
Lecture 20: Peak Finding in 2D
COMS10007 - Algorithms

Dr. Christian Konrad

30.04.2019

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 1 / 14



Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 2 / 14



Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 2 / 14



Peak Finding

Let A be an n-by-m matrix of integers

A =



A11 A12 A13 . . . A1m

A21
. . .

A31
. . .

...
. . .

An1 An2 An3 . . . Anm



Definition: (Peak in 2D)
Integer Aij is a peak if adjacent integers are not larger than Aij

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 3 / 14



Example and Trivial Algorithm

How many peaks are contained in this matrix?


1 5 8 3
2 1 8 9
3 1 1 2
7 7 8 10
2 1 1 1


Trivial Algorithm

For each position i , j , check whether Ai ,j is a peak

There are n ·m positions

Checking whether Ai ,j is a peak takes time O(1)

Runtime: O(nm)

How can we do better?

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 4 / 14



Example and Trivial Algorithm

How many peaks are contained in this matrix?


1 5 8 3
2 1 8 9
3 1 1 2
7 7 8 10
2 1 1 1


Trivial Algorithm

For each position i , j , check whether Ai ,j is a peak

There are n ·m positions

Checking whether Ai ,j is a peak takes time O(1)

Runtime: O(nm)

How can we do better?

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 4 / 14



Divide-and-Conquer Solution

Divide-and-Conquer

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 5 / 14



1D Peak Finding

Divide-and-Conquer in 1D: Fast-Peak-Finding

1 Check whether A[bn/2c] is a peak, if yes then return A[bn/2c]
2 Else, if A[bn/2c − 1] > A[bn/2c] then recursively find a peak

in A[0, bn/2c − 1]

3 Else, recursively find a peak in A[bn/2c+ 1, n − 1]

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 6 / 14



Crucial Property

Crucial Property:
When recursing on subarray, need to make sure that peak in
subarray is also peak in initial array

Example:
A = 1 2 3 4 5 6 7 8

Algorithm first inspects 4 and recurses on right half

5 6 7 8

Will eventually find the only peak 8

Suppose we recursed on left half

1 2 3

peak in 1 2 3 is not a peak in A!

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 7 / 14



2D Peak Finding

Divide-and-Conquer: Divide step

Find maximum among central column and boundary

If it is not a peak, conquer either on left or right half
A11 . . . A1,m

2
−1 A1,m

2
A1,m

2
+1 . . . A1m

A21 . . . A2,m
2
−1 A2,m

2
A2,m

2
+1 . . . A2m

...
...

...
An−1,1 . . . An−1,m

2
−1 An−1,m

2
An−1,m

2
+1 . . . An−1,m

An,1 . . . An,m
2
−1 An,m

2
An,m

2
+1 . . . An,m


In each recursive call, number of elements in matrix halves (at
least)

Hence O(log(mn)) recursive calls

In each call: O(n + m), thus in total O((n + m) log(nm))

Can be improved to O(max{m, n}) !

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 8 / 14



2D Peak Finding

Divide-and-Conquer: Divide step

Find maximum among central column and boundary

If it is not a peak, conquer either on left or right half
A11 . . . A1,m

2
−1

A21 . . . A2,m
2
−1

...
An−1,1 . . . An−1,m

2
−1

An,1 . . . An,m
2
−1


In each recursive call, number of elements in matrix halves (at
least)

Hence O(log(mn)) recursive calls

In each call: O(n + m), thus in total O((n + m) log(nm))

Can be improved to O(max{m, n}) !

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 8 / 14



Recursion on which side?

Recursion on which side?

Since maximum not a peak, a not considered neighbor larger

Recurse on the side that contains this larger neighbor


A11 . . . A1,m

2
−1 A1,m

2
A1,m

2
+1 . . . A1m

A21 . . . A2,m
2
−1 A2,m

2
A2,m

2
+1 . . . A2m

...
...

...
An−1,1 . . . An−1,m

2
−1 An−1,m

2
An−1,m

2
+1 . . . An−1,m

An,1 . . . An,m
2
−1 An,m

2
An,m

2
+1 . . . An,m



Dr. Christian Konrad Lecture 20: Peak Finding in 2D 9 / 14



Recursion on which side?

Recursion on which side?

Since maximum not a peak, a not considered neighbor larger

Recurse on the side that contains this larger neighbor


A11 . . . A1,m

2
−1 A1,m

2
A1,m

2
+1 . . . A1m

A21 . . . A2,m
2
−1 A2,m

2
A2,m

2
+1 . . . A2m

...
...

...
An−1,1 . . . An−1,m

2
−1 An−1,m

2
An−1,m

2
+1 . . . An−1,m

An,1 . . . An,m
2
−1 An,m

2
An,m

2
+1 . . . An,m



Dr. Christian Konrad Lecture 20: Peak Finding in 2D 9 / 14



Recursion on which side?

Recursion on which side?

Since maximum not a peak, a not considered neighbor larger

Recurse on the side that contains this larger neighbor


A11 . . . A1,m

2
−1 A1,m

2
A1,m

2
+1 . . . A1m

A21 . . . A2,m
2
−1 A2,m

2
A2,m

2
+1 . . . A2m

...
...

...
An−1,1 . . . An−1,m

2
−1 An−1,m

2
An−1,m

2
+1 . . . An−1,m

An,1 . . . An,m
2
−1 An,m

2
An,m

2
+1 . . . An,m



Dr. Christian Konrad Lecture 20: Peak Finding in 2D 9 / 14



Why Does it Work?

Correctness:

Suppose algorithm finds peak in a submatrix A′

Why is this also a peak in A?

First Case: Peak is in central column of A′ X

Second Case: Peak in bottom or top boundary of A′

Only happens in first iteration X

A′11 . . . A′
1,m

′
2
−1

A′
1,m

′
2

A′
1,m

′
2
+1

. . . A′1m′

A′21 . . . A′
2,m

′
2
−1

A′
2,m

′
2

A′
2,m

′
2
+1

. . . A′2m′

...
...

...
A′n′−1,1 . . . A′

n′−1,m′
2
−1

A′
n′−1,m′

2

A′
n′−1,m′

2
+1

. . . A′n′−1,m′

A′n′,1 . . . A′
n′,m

′
2
−1

A′
n′,m

′
2

A′
n′,m

′
2
+1

. . . A′n′,m′


Dr. Christian Konrad Lecture 20: Peak Finding in 2D 10 / 14



Why Does it Work?

Correctness:

Suppose algorithm finds peak in a submatrix A′

Why is this also a peak in A?

First Case: Peak is in central column of A′ X

Second Case: Peak in bottom or top boundary of A′

Only happens in first iteration X

A′11 . . . A′
1,m

′
2
−1

A′
1,m

′
2

A′
1,m

′
2
+1

. . . A′1m′

A′21 . . . A′
2,m

′
2
−1

A′
2,m′

2

A′
2,m

′
2
+1

. . . A′2m′

...
...

...
A′n′−1,1 . . . A′

n′−1,m′
2
−1

A′
n′−1,m′

2

A′
n′−1,m′

2
+1

. . . A′n′−1,m′

A′n′,1 . . . A′
n′,m

′
2
−1

A′
n′,m

′
2

A′
n′,m

′
2
+1

. . . A′n′,m′


Dr. Christian Konrad Lecture 20: Peak Finding in 2D 10 / 14



Why Does it Work?

Correctness:

Suppose algorithm finds peak in a submatrix A′

Why is this also a peak in A?

First Case: Peak is in central column of A′ X

Second Case: Peak in bottom or top boundary of A′

Only happens in first iteration X

A′11 . . . A′
1,m′

2
−1

A′
1,m

′
2

A′
1,m

′
2
+1

. . . A′1m′

A′21 . . . A′
2,m

′
2
−1

A′
2,m

′
2

A′
2,m

′
2
+1

. . . A′2m′

...
...

...
A′n′−1,1 . . . A′

n′−1,m′
2
−1

A′
n′−1,m′

2

A′
n′−1,m′

2
+1

. . . A′n′−1,m′

A′n′,1 . . . A′
n′,m

′
2
−1

A′
n′,m

′
2

A′
n′,m

′
2
+1

. . . A′n′,m′


Dr. Christian Konrad Lecture 20: Peak Finding in 2D 10 / 14



Why Does it Work? (2)

Peak in Left or Right Boundary of A′:



A′11 . . . A′
1,m

′
2
−1

A′
1,m

′
2

A′
1,m

′
2
+1

. . . A′1m′

A′21 . . . A′
2,m

′
2
−1

A′
2,m

′
2

A′
2,m

′
2
+1

. . . A′2m′

...
...

...
A′n′−1,1 . . . A′

n′−1,m′
2
−1

A′
n′−1,m′

2

A′
n′−1,m′

2
+1

. . . A′n′−1,m′

A′n′,1 . . . A′
n′,m

′
2
−1

A′
n′,m

′
2

A′
n′,m

′
2
+1

. . . A′n′,m′


Need to make sure that A′n′−1,m′ is not smaller than element
left of it in A (if it exists)

Observe: Element left of it is in central column of a matrix
that was considered earlier

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 11 / 14



Key Lemma

Lemma

Let A = A1,A2,A3, . . . be the sequence of matrices considered by
the algorithm. Let mi be the maximum of the central column and
the boundary in Ai . Then:

mi+1 ≥ mi .

Proof. If mi is in bottom/top/left/right boundary (excluding the
elements that are also in central column) of Ai , then mi is also in
boundary of Ai+1. Hence, mi+1 ≥ mi .
Suppose mi is in central column. Since it is not a peak, either left
or right element is larger. Let this element be x . Hence, x > mi .
Observe that x is in boundary of Ai+1. Since mi+1 ≥ x , we
conclude mi+1 > mi .

→ Peak found in left or right column in A′ is also peak in A!
(establishes correctness of algorithm)

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 12 / 14



Summary

Peak Finding in 2D

Divide and conquer algorithm

Finds a peak in time O((m + n) log(mn)) on an n-by-m matrix

For square (n-by-n) matrices, this is O(n log(n2)) = O(n log n)

Improvement (for simplicity suppose that A is an n-by-n matrix)

If # columns ≥ # rows then recurse horizontally as before

If # columns < # rows then recurse vertically

Observe:

Vertical and horizontal splits alternate

After two recursions we have n′-by-n′ matrix with n′ < n/2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 13 / 14



Runtime of Improved Algorithm

Analysis: (sketch)

In iteration 1, matrix is of size n-by-n

In iteration 3, matrix is of size at most n/2-by-n/2

In iteration 5, matrix is of size at most n/4-by-n/4

. . .

Runtime ≤
log(n2)∑
i=1

Runtime in it. i ≤ 2 ·
2 log n∑

i=1,3,5,7,...

Runtime in it. i

= 2 ·
log n∑
i=1

Runtime on matrix with dimensions n/2i−1 × n/2i−1

= 2 ·
log n∑
i=1

O(n/2i−1) = O(n)

log n∑
i=1

O(
1

2i−1
) = O(n) · O(1) = O(n) .

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 14 / 14


