In-class Test
 COMS10007 Algorithms 2018/2019

12.03.2019

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$. We also write $\log ^{c} n$ as an abbreviation of $(\log n)^{c}$.

1 O-notation

1. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. Define the set $\Omega(f(n))$.

Proof.

$$
\begin{aligned}
\Omega(f(n))= & \left\{g(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq c f(n) \leq g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

2. Give a formal proof of the statement:

$$
10 \log n \in O\left(\log ^{2} n\right)
$$

Proof. We need to find constants c, n_{0} such that $10 \log n \leq c \log ^{2} n$, for every $n \geq n_{0}$. The previous inequality is equivalent to $\frac{10}{c} \leq \log n$, which in turn gives $2^{\frac{10}{c}} \leq n$. We can hence for example select $c=10$ and $n_{0}=2$.
3. For each of the following statements, indicate whether it is true of false: (no justification needed)
(1 pt each)
(a) $n \in\left(n^{2}\right)$ true
(b) $\log n \in O\left(n^{3}\right)$ true
(c) $\log n \in O(\sqrt{\log n})$ false
(d) $n!\in O\left(2^{n}\right)$ false
(e) $2^{\sqrt{\log n}}=O\left(\log ^{2} n\right)$ false
(f) $f(n) \in O(g(n))$ implies $g(n) \in \Omega(f(n))$ true
(g) $f(n) \notin O(g(n))$ implies $g(n) \in O(f(n))$ false

2 Sorting Algorithms

Let A be an array of length n with $A[i]=A[j]$, for every $0 \leq i, j \leq n-1$.

1. What is the runtime of Heapsort on A ?

$$
\Theta(n)
$$

2. What is the runtime of Mergesort on A ?

$$
\Theta(n \log n)
$$

3. What is the runtime of Insertionsort on A ?

$$
\Theta(n)
$$

4. What are the best-case and worst-case runtimes of Mergesort?

Both are $\Theta(n \log n)$
5. Illustrate how the Mergesort algorithm sorts the following array (for example using a recursion tree):

$$
\begin{array}{llllllll}
9 & 3 & 2 & 7 & 1 & 6 & 11 & 4
\end{array}
$$

See for example slide 10 of lectures 6/7.

3 Loop-Invariant

Consider the following algorithm:

```
Algorithm 1
Require: \(A\) is an array of \(n\) positive integers, \(x\) is an integer
    \(c \leftarrow 0\)
    for \(i \leftarrow 0,1, \ldots, n-1\) do
        if \(A[i]<x\) then
            \(c \leftarrow c+1\)
        end if
    end for
    return \(c\)
```

1. Consider the for-loop of the algorithm. One of the following options is a correct loopinvariant:

At the beginning of iteration i (i.e., after i is updated in Line 2 and before the code in Lines 3 and 4 is executed) ...
(a) $\ldots c=\mid\{j: 0 \leq j<i$ and $A[j]<x\} \mid$
(b) $\ldots c=\mid\{j: 0 \leq j \leq i$ and $A[j]<x\} \mid$
(c) $\ldots c=\mid\{j: 0 \leq j<i$ and $A[j] \leq x\} \mid$
(d) $\ldots c=\mid\{j: 0 \leq j \leq i$ and $A[j] \leq x\} \mid$

State which one is correct.
(a), i.e., $c=\mid\{j: 0 \leq j<i$ and $A[j]<x\} \mid$, is correct.
2. Initialization: Consider the correct invariant. Argue that at the beginning of the first iteration, i.e. when $i=0$, the loop-invariant holds.

Proof. At the beginning of the first iteration (when $i=0$), the loop invariant states that

$$
c=\mid\{j: 0 \leq j<0 \text { and } A[j]<x\}|=|\{ \}|=0,
$$

since there is no j such that $0 \leq j<0$. This holds since c is initialized to 0 in the line just before the loop.
3. Maintenance: Consider the correct invariant. Suppose that the loop invariant holds at the beginning of iteration i. Argue that the loop-invariant then also holds at the beginning of iteration $i+1$.
(2 pt)
Proof. Let c_{i} be the value of c at the beginning of iteration i. Then we have $c_{i}=$ $\mid\{j: 0 \leq j<i$ and $A[j]<x\} \mid$. We need to show that $c_{i+1}=\mid\{j: 0 \leq j<$ $i+1$ and $A[j]<x\} \mid$. Suppose first that $A[i]<x$. Then the algorithm increments c, i.e., we have $c_{i+1}=c_{i}+1$. Observe further that:

$$
\begin{aligned}
\mid\{j: 0 \leq j<i+1 \text { and } A[j]<x\} \mid & =\mid\{j: 0 \leq j<i \text { and } A[j]<x\} \mid \\
& +\mid\{j: j=i \text { and } A[j]<x\} \mid=c_{i}+1,
\end{aligned}
$$

using the assumption $A[i]<x$. The invariant thus holds in this case.
Next, suppose that $A[i] \geq x$. Then the algorithm does not change c, i.e., we have $c_{i+1}=c_{i}$. Observe further that:

$$
\begin{aligned}
\mid\{j: 0 \leq j<i+1 \text { and } A[j]<x\} \mid & =\mid\{j: 0 \leq j<i \text { and } A[j]<x\} \mid \\
& +\mid\{j: j=i \text { and } A[j]<x\} \mid=c_{i},
\end{aligned}
$$

using the assumption $A[i] \geq x$. The invariant thus holds in this case.
Since the invariant holds in both cases, the invariant always holds.
4. Termination: What does the algorithm compute? Argue that this follows from the loop invariant.
(1 pt)
Proof. The algorithm computes the number of elements of the input array that are smaller than x. This can be seen by plugging in the value $i=n$ into the invariant (the state after the last iteration or before iteration $i=n$ that is never executed), which yields $c=\mid\{j: 0 \leq j<n$ and $A[j]<x\} \mid$.

