

Lecture 16: Dynamic Programming - Pole Cutting

COMS10007 - Algorithms

Dr. Christian Konrad

26.03.2019

Pole Cutting

Pole-cutting:

- Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length i is sold for price $p(i)$, for some function p

Example:

length i	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30

Pole Cutting (2)

Problem: POLE-CUTTING

- 1 **Input:** Price table p_i , for every $i \geq 1$, length n of initial pole
- 2 **Output:** Maximum revenue r_n obtainable by cutting pole into smaller pieces

How many ways of cutting the pole are there?

Pole Cutting (3)

There are 2^{n-1} ways to cut a pole of length n .

Proof.

There are $n - 1$ positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities. \square

Problem:

- Find best out of 2^{n-1} possibilities
- We could disregard similar cuts, but we would still have an exponential number of possibilities
- A fast algorithm cannot try out all possibilities

Pole Cutting (4)

Notation

$$7 = 2 + 2 + 3$$

means we cut a pole of length 7 into pieces of lengths 2, 2 and 3

Optimal Cut

- Suppose the optimal cut uses k pieces

$$n = i_1 + i_2 + \cdots + i_k$$

- Optimal revenue r_n :

$$r_n = p(i_1) + p(i_2) + \cdots + p(i_k)$$

Pole Cutting (5)

What are the optimal revenues r_i ?

length i	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30

$$r_1 = 1 \quad 1 = 1$$

$$r_2 = 5 \quad 2 = 2$$

$$r_3 = 8 \quad 3 = 3$$

$$r_4 = 10 \quad 4 = 2 + 2$$

$$r_5 = 13 \quad 5 = 2 + 3$$

$$r_6 = 17 \quad 6 = 6$$

$$r_7 = 18 \quad 7 = 2 + 2 + 3$$

$$r_8 = 22 \quad 8 = 2 + 6$$

$$r_9 = 25 \quad 9 = 3 + 6$$

$$r_{10} = 30 \quad 10 = 10$$

Optimal Substructure

Optimal Substructure

- Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k \text{ for some } k$$

- Then:

$$n - i_1 = i_2 + \cdots + i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue r_n :

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$$

- p_n corresponds to the situation of no cut at all
- $r_i + r_{n-i}$: initial cut into two pieces of sizes i and $n - i$

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let $r_0 = 0$

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) .$$

Observe: Only one subproblem in this formulation

Example: $n = 4$

$$r_4 = \max\{p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0\}$$

Recursive Top-down Implementation

Recall:

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) \text{ and } r_0 = 0 .$$

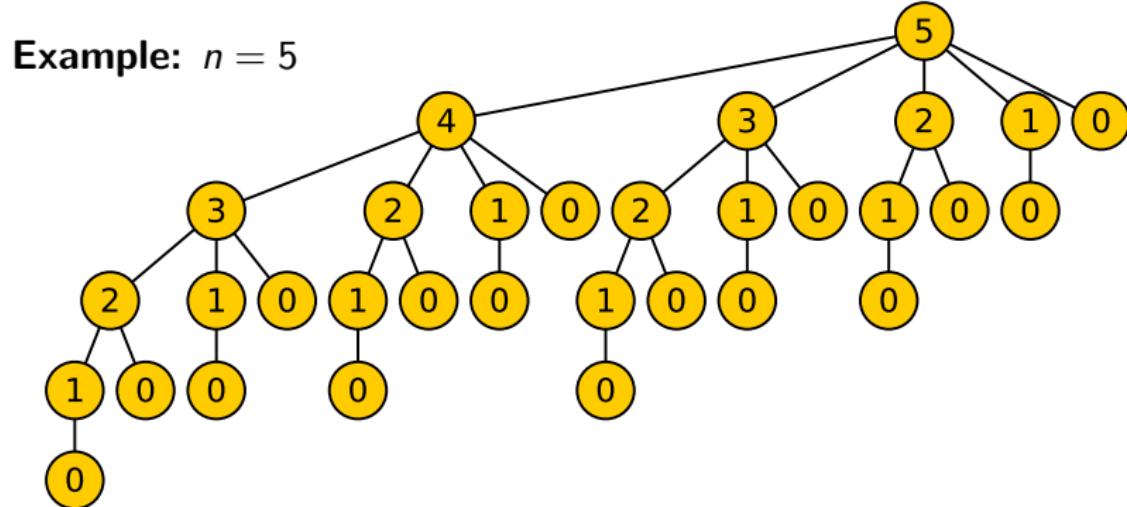
Direct Implementation:

```
Require: Integer  $n$ , Array  $p$  of length  $n$  with prices
if  $n = 0$  then
    return 0
     $q \leftarrow -\infty$ 
    for  $i = 1 \dots n$  do
         $q \leftarrow \max\{q, p[i] + \text{CUT-POLE}(p, n - i)\}$ 
    return  $q$ 
```

Algorithm $\text{CUT-POLE}(p, n)$

How efficient is this algorithm?

Recursion Tree for CUT-POLE



Number Recursive Calls: $T(n)$

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) \text{ and } T(0) = 1$$

Solving Recurrence

How to Solve this Recurrence?

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) \text{ and } T(0) = 1$$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- **Trick:** compute $T(n) - T(n - 1)$

$$\begin{aligned} T(n) - T(n - 1) &= 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j) \right) \\ &= T(n - 1) , \text{ hence:} \\ T(n) &= 2T(n - 1) . \end{aligned}$$

This implies $T(i) = 2^i$.

Runtime of Cut-Pole

- Recursion tree has 2^n nodes
- Each function call takes time $O(n)$ (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. ($O(2^n)$ can also be argued)

What can we do better?

- Observe: We compute solutions to subproblems many times
- Avoid this by storing solutions to subproblems in a table!
- This is a key feature of dynamic programming

Implementing the Dynamic Programming Approach

Top-down with memoization

- When computing r_i , store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed

Bottom-up

- Fill table T from smallest to largest index
- No recursive calls are needed for this

Top-down Approach

Require: Integer n , Array p of length n with prices

Let $r[0 \dots n]$ be a new array

for $i = 0 \dots n$ **do**

$r[i] \leftarrow -\infty$

return MEMOIZED-CUT-POLE-AUX(p, n, r)

Algorithm MEMOIZED-CUT-POLE(p, n)

- Prepare a table r of size n
- Initialize all elements of r with $-\infty$
- Actual work is done in MEMOIZED-CUT-POLE-AUX, table r is passed on to MEMOIZED-CUT-POLE-AUX

Top-down Approach (2)

Require: Integer n , array p of length n with prices, array r of revenues

```
if  $r[n] \geq 0$  then
    return  $r[n]$ 
if  $n = 0$  then
     $q \leftarrow 0$ 
else
     $q \leftarrow -\infty$ 
    for  $i = 1 \dots n$  do
         $q \leftarrow \max\{q, p[i] + \text{MEMOIZED-CUT-POLE-AUX}(p, n - i, r)\}$ 
     $r[n] \leftarrow q$ 
return  $q$ 
```

Algorithm $\text{MEMOIZED-CUT-POLE-AUX}(p, n, r)$

Observe: If $r[n] \geq 0$ then $r[n]$ has been computed previously

Bottom-up Approach

Require: Integer n , array p of length n with prices

Let $r[0 \dots n]$ be a new array

$r[0] \leftarrow 0$

for $j = 1 \dots n$ **do**

$q \leftarrow -\infty$

for $i = 1 \dots j$ **do**

$q \leftarrow \max\{q, p[i] + r[j - i]\}$

$r[j] \leftarrow q$

return $r[n]$

Algorithm BOTTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

$$\sum_{j=1}^n \sum_{i=1}^j O(1) = O(1) \sum_{j=1}^n \sum_{i=1}^j 1 = O(1) \sum_{j=1}^n j = O(1) \frac{n(n+1)}{2} = O(n^2) .$$

Runtime of Top-down Approach $O(n^2)$

(please think about this!)

Dynamic Programming

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table
- If a problem exhibits *optimal substructure* then dynamic programming is often the right choice
- Top-down and bottom-up approaches have the same runtime