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Pole Cutting

Pole-cutting:

Given is a pole of length n

The pole can be cut into multiple pieces of integral lengths

A pole of length i is sold for price p(i), for some function p

Example:

length i 1 2 3 4 5 6 7 8 9 10

price p(i) 1 5 8 9 10 17 17 20 24 30
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Pole Cutting (2)

Problem: Pole-Cutting

1 Input: Price table pi , for every i ≥ 1, length n of initial pole

2 Output: Maximum revenue rn obtainable by cutting pole into
smaller pieces

How many ways of cutting the pole are there?
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Pole Cutting (3)

There are 2n−1 ways to cut a pole of length n.

Proof.

There are n − 1 positions where the pole can be cut. For each
position we either cut or we don’t. This gives 2n−1 possibilities.

Problem:

Find best out of 2n−1 possibilities

We could diregard similar cuts, but we would still have an
exponential number of possibilites

A fast algorithm cannot try out all possibilities
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Pole Cutting (4)

Notation
7 = 2 + 2 + 3

means we cut a pole of length 7 into pieces of lengths 2, 2 and 3

Optimal Cut

Suppose the optimal cut uses k pieces

n = i1 + i2 + · · ·+ ik

Optimal revenue rn:

rn = p(i1) + p(i2) + · · ·+ p(ik)
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Pole Cutting (5)

What are the optimal revenues ri?

length i 1 2 3 4 5 6 7 8 9 10

price p(i) 1 5 8 9 10 17 17 20 24 30

r1 = 1 1 = 1

r2 = 5 2 = 2

r3 = 8 3 = 3

r4 = 10 4 = 2 + 2

r5 = 13 5 = 2 + 3

r6 = 17 6 = 6

r7 = 18 7 = 2 + 2 + 3

r8 = 22 8 = 2 + 6

r9 = 25 9 = 3 + 6

r10 = 30 10 = 10
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Optimal Substructure

Optimal Substructure

Consider an optimal solution to input length n

n = i1 + i2 + · · ·+ ik for some k

Then:
n − i1 = i2 + · · ·+ ik

is an optimal solution to the problem of size n − i1

Computing Optimal Revenue rn:

rn = max{pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1}

pn corresponds to the situation of no cut at all

ri + rn−i : initial cut into two pieces of sizes i and n − i
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let r0 = 0

rn = max
1≤i≤n

(pi + rn−i ) .

Observe: Only one subproblem in this formulation

Example: n = 4

rn = max{p1 + r3, p2 + r2, p3 + r1, p4 + r0}

p1 + r3 p2 + r2 p3 + r1 p4 + r0
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Recursive Top-down Implementation

Recall:
rn = max

1≤i≤n
(pi + rn−i ) and r0 = 0 .

Direct Implementation:

Require: Integer n, Array p of length n with prices
if n = 0 then

return 0
q ← −∞
for i = 1 . . . n do
q ← max{q, p[i ] +Cut-Pole(p, n − i)}

return q

Algorithm Cut-Pole(p, n)

How efficient is this algorithm?
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Recursion Tree for Cut-Pole

Example: n = 5

Number Recursive Calls: T (n)

T (n) = 1 +
n−1∑
j=0

T (j) and T (0) = 1
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Solving Recurrence

How to Solve this Recurrence?

T (n) = 1 +
n−1∑
j=0

T (j) and T (0) = 1

Substitution Method: Using guess T (n) = O(cn), for some c

Trick: compute T (n)− T (n − 1)

T (n)− T (n − 1) = 1 +
n−1∑
j=0

T (j)−

1 +
n−2∑
j=0

T (j)


= T (n − 1) , hence:

T (n) = 2T (n − 1) .

This implies T (i) = 2i .
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Discussion

Runtime of Cut-Pole

Recursion tree has 2n nodes

Each function call takes time O(n) (for-loop)

Runtime of Cut-Pole is therefore O(n2n). (O(2n) can also
be argued)

What can we do better?

Observe: We compute solutions to subproblems many times

Avoid this by storing solutions to subproblems in a table!

This is a key feature of dynamic programming
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Implementing the Dynamic Programming Approach

Top-down with memoization

When computing ri , store ri in a table T (of size n)

Before computing ri again, check in T whether ri has
previously been computed

Bottom-up

Fill table T from smallest to largest index

No recursive calls are needed for this
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Top-down Approach

Require: Integer n, Array p of length n with prices
Let r [0 . . . n] be a new array
for i = 0 . . . n do
r [i ]← −∞

return Memoized-Cut-Pole-Aux(p, n, r)

Algorithm Memoized-Cut-Pole(p, n)

Prepare a table r of size n

Initialize all elements of r with −∞
Actual work is done in Memoized-Cut-Pole-Aux, table r
is passed on to Memoized-Cut-Pole-Aux
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Top-down Approach (2)

Require: Integer n, array p of length n with prices, array r of
revenues
if r [n] ≥ 0 then

return r [n]
if n = 0 then
q ← 0

else
q ← −∞
for i = 1 . . . n do
q ← max{q, p[i ] +Memoized-Cut-Pole-Aux(p, n −
i , r)}

r [n]← q
return q

Algorithm Memoized-Cut-Pole-Aux(p, n, r)

Observe: If r [n] ≥ 0 then r [n] has been computed previously
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Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r [0 . . . n] be a new array
r [0]← 0
for j = 1 . . . n do
q ← −∞
for i = 1 . . . j do
q ← max{q, p[i ] + r [j − i ]}

r [j ]← q
return r [n]

Algorithm Bottom-Up-Cut-Pole(p, n)

Runtime: Two nested for-loops

n∑
j=1

j∑
i=1

O(1) = O(1)
n∑

j=1

j∑
i=1

1 = O(1)
n∑

j=1

j = O(1)
n(n + 1)

2
= O(n2) .
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Comclusion

Runtime of Top-down Approach O(n2)

(please think about this!)

Dynamic Programming

Solves a problem by combining subproblems

Subproblems are solved at most once, store solutions in table

If a problem exhibits optimal substructure then dynamic
programming is often the right choice

Top-down and bottom-up approaches have the same runtime
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