesort? (2 pts)
‘Both are ©(nlogn) ‘

. Illustrate how the Mergesort algorithm sorts the following array (for example using a

recursion tree): (2 pts)

9 3 2 71 6 11 4

‘See for example slide 10 of lectures 6/7. ‘

3 Loop-Invariant

Consider the following algorithm:

Algorithm 1

Require: A is an array of n positive integers, x is an integer

1
2
3
4:
5
6
7

e+ 0
: fori«+0,1,...,n—1do

if Afi] <z then
c+c+1
end if

: end for
: return c

1. Consider the for-loop of the algorithm. One of the following options is a correct loop-

invariant:
At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in
Lines 3 and 4 is executed) ...
(a) .. c={j : 0<j <iand A[j]
(b) .. c=|{j : 0<j<iand AJj] <z}
(c) . c={j : 0<j<iand Alj]
(d) ... c=|{j : 0<j<iand Alj]

State which one is correct. (2 pts)

‘(a), ie,c=|j : 0<j<iand Afj] < x}|, is correct.




2. Initialization: Consider the correct invariant. Argue that at the beginning of the first
iteration, i.e. when i = 0, the loop-invariant holds. (1 pt)

Proof. At the beginning of the first iteration (when ¢ = 0), the loop invariant states
that
c=[{j : 0<j<0and Afj] <z} =[{}=0,

since there is no j such that 0 < j < 0. This holds since c is initialized to 0 in the line
just before the loop. O

3. Maintenance: Consider the correct invariant. Suppose that the loop invariant holds at the
beginning of iteration i. Argue that the loop-invariant then also holds at the beginning
of iteration i 4 1. (2 pt)

Proof. Let ¢; be the value of ¢ at the beginning of iteration . Then we have ¢; =
H{i : 0 < j < iand A[j] < z}|. We need to show that ¢;11 = |{j : 0<j <
i+ 1 and A[j] < x}|. Suppose first that A[i] < x. Then the algorithm increments ¢,
i.e., we have ¢;4+1 = ¢; + 1. Observe further that:

{j : 0<j<i+land A[j]<z} = [{j : 0<j<iand A[j] < z}|
+ |{j : j=iand A[j] <z} =¢+1,
using the assumption A[i] < x. The invariant thus holds in this case.

Next, suppose that A[i] > z. Then the algorithm does not change ¢, i.e., we have
¢i+1 = ¢;. Observe further that:

{j - 0<j<it+land Aljl <=z} = |{j : 0<j <iand Alj] <z}
+ |{j i j=iand Alj]| <z} =¢ ,

using the assumption A[i] > z. The invariant thus holds in this case.
Since the invariant holds in both cases, the invariant always holds. O

4. Termination: What does the algorithm compute? Argue that this follows from the loop
invariant. (1 pt)

Proof. The algorithm computes the number of elements of the input array that are
smaller than z. This can be seen by plugging in the value ¢ = n into the invariant (the
state after the last iteration or before iteration ¢ = n that is never executed), which
yields c=|{j : 0<j <nand Afj] < x}|. O




