Lecture 20: Peak Finding in 2D

COMS10007 - Algorithms

Dr. Christian Konrad

30.04.2019

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

(2o a1 2223 [235 [a1 [0]

Definition: (Peak)
Integer a; is a peak if adjacent integers are not larger than a;

Example:

'4]3]9]10]14]8]7]|2]2]2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

(2o a1 2223 [235 [a1 [0]

Definition: (Peak)
Integer a; is a peak if adjacent integers are not larger than a;

Example:

'4]3]9]10]14]8]|7]|2]2]2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Peak Finding

Let A be an n-by-m matrix of integers

Air Az Az ... Ainm
Ax1

A= Az
An Amn Az ... Amm

Definition: (Peak in 2D)
Integer Aj; is a peak if adjacent integers are not larger than A;

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Example and Trivial Algorithm

How many peaks are contained in this matrix?

158 3
218 9
311 2
7 7 8 10
211 1

Trivial Algorithm
@ For each position i/, j, check whether A; ; is a peak
@ There are n- m positions
@ Checking whether A; ; is a peak takes time O(1)
e Runtime: O(nm)

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Example and Trivial Algorithm

How many peaks are contained in this matrix?

158 3
218 9
311 2
7 7 8 10
211 1

Trivial Algorithm
@ For each position i/, j, check whether A; ; is a peak
@ There are n- m positions
@ Checking whether A; ; is a peak takes time O(1)
e Runtime: O(nm)

How can we do better?

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Divide-and-Conquer Solution

Divide-and-Conquer

o Divide the problem into a number of subproblems that are
smaller instances of the same problem.

@ Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

@ Combine the solutions to the subproblems into the solution
for the original problem.

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

1D Peak Finding

Divide-and-Conquer in 1D: FAST-PEAK-FINDING

@ Check whether A[|n/2]] is a peak, if yes then return A[|n/2]]

@ Else, if A[[n/2] — 1] > A[|n/2]] then recursively find a peak
in A0, |n/2] —1]

@ Else, recursively find a peak in A[|n/2] +1,n—1]

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Crucial Property

Crucial Property:
When recursing on subarray, need to make sure that peak in

subarray is also peak in initial array

Example:
A=1 2 3 4 5 6 7 8

@ Algorithm first inspects 4 and recurses on right half
5 6 7 8

Will eventually find the only peak 8
@ Suppose we recursed on left half

1 2 3

peak in1 2 3 is not a peak in Al

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

2D Peak Finding

Divide-and-Conquer: Divide step
@ Find maximum among central column and boundary
o If it is not a peak, conquer either on left or right half

Au oo Auza A Ausg . A
Ao e A2,%71 A27r§n A27%+1 e Aom
An11 oor Ancrror Aprr Ascizir oo Anim
At o Anmy Agm Amia .. Awm

@ In each recursive call, number of elements in matrix halves (at
least)

@ Hence O(log(mn)) recursive calls

@ In each call: O(n+ m), thus in total O((n+ m)log(nm))

e Can be improved to O(max{m, n}) !

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

2D Peak Finding

Divide-and-Conquer: Divide step
@ Find maximum among central column and boundary
o If it is not a peak, conquer either on left or right half

A1l e Al,%—l
Ao R A27%_1
An-11 -0 Anrmoa
Apt .. Apm_g

@ In each recursive call, number of elements in matrix halves (at
least)

@ Hence O(log(mn)) recursive calls

@ In each call: O(n+ m), thus in total O((n+ m)log(nm))

e Can be improved to O(max{m, n}) !

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Recursion on which side?

Recursion on which side?
@ Since maximum not a peak, a not considered neighbor larger

@ Recurse on the side that contains this larger neighbor

Au o Ay Ay Apmyg Aim
Aor oo Agmg Aogm Apmyy Aom
Anfl,l An—l,%—l Anfl,% An—l,m—i-l An—1,m
Ani Apm_q Apm Apmiq Anm

Lecture 20: Peak Finding in 2D

Dr. Christian Konrad

Recursion on which side?

Recursion on which side?
@ Since maximum not a peak, a not considered neighbor larger

@ Recurse on the side that contains this larger neighbor

Au . Agry Ay Armiq Aim
At oo Agmy Agnm Apmiq Aom
Anfl,l Anfl,';fl Anfl,% Anfl,%+l oo Anfl,m
An,l cee An,%—l An,% An,%«kl An,m

Lecture 20: Peak Finding in 2D

Dr. Christian Konrad

Recursion on which side?

Recursion on which side?
@ Since maximum not a peak, a not considered neighbor larger

@ Recurse on the side that contains this larger neighbor

A1l Ay Az Agmg o Aim
Azl Apm_g Apm Apmyy . Aop
An11 -or Anciror Aprr Ascrzir oo Ancim
At oo Apza Ann Apmi e Awm

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Why Does it Work?

Correctness:
@ Suppose algorithm finds peak in a submatrix A’

@ Why is this also a peak in A?

First Case: Peak is in central column of A’ v

Second Case: Peak in bottom or top boundary of A’
Only happens in first iteration v/

!/ !/ / / /
11 “ e A%/f]_ A~m7/ A17m7/+1 - im’
/ / / / /
a e ey e Aay Aot
/ / / !/ !/
n—-11 -*-- An/_17ﬂ’_1 An/fl.%, An’—l,%,—l-l T n’'—1,m’

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Why Does it Work?

Correctness:

@ Suppose algorithm finds peak in a submatrix A’

@ Why is this also a peak in A?

First Case: Peak is in central column of A’ v

Second Case: Peak in bottom or top boundary of A’
Only happens in first iteration v/

/ / /

/ /
/ / ce 1m’
, /:%71 /‘,n; }7%+1 /m
A A A
21 oo i / / 2 /
LA TS m
/ / !/ / /
n—-11 ~*-° A /_Lm’ 1 An/fl.%, An’—l,%,-i-l . n’'—1,m’

Dr. Christian Konrad

Lecture 20: Peak Finding in 2D

Why Does it Work?

Correctness:
@ Suppose algorithm finds peak in a submatrix A’

@ Why is this also a peak in A?

First Case: Peak is in central column of A’ v

Second Case: Peak in bottom or top boundary of A’
Only happens in first iteration v/

/ / / / /
,11 All,"‘%fl A/%/ A/L’"%H ,lm/
A A A A
21 o / / / 2m’
2’”’771 *,% 2’%+1 m

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Why Does it Work? (2)

Peak in Left or Right Boundary of A’:

!/ A/ A/ A/ A/
1 1,71 1,7 1,7 41 1m’
/ ! !/ ! !/
b A A A Ay
/ ! / ! /
Ayan oo A A A A
/ ! / / /
v o A Ay A Ay

@ Need to make sure that A’n, , is not smaller than element

left of it in A (if it exists)

@ Observe: Element left of it is in central column of a matrix
that was considered earlier

—1,m

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

Key Lemma

Lemma

Let A= A1, Ap, As, ... be the sequence of matrices considered by
the algorithm. Let m; be the maximum of the central column and
the boundary in A;. Then:

mit1 = mj .

Proof. If m; is in bottom/top/left/right boundary (excluding the
elements that are also in central column) of A;, then m; is also in
boundary of Aj;1. Hence, mj;1 > m;.

Suppose m; is in central column. Since it is not a peak, either left
or right element is larger. Let this element be x. Hence, x > m;.
Observe that x is in boundary of A;;11. Since mj+1 > x, we
conclude mj 1 > m;. [

— Peak found in left or right column in A’ is also peak in Al

(establishes correctness of algorithm)
Dr. Christian Konrad Lecture 20: Peak Finding in 2D 12/ 14

Peak Finding in 2D
@ Divide and conquer algorithm
e Finds a peak in time O((m+ n)log(mn)) on an n-by-m matrix

e For square (n-by-n) matrices, this is O(nlog(n?)) = O(nlog n)

Improvement (for simplicity suppose that A is an n-by-n matrix)
@ If # columns > # rows then recurse horizontally as before

@ If # columns < # rows then recurse vertically

Observe:
@ Vertical and horizontal splits alternate

o After two recursions we have n’-by-n’ matrix with n’ < n/2

Dr. Christian Konrad Lecture 20: Peak Finding in 2D 13/ 14

Runtime of Improved Algorithm

Analysis: (sketch)
In iteration 1, matrix is of size n-by-n
In iteration 3, matrix is of size at most n/2-by-n/2

°
°
e In iteration 5, matrix is of size at most n/4-by-n/4
°

log(n?) 2logn
Runtime < Z Runtime init. i <2 Z Runtime in it. /
i=1 i=1,3,5,7,...
logn
= 2 Z Runtime on matrix with dimensions n/2/~! x n/2/~1
i=1
log n logn

= 2. ZO(n/2’ h n)ZO(zI =)= 0(n)- O(1) = O(n) .

Dr. Christian Konrad Lecture 20: Peak Finding in 2D

