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Pole Cutting

Pole-cutting:

o Given is a pole of length n

(A

@ The pole can be cut into multiple pieces of integral lengths

@ A pole of length i is sold for price p(i), for some function p

Example:

lengthi |1 2 3 45 6 7 8 9 10
pricep(i) [1 5 8 9 10 17 17 20 24 30
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Pole Cutting (2)

Problem: POLE-CUTTING
@ Input: Price table p;, for every i > 1, length n of initial pole

@ Output: Maximum revenue r, obtainable by cutting pole into
smaller pieces

How many ways of cutting the pole are there?
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Pole Cutting (3)

‘ There are 2! ways to cut a pole of length n. ‘

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:
e Find best out of 271 possibilities

@ We could diregard similar cuts, but we would still have an
exponential number of possibilites

@ A fast algorithm cannot try out all possibilities
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Pole Cutting (4)

Notation
7=24+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

@ Suppose the optimal cut uses k pieces
n:i1+i2+---+ik
@ Optimal revenue ry:

rn = p(i) + p(i) + - -+ p(ix)
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30
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rno

10
13
17
18
22
25
30

1=1
2=2
3=3
4=2+2
5=2+43
6=06
7=2+2+3
8=2+4+6
9=3+6
10=10
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Optimal Substructure

Optimal Substructure

@ Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=1idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:
= max{pf‘h n + rn—17 r2 + rn—27 sty n—1 + rl}

@ p, corresponds to the situation of no cut at all

@ rj + r,_;: initial cut into two pieces of sizes / and n— i
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

In = 1rgiagxn(pi + rn—i) -

Observe: Only one subproblem in this formulation

Example: n=14

rn=max{p1 + r3,po+ ro,p3+ri,pa+ro}

p1+r3 p2+r p3+n ps+ro
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Recursive Top-down Implementation

Recall:

rhn= max (p;j+r—;)and n=0.
n 1Si§n(P: n I) 0

Direct Implementation:

Require: Integer n, Array p of length n with prices

if n =0 then
return 0
g —o0

fori=1...ndo
q < max{gq, p[i] + CuTr-POLE(p,n — i)}
return q
Algorithm CuT-POLE(p, n)

How efficient is this algorithm?
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Recursion Tree for CUT-POLE

Example: n=5




Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)
n—1 n—2
T(n)—T(n—1) = 1+> TG - [1+)_T()
j=0 j=0

= T(n—1), hence:
T(n) = 2T(n—-1).

This implies T(i) = 2'.
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Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?
@ Observe: We compute solutions to subproblems many times
@ Avoid this by storing solutions to subproblems in a table!

@ This is a key feature of dynamic programming
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Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Bottom-up
o Fill table T from smallest to largest index

@ No recursive calls are needed for this
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Top-down Approach

Require: Integer n, Array p of length n with prices
Let r[0...n] be a new array
for i=0...ndo
r[i] + —oc0
return MEMOIZED-CUT-POLE-AUX(p, n, r)
Algorithm MEMOI1ZED-CUT-POLE(p, n)

@ Prepare a table r of size n
@ Initialize all elements of r with —oo

@ Actual work is done in MEMOIZED-CUT-POLE-AUX, table r
is passed on to MEMOIZED-CUT-POLE-AUX
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Top-down Approach (2)

Require: Integer n, array p of length n with prices, array r of
revenues
if r[n] > 0 then
return r[n|
if n =0 then
g« 0
else
g+ —o0
fori=1...ndo
g < max{q, p[i] + MEMOIZED-CUT-POLE-AUX(p, n —
i,r)}
rln] < q
return g
Algorithm MEMOI1ZED-CUT-POLE-AUX(p, n, r)

Observe: If r[n] > 0 then r[n] has been computed previously
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Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g+ —0o0
fori=1...jdo
q < max{q, p[i] + r[j — i}
rjl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

n J n

n Jj
S Y om=omY Y 1=00)y = 0(1)”(”2“) — 0(n?).

Jj=1i=1 Jj=1i=1 Jj=1
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Comclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming
@ Solves a problem by combining subproblems
@ Subproblems are solved at most once, store solutions in table

@ If a problem exhibits optimal substructure then dynamic
programming is often the right choice

@ Top-down and bottom-up approaches have the same runtime
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